

Fusion Trees
Part Two

Recap from Last Time

Our Machine Model
● We will assume we’re working on a machine

where memory is segmented into w-bit words.
● Although on any one fixed machine w is a constant,

in general, don’t assume this is the case. 32-bit was
the norm until fairly recently, and before that 16-bit
was standard.

● We’ll assume C integer operators work in
constant time, and won’t assume other integer
operations (say, finding most significant bits,
counting 1 bits set) are available.

+ - * / % << >> & | ^ = <=

Word-Level Parallelism
● Last time, we saw five powerful primitives built using

word-level parallelism:
● Parallel compare: We can compare a bunch of small

numbers in parallel in O(1) machine word operations.
● Parallel tile: We can take a small number and “tile” it

multiple times in O(1) machine word operations.
● Parallel add: If we have a bunch of “flag” bits spread out

evenly, we can add them all up in O(1) machine word
operations.

● Parallel rank: We can find the rank of a small number in an
array of small numbers in O(1) machine word operations.

● Most-significant bit: We can compute msb(n) for any w-bit
integer n in O(1) machine word operations.

Word-Level Parallelism
● Last time, we saw five powerful primitives built using

word-level parallelism:
● Parallel compare: We can compare a bunch of small

numbers in parallel in O(1) machine word operations.
● Parallel tile: We can take a small number and “tile” it

multiple times in O(1) machine word operations.
● Parallel add: If we have a bunch of “flag” bits spread out

evenly, we can add them all up in O(1) machine word
operations.

● Parallel rank: We can find the rank of a small number in an
array of small numbers in O(1) machine word operations.

● Most-significant bit: We can compute msb(n) for any w-bit
integer n in O(1) machine word operations.

Integer LCP
● Computing msb efficiently lets us implement a

number of other efficient primitives.
● Given two integers m and n, the longest common

prefix of m and n, denoted lcp(m, n), is the length
of the longest bitstring they both start with.

● Claim: We can compute this in time O(1).

00011010 01101110 01111000 01001101 00101111 00001101 01110111 01100001

00011010 01000101 00010100 00100000 01010000 00100010 01000100 00001000

00000000 00101011 01100100 01101101 01111111 00101111 00110011 01101001

⊕

m ⊕ n

Integer LCP
● Computing msb efficiently lets us implement a

number of other efficient primitives.
● Given two integers m and n, the longest common

prefix of m and n, denoted lcp(m, n), is the length
of the longest bitstring they both start with.

● Claim: We can compute this in time O(1).

00011010 01101110 01111000 01001101 00101111 00001101 01110111 01100001

00011010 01000101 00010100 00100000 01010000 00100010 01000100 00001000

00000000 00101011 01100100 01101101 01111111 00101111 00110011 01101001

⊕

m ⊕ n

Integer LCP
● Computing msb efficiently lets us implement a

number of other efficient primitives.
● Given two integers m and n, the longest common

prefix of m and n, denoted lcp(m, n), is the length
of the longest bitstring they both start with.

● Claim: We can compute this in time O(1).

00011010 01101110 01111000 01001101 00101111 00001101 01110111 01100001

00011010 01000101 00010100 00100000 01010000 00100010 01000100 00001000

00000000 00101011 01100100 01101101 01111111 00101111 00110011 01101001

⊕

w - 1 - msb(m ⊕ n)

New Stuff!

The Sardine Tree Revisited
● Last time, we designed a data structure

nicknamed the sardine tree that
● stores s-bit keys, where s is much smaller

than w, and
● supports all operations in time O(logw/s n).

● Our goal for today will be to generalize
this to work with arbitrary integer keys,
not just s-bit keys.

The Sardine Tree Revisited
● At a high level, the sardine tree is a B-tree augmented with

extra information to support fast rank queries.
● The branching factor is Θ(w / s), the number of keys we can

fit into a single machine word.
● We use a parallel rank operation at each node to determine

which keys to check and which child to descend into.
● Therefore, each operation’s cost is O(logw/s n): O(1) work per

each of O(logw/s n) nodes visited.

46 74 103

18 27 30 36 40 52 58 64 68 78 84 88 93 99 109116127
… … … …

The Sardine Tree Revisited
● The sardine tree is a specific case of a more general framework.
● Build a B-tree where each node is augmented with a data

structure called a ranker with the following properties:
● The ranker stores Θ(K) total keys.
● It supports queries of the form rank(x), which returns the rank of x

among those keys, in time O(1).
The cost of performing a search is then O(logK n), since the tree
height is O(logK n) and we do O(1) work per node.

46 74 103

18 27 30 36 40 52 58 64 68 78 84 88 93 99 109116127
… … … …

The Sardine Tree Revisited
● The sardine tree is a specific case of a more general framework.
● Build a B-tree where each node is augmented with a data

structure called a ranker with the following properties:
● The ranker stores Θ(K) total keys.
● It supports queries of the form rank(x), which returns the rank of x

among those keys, in time O(1).
● The cost of performing a search is then O(logK n), since the tree

height is O(logK n) and we do O(1) work per node.

46 74 103

18 27 30 36 40 52 58 64 68 78 84 88 93 99 109116127
… … … …

ranker

ranker ranker ranker ranker

The Sardine Tree Revisited
● The sardine tree ranker works by packing the

Θ(w/s) keys into a machine word, then using
our parallel rank operation from last time.

● Since there are Θ(w/s) keys per node, the
runtime of each B-tree operation is O(logw/s n),
though the keys are severely size-limited.

46 74 103

18 27 30 36 40 52 58 64 68 78 84 88 93 99 109116127
… … … …

ranker

ranker ranker ranker ranker

● The fusion tree is a B-tree augmented with a
ranker that stores wε keys for some constant ε
we’ll pick later. Its keys are full w-bit words.

● The cost of a lookup, successor, or
predecessor in a fusion tree is therefore

O(logw
ε n) = O(log n / log wε) = O(logw n).

Fusion Trees

46 74 103

18 27 30 36 40 52 58 64 68 78 84 88 93 99 109116127
… … … …

ranker

ranker ranker ranker ranker

● The sardine tree solves the following problem:
Support rank queries for a
large number of small keys.

● To build the fusion tree, we’ll solve this problem:
Support rank queries for a
small number of large keys.

Where We’re Going

46 74 103

18 27 30 36 40 52 58 64 68 78 84 88 93 99 109116127
… … … …

ranker

ranker ranker ranker ranker

Where We’re Going
● The parallel rank operation we devised last

time permits O(1)-time rank queries, provided
that all the keys fit into a machine word.

● In general, we can’t assume that a collection
of arbitrary keys all fit into a machine word.

● Goal: Compress multiple w-bit keys so that
● they fit in a machine word so we can use parallel

rank, and
● the compression preserves enough information

about their order so that the ranks we get back are
meaningful.

Compressing Our Numbers
● Let’s imagine we have a collection of wε

numbers, each of which is w bits long.
● For simplicity, we’re going to assume

that those numbers are given to us in
advance and in sorted order.
● We’ll relax this later on.

00010100 00010111 00011011 01101001 01101110

Back to Tries
● Think about what

happens if we
make a trie from
these numbers.

● We have few
numbers (wε) and
these numbers
are large (size w),
so most nodes will
have one child.

● Idea: Use a
Patricia trie!

 0

 0 1

 0

 1

 0 1

 1 0

 0 1

 0 1

 0

 0

 0

 0 1

 1

 1 1

 1

 1

 1

00010100 00010111 00011011 01101001 01101110

Back to Tries
● Think about what

happens if we
make a trie from
these numbers.

● We have few
numbers (wε) and
these numbers
are large (size w),
so most nodes will
have one child.

● Idea: Use a
Patricia trie!

 0

00010100 00010111 00011011 01101001 01101110

0
0

 1
 1

0
1

 1
 0
 1
 1

0
0
1

 1
 1
 0
 1

0
0
1

 1
 1
 0

Back to Tries
● Since there are wε

numbers, there
are exactly wε – 1
junctions in the
Patricia trie.

● Look at each
number and focus
purely on the bits
that correspond to
those junctions.

 0

00010100 00010111 00011011 01101001 01101110

0
0

 1
 1

0
1

 1
 0
 1
 1

0
0
1

 1
 1
 0
 1

0
0
1

 1
 1
 0

Back to Tries
● Since there are wε

numbers, there
are exactly wε – 1
junctions in the
Patricia trie.

● Look at each
number and focus
purely on the bits
that correspond to
those junctions.

 0

00010100 00010111 00011011 01101001 01101110

0
0

 1
 1

0
1

 1
 0
 1
 1

0
0
1

 1
 1
 0
 1

0
0
1

 1
 1
 0

000 001 01 10 11

Back to Tries
● Claim: The sorted

order of these
original numbers
matches the
lexicographical
order of these new
bitstrings.

● Proof idea: These
new bitstrings
represent paths
through the
Patricia trie.

 0

0
0

 1
 1

0
1

 1
 0
 1
 1

0
0
1

 1
 1
 0
 1

0
0
1

 1
 1
 0

000 001 01 10 11

00010100 00010111 00011011 01101001 01101110

Back to Tries
● We’re ultimately

interested in
compressing our
numbers so they
all fit in a
machine word.

● There are at
most wε bits in
each of these
new numbers –
that’s really
promising!

 0

0
0

 1
 1

0
1

 1
 0
 1
 1

0
0
1

 1
 1
 0
 1

0
0
1

 1
 1
 0

000 001 01 10 11

00010100 00010111 00011011 01101001 01101110

Back to Tries
● Suppose we get

some query key k.
Which bits of k
should we extract
from it to form its
code?

● Problem: This
depends on which
path it would take
through the
Patricia trie, and
it’s not clear how
to do this in time
O(1).

 0

0
0

 1
 1

0
1

 1
 0
 1
 1

0
0
1

 1
 1
 0
 1

0
0
1

 1
 1
 0

000 001 01 10 11

00010100 00010111 00011011 01101001 01101110

Patricia Codes
● A bit index i is

called interesting
if there is a
branching node in
the trie at that bit
index.

● The Patricia code
of an integer is the
bitstring consisting
of just the
interesting bits in
that number.

 0

0
0

 1
 1

0
1

 1
 0
 1
 1

0
0
1

 1
 1
 0
 1

0
0
1

 1
 1
 0

Bit 3

Bit 2

Bit 1

Bit 6

00010100 00010111 00011011 01101001 01101110

Patricia Codes
● A bit index i is

called interesting
if there is a
branching node in
the trie at that bit
index.

● The Patricia code
of an integer is the
bitstring consisting
of just the
interesting bits in
that number.

 0

00010100 00010111 00011011 01101001 01101110

0
0

 1
 1

0
1

 1
 0
 1
 1

0
0
1

 1
 1
 0
 1

0
0
1

 1
 1
 0

Bit 3

Bit 2

Bit 1

0010 0011 0101 1100 1111

Bit 6

Patricia Codes
● Claim: The relative

order of the
integers in this trie
is the same as the
relative numeric
order of their
Patricia codes.

● Each bit either
gives a direction to
branch at a decision
point, or is in the
middle of an edge
and doesn’t matter.

 0

00010100 00010111 00011011 01101001 01101110

0
0

 1
 1

0
1

 1
 0
 1
 1

0
0
1

 1
 1
 0
 1

0
0
1

 1
 1
 0

Bit 3

Bit 2

Bit 1

0010 0011 0101 1100 1111

Bit 6

Why? Answer at

https://pollev.com/cs166spr23

https://pollev.com/cs166spr23

Patricia Codes
● Claim: The relative

order of the
integers in this trie
is the same as the
relative numeric
order of their
Patricia codes.

● Each bit either
gives a direction to
branch at a decision
point, or is in the
middle of an edge
and doesn’t matter.

 0

00010100 00010111 00011011 01101001 01101110

0
0

 1
 1

0
1

 1
 0
 1
 1

0
0
1

 1
 1
 0
 1

0
0
1

 1
 1
 0

Bit 3

Bit 2

Bit 1

0010 0011 0101 1100 1111

Bit 6

Patricia Codes
● Claim: With the

right preprocessing,
there’s a way to
(sorta) compute the
Patricia code of any
number in time
O(1).

● We’ll go over the
details later today.

 0

0
0

 1
 1

0
1

 1
 0
 1
 1

0
0
1

 1
 1
 0
 1

0
0
1

 1
 1
 0

Bit 3

Bit 2

Bit 1

0010 0011 0101 1100 1111

00010100 00010111 00011011 01101001 01101110

Bit 6

Patricia Codes
● Claim: Assuming

we pick ε to be
sufficiently small,
the Patricia codes
for our wε values
will fit into a
machine word.

● This means that we
can preprocess
them so that we
can compute ranks
of Patricia codes in
time O(1).

 0

0
0

 1
 1

0
1

 1
 0
 1
 1

0
0
1

 1
 1
 0
 1

0
0
1

 1
 1
 0

Bit 3

Bit 2

Bit 1

0010 0011 0101 1100 1111

00010100 00010111 00011011 01101001 01101110

Bit 6

Patricia Codes
● Our goal is to

efficiently compute
ranks among the
original numbers.

● If all our Patricia
codes fit into a
single machine
word, we can
compute rank(x)
in time O(1),
though it’s a little
trickier than it
looks.

 0

0
0

 1
 1

0
1

 1
 0
 1
 1

0
0
1

 1
 1
 0
 1

0
0
1

 1
 1
 0

Bit 3

Bit 2

Bit 1

0010 0011 0101 1100 1111

00010100 00010111 00011011 01101001 01101110

Bit 6

Computing Ranks
● Suppose we

want to
determine
rank(00010101).

● First, compute
its Patricia
code:

 0

0
0

 1
 1

0
1

 1
 0
 1
 1

0
0
1

 1
 1
 0
 1

0
0
1

 1
 1
 0

Bit 3

Bit 2

Bit 1

0010 0011 0101 1100 1111

00010100 00010111 00011011 01101001 01101110

00010101

Bit 6

Computing Ranks
● Suppose we

want to
determine
rank(00010101).

● First, compute
its Patricia
code:

 0

0
0

 1
 1

0
1

 1
 0
 1
 1

0
0
1

 1
 1
 0
 1

0
0
1

 1
 1
 0

Bit 3

Bit 2

Bit 1

0010 0011 0101 1100 1111

00010100 00010111 00011011 01101001 01101110

0010

00010101

Bit 6

Computing Ranks
● Now, compute the

rank of its Patricia
code across the trie
elements.

● Notice that the
rank of this
number matches
the rank of its
Patricia code. Cool!

 0

0
0

 1
 1

0
1

 1
 0
 1
 1

0
0
1

 1
 1
 0
 1

0
0
1

 1
 1
 0

Bit 3

Bit 2

Bit 1

00010100 00010111 00011011 01101001 01101110

0010

00010101

Bit 6

0010 0011 0101 1100 1111

Computing Ranks
● Unfortunately,

things get a bit
trickier here.
Let’s compute
rank(01001110).

● First, compute
its Patricia code:

 0

0
0

 1
 1

0
1

 1
 0
 1
 1

0
0
1

 1
 1
 0
 1

0
0
1

 1
 1
 0

Bit 3

Bit 2

Bit 1

0010 0011 0101 1100 1111

00010100 00010111 00011011 01101001 01101110

01001110

Bit 6

Computing Ranks
● Unfortunately,

things get a bit
trickier here.
Let’s compute
rank(01001110).

● First, compute
its Patricia code:

 0

0
0

 1
 1

0
1

 1
 0
 1
 1

0
0
1

 1
 1
 0
 1

0
0
1

 1
 1
 0

Bit 3

Bit 2

Bit 1

0010 0011 0101 1100 1111

00010100 00010111 00011011 01101001 01101110

1111

01001110

Bit 6

Computing Ranks
● Now, compute the

rank of its Patricia
code across the
trie elements.

● Its code has rank
5, but the number
itself has rank 3!

● Why did we get
the wrong answer?

 0

0
0

 1
 1

0
1

 1
 0
 1
 1

0
0
1

 1
 1
 0
 1

0
0
1

 1
 1
 0

Bit 3

Bit 2

Bit 1

00010100 00010111 00011011 01101001 01101110

Bit 6

1111

01001110 0010 0011 0101 1100 1111

Computing Ranks
● Imagine we

did a real,
proper lookup
of this key in
the trie.

● Notice that we
fall off the trie
at the marked
point.

 0

0
0

 1
 1

0
1

 1
 0
 1
 1

0
0
1

 1
 1
 0
 1

0
0
1

 1
 1
 0

Bit 3

Bit 2

Bit 1

0010 0011 0101 1100 1111

00010100 00010111 00011011 01101001 01101110

1111

01001110

Fall off
here.

Bit 6

Computing Ranks
● We made some

“good” decisions
followed by some
“bogus” decisions.

● The good decisions
are the ones where
we were on the trie.

● The bogus decisions
were from after we
fell off.

 0

0
0

 1
 1

0
1

 1
 0
 1
 1

0
0
1

 1
 1
 0
 1

0
0
1

 1
 1
 0

Bit 3

Bit 2

Bit 1

0010 0011 0101

00010100 00010111 00011011

1111

01001110

Fall off
here.

1100 1111

01101001 01101110

Bit 6

1100

01101001

Computing Ranks
● Look at the longest

common prefix
between our query
key and the key
next to it.

● Since the LCP has
length two, we
know that the first
two bits of our
number stayed on
the trie, and then
we fell off.

 0

0
0

 1
 1

0
1

 1
 0
 1
 1

0
0
1

 1
 1
 0
 1

0
0
1

 1
 1
 0

Bit 3

Bit 2

Bit 1

0010 0011 0101

00010100 00010111 00011011

1111

01001110

Fall off
here.

1111

01101110

Bit 6

1100

01101001

Computing Ranks
● We fell off the

trie by reading
a 0.

● That means
that we belong
before
everything in
the subtree
after that point.

 0

0
0

 1
 1

0
1

 1
 0
 1
 1

0
0
1

 1
 1
 0
 1

0
0
1

 1
 1
 0

Bit 3

Bit 2

Bit 1

0010 0011 0101

00010100 00010111 00011011

1111

01001110

Fall off
here.

1111

01101110

Bit 6

01001110

1111

1100

01101001

Computing Ranks
● Idea: Change our

number to put a 0
in all positions after
the mismatch, then
recompute the
Patricia code.

● This means “all
previous
comparisons are
good, and then we
lose on tiebreaks to
everything else.”

 0

0
0

 1
 1

0
1

 1
 0
 1
 1

0
0
1

 1
 1
 0
 1

0
0
1

 1
 1
 0

Bit 3

Bit 2

Bit 1

0010 0011 0101

00010100 00010111 00011011

1000

01000000

Fall off
here.

1111

01101110

Bit 6

Computing Ranks
● Let’s do a

second rank
query with this
new code.

● That places us
at rank 3,
which is the
proper
position.

 0

0
0

 1
 1

0
1

 1
 0
 1
 1

0
0
1

 1
 1
 0
 1

0
0
1

 1
 1
 0

Bit 3

Bit 2

Bit 1

00010100 00010111

Fall off
here.

0110111000011011 01101001

Bit 6

1000

0010 0011 11110101 110001001110

1000000010000000

Computing Ranks
● Let’s show this

idea in action
again by
computing
rank(10000000).

● First, compute
its Patricia code:

 0

0
0

 1
 1

0
1

 1
 0
 1
 1

0
0
1

 1
 1
 0
 1

0
0
1

 1
 1
 0

Bit 3

Bit 2

Bit 1

0010 0011 0101 1100 1111

00010100 00010111 00011011 01101001 01101110

0000

Bit 6

Computing Ranks
● Next, compute

the rank of
the Patricia
code.

● It has rank 0
among
Patricia codes.

 0

0
0

 1
 1

0
1

 1
 0
 1
 1

0
0
1

 1
 1
 0
 1

0
0
1

 1
 1
 0

Bit 3

Bit 2

Bit 1

00010100 00010111 00011011 01101001 01101110

Bit 6

0010 0011 0101 1100 111110000000

0000

1100

01101001

Computing Ranks
● Look at the longest

common prefix
between our query
key and the key
next to it.

● Since the LCP has
length 0, we know
that the first zero
bits of our number
stayed on the trie,
and then we fell
off.

 0

0
0

 1
 1

0
1

 1
 0
 1
 1

0
0
1

 1
 1
 0
 1

0
0
1

 1
 1
 0

Bit 3

Bit 2

Bit 1

0011 0101

00010111 00011011

Fall off
here.

1111

01101110

Bit 6

0010

00010100

10000000

0000

10000000

0000

Computing Ranks
● We fell off the

trie by reading
a 0.

● That means
that we below
after all the
elements in the
subtree after
that point.

 0

0
0

 1
 1

0
1

 1
 0
 1
 1

0
0
1

 1
 1
 0
 1

0
0
1

 1
 1
 0

Bit 3

Bit 2

Bit 1

Fall off
here. Bit 6

1100

01101001

0011 0101

00010111 00011011

1111

01101110

0010

00010100

10000000

00001111

11111111

Computing Ranks
● Idea: Change our

number to put a 1
in all positions after
the mismatch, then
recompute the
Patricia code.

● This means “all
previous
comparisons are
good, and then we
win on tiebreaks to
everything else.”

 0

0
0

 1
 1

0
1

 1
 0
 1
 1

0
0
1

 1
 1
 0
 1

0
0
1

 1
 1
 0

Bit 3

Bit 2

Bit 1

Fall off
here. Bit 6

1100

01101001

0011 0101

00010111 00011011

1111

01101110

0010

00010100

Computing Ranks
● Let’s do a

second rank
query with this
new code.

● That places us
at rank 5,
which is the
proper
position.

 0

0
0

 1
 1

0
1

 1
 0
 1
 1

0
0
1

 1
 1
 0
 1

0
0
1

 1
 1
 0

Bit 3

Bit 2

Bit 1

00010100 00010111

Fall off
here.

0110111000011011 01101001

Bit 6

0010 0011 11110101 1100

1111

10000000

Rank in O(1)
● To search for a key:

● Compute its Patricia code.
● Use a parallel rank to determine the rank of its Patricia code.
● Use our msb function from earlier to determine the longest

matching prefix between the key and the values adjacent to it.
● Based on the next bit, either replace all successive bits in the

Patricia code either with 0s or with 1s.
● Run a second parallel rank to determine the actual rank of

the element in the sequence.
● Total cost: O(1).
● I’m glossing over a few details here; check the original

paper for details.

Implementing our Patricia Trie Scheme

Implementing this Idea
● We now have a

clever approach for
compressing keys
based on Patricia
tries.

● In this discussion,
I’ve drawn the
actual trie off to the
side here.

● We used this trie to
determine where
the “interesting”
bits were.

 0

0
0

 1
 1

0
1

 1
 0
 1
 1

0
0
1

 1
 1
 0
 1

0
0
1

 1
 1
 0

Bit 3

Bit 2

Bit 1

0010 0011 0101 1100 1111

00010100 00010111 00011011 01101001 01101110

Bit 6

Implementing this Idea
● We can find all the

interesting bits in
a collection of keys
without actually
building this trie.

● Idea: There’s a
connection
between
branching nodes
in the trie and the
lcp’s of the keys.

00011011 01101001 0110111000010100 00010111

How? Answer at

https://pollev.com/cs166spr23

0
0

 1
 1

 1
 0
 1
 1

 1
 1
 0
 1

0
0
1

 1
 1
 0

Bit 3

Bit 2

0101 1100 1111

Bit 6

0010 0011

Bit 1

 0

0
0
1

0
1

https://pollev.com/cs166spr23

0
0

 1
 1

Implementing this Idea
● We can find all the

interesting bits in
a collection of keys
without actually
building this trie.

● Idea: There’s a
connection
between
branching nodes
in the trie and the
lcp’s of the keys.

 1
 0
 1
 1

 1
 1
 0
 1

0
0
1

 1
 1
 0

Bit 3

Bit 2

0101 1100 1111

00011011 01101001 01101110

Bit 6

0010 0011

00010100 00010111

00010100

00010111

Bit 1

 0

0
0
1

0
1

 1
 1

Bit 1

0
0

Implementing this Idea
● We can find all the

interesting bits in
a collection of keys
without actually
building this trie.

● Idea: There’s a
connection
between
branching nodes
in the trie and the
lcp’s of the keys.

 1
 1
 0
 1

0
0
1

 1
 1
 0

Bit 2

1100 1111

01101001 01101110

Bit 6

0010

00010100

0101

00011011

0011

00010111

00010111

00011011

0
1

 1
 0
 1
 1

 0

0
0
1

Bit 3

0011

00010111

 1
 1

Bit 1

0
0

Implementing this Idea
● We can find all the

interesting bits in
a collection of keys
without actually
building this trie.

● Idea: There’s a
connection
between
branching nodes
in the trie and the
lcp’s of the keys.

 1
 1
 0
 1

0
0
1

 1
 1
 0

Bit 2

1111

01101110

0010

00010100

00011011

01101001

0
1

 1
 0
 1
 1

0
0
1

Bit 3

Bit 6 0

1100

01101001

0101

00011011

0101

00011011

Bit 6

0011

00010111

 1
 1

Bit 1

0
0

Implementing this Idea
● We can find all the

interesting bits in
a collection of keys
without actually
building this trie.

● Idea: There’s a
connection
between
branching nodes
in the trie and the
lcp’s of the keys.

0
0
1

 1
 1
 0

1111

01101110

0010

00010100

01101001

01101110

0
1

 1
 0
 1
 1

0
0
1

Bit 3

1100

01101001

 1
 1
 0
 1

Bit 2

 0

0101

00011011

Bit 6

0011

00010111

Bit 1

Implementing this Idea
● Since we don’t

need the Patricia
trie, we can cast it
off into the
luminiferous
aether.

● We can just store
the indices of the
interesting bits
and the Patricia
codes of the keys.

1111

01101110

0010

00010100

Bit 3

1100

01101001

Bit 2

 1
 1

0
0

0
0
1

 1
 1
 0

0
1

 1
 0
 1
 1

0
0
1

 1
 1
 0
 1

 0

0101

00011011

Bit 6

0011

00010111

Bit 1

Implementing this Idea
● Since we don’t

need the Patricia
trie, we can cast it
off into the
luminiferous
aether.

● We can just store
the indices of the
interesting bits
and the Patricia
codes of the keys.

1111

01101110

0010

00010100

Bit 3

1100

01101001

Bit 2

0101

00011011

Bit 6

0011

00010111

Bit 1

Implementing this Idea
● We’ve assumed up

to this point that
we can compute
Patricia codes in
time O(1).

● This is the last
step we need to
figure out!

● How do we do
this?

1111

01101110

0010

00010100

Bit 3

1100

01101001

Bit 2

Extracting Patricia Codes
● We’d like to extract the wε interesting bits from

each machine word, and ideally, to do so quickly.
● We can start by building up a bitmask to mask

everything except those interesting bits.
● If we can compact these bits together, we’ve got

the Patricia code!

00011010 01101110 01111000 01001101 00101111 00001101 01110111 01100001

00010000 00000000 00010100 00000000 00010000 00000010 00000000 00000001

00010000 00000000 00010000 00000000 00000000 00000000 00000000 00000001

∧

Extracting Patricia Codes
● We now have all the bits we want, but they’re spread

apart too far.
● We saw last time that by using multiplication by an

appropriate constant, we can compact bits together.

a0000000b0000000c0000000d0000000

a0000000b0000000c0000000d00000000000000

a0000000b0000000c0000000d000000000000000000000

a0000000b0000000c0000000d0000000000000000000000000000

+

?????????????????????abcd????????????????????????????

a0000000b0000000c0000000d0000000

Extracting Patricia Codes
● The approach we used last time worked well

because we knew those bits were evenly-spaced.
● Problem: Our “interesting” bits aren’t well-

spaced across the word in question.
● This may make it impossible to get all the bits

next to one another purely using a clever
multiplication.

a000b000c000d000e000f000g000h000ijkl
● Fortunately, there’s an escape hatch.

Approximate Patricia Codes
● Patricia codes are useful because they

● contain enough information to compute ranks, and
● compact that information into a small space.

● Idea: Maintain the second property by doing a
“decent” job compacting bits, rather than a
“perfect” job.

000a0000 00000000 000b0c00 00000000 000d0000 000000e0 00000000 0000000f

abcdef

Approximate Patricia Codes
● Patricia codes are useful because they

● contain enough information to compute ranks, and
● compact that information into a small space.

● Idea: Maintain the second property by doing a
“decent” job compacting bits, rather than a
“perfect” job.

000a0000 00000000 000b0c00 00000000 000d0000 000000e0 00000000 0000000f

a00000b00c0d00e000000f

Approximate Patricia Codes
● An approximate Patricia code is a bitstring

containing all the interesting bits of a number in the
same relative order, with some extra 0’s
deterministically interspersed.

● Claim: We can use approximate Patricia codes rather
than true Patricia codes to compute ranks. The
relative orders of the codes will come back the same.

000a0000 00000000 000b0c00 00000000 000d0000 000000e0 00000000 0000000f

a00000b00c0d00e000000f

Approximate Patricia Codes
● Theorem: Suppose we have a wε interesting bits. Then there is a

way to compute a multiplier M, a mask K, and a shift S such that
((n × M) ≫ S) & K

is an approximate Patricia code for n that uses w4ε bits, and these
values can be computed in time O(w4ε).

● Proof idea: Create a window of size (wε)3. This gives enough slack
space to provide a place to shift each individual bit with no
overlaps. Why? Because for each new bit, the possible conflicts you
have to worry about depend purely on the other bits placed so far
(fewer than wε), the other bits in the number (at most wε), and the
offsets assigned to the other placed bits (at most wε). Therefore,
there are fewer than (wε)3 constraints, so having (wε)3 slots suffices.
From there, we multiply in one last factor of wε replicating the
window to ensure that the bits get spread out in the right order.

● Thanks to former CS166 student Jane Lange for this explanation!

Closing In on Fusion Trees
● Our goal is to build a data structure that holds wε

integers with w bits each in a way that supports
rank in time O(1).

● Given wε integers, we can do some preprocessing to
form w4ε-bit approximate Patricia codes for them.

● Storing those approximate codes requires w5ε bits.
● Observation: Suppose we pick ε = ¹/₆. Then we

can store all of those codes in a single machine
word!

What is w1/6 on a real computer?

We have a ways to go before this
strategy will have any chance of

being practical.

Fusion Trees
● A fusion tree is a B-tree augmented with the

preceding strategy for computing ranks
quickly.

● The B-tree has order w1/6, so its height is
O(logw n).

● Since the rank of a key in a node can be
computed in time O(1), the cost of a lookup,
predecessor, or successor operation is
O(logw n).

Fusion Trees
● Here’s the final

scorecard for fusion
trees.

● Notice that lookup
and successor
queries are
unconditionally
asymptotically faster
than a regular
balanced BST!

The Fusion Tree
● lookup: O(logw n)
● insert: O(w2/3 logw n)
● delete: O(w2/3 logw n)
● max: O(logw n)
● succ: O(logw n)
● Space: Θ(n)

Fusion Trees
● The mutating

operations insert and
delete are expensive.

● The costs here arise
from the cost of
recomputing the
multipliers necessary
for computing
Patricia codes.

● Can we do better?

The Fusion Tree
● lookup: O(logw n)
● insert: O(w2/3 logw n)
● delete: O(w2/3 logw n)
● max: O(logw n)
● succ: O(logw n)
● Space: Θ(n)

Fusion Trees
● In 1996, Arne

Andersson devised the
exponential tree, a
variation on fusion trees
with these indicated
runtimes.

● It’s basically a fusion
tree, except the node
branching factors decay
geometrically from one
layer to the next.

● This still keeps the tree
height low, but makes
the amortized cost of
each operation small.

The Exponential Tree
● lookup: O(logw n)
● insert: O(logw n + log log n)*

● delete: O(logw n + log log n)*

● max: O(logw n)
● succ: O(logw n)
● Space: Θ(n)

* Amortized

A Cool Application: Integer Sorting

Integer Sorting
● You’re given a list of integers x₁, x₂, …, xₙ to

sort, and each fits into a machine word.
● Heapsort takes time O(n log n).
● Base-2 radix sort takes time O(nw).
● Base-n radix sort takes time O(nw / log n).

● Y-fast trie sort takes (expected) time
O(n log w).

● Exponential tree sort takes time
O(n logw n + n log log n).

“Classical”
techniques

“Modern”
techniques

Integer Sorting
● These algorithms are

asymptotically
incomparable, since w
and n are independent
quantities.

● Question: What is the
crossover point?

y-Fast Trie Sort

O(n log w)

Exponential Tree Sort

O(n logw n + n log log n)

Answer at

https://pollev.com/cs166spr23

https://pollev.com/cs166spr23

Integer Sorting

n log w = n logw n

log w = logw n

log w = log n
log w

log2 w = log n

log w = √ log n

● These algorithms are
asymptotically
incomparable, since w
and n are independent
quantities.

● Question: What is the
crossover point?

y-Fast Trie Sort

O(n log w)

Exponential Tree Sort

O(n logw n + n log log n)

Integer Sorting

n log w = n logw n

log w = logw n

log w = log n
log w

log2 w = log n

log w = √ log n

● These algorithms are
asymptotically
incomparable, since w
and n are independent
quantities.

● Question: What is the
crossover point?

y-Fast Trie Sort

O(n log w)

Exponential Tree Sort

O(n logw n + n log log n)

Integer Sorting

n log w = n logw n

log w = logw n

log w = log n
log w

log2 w = log n

log w = √ log n

● These algorithms are
asymptotically
incomparable, since w
and n are independent
quantities.

● Question: What is the
crossover point?

y-Fast Trie Sort

O(n log w)

Exponential Tree Sort

O(n logw n + n log log n)

Integer Sorting

n log w = n logw n

log w = logw n

log w = log n
log w

log2 w = log n

log w = √ log n

● These algorithms are
asymptotically
incomparable, since w
and n are independent
quantities.

● Question: What is the
crossover point?

y-Fast Trie Sort

O(n log w)

Exponential Tree Sort

O(n logw n + n log log n)

Integer Sorting

n log w = n logw n

log w = logw n

log w = log n
log w

log2 w = log n

log w = √ log n

● These algorithms are
asymptotically
incomparable, since w
and n are independent
quantities.

● Question: What is the
crossover point?

y-Fast Trie Sort

O(n log w)

Exponential Tree Sort

O(n logw n + n log log n)

● Theorem: There is
a randomized,
aaaaaaaaa-time
integer sorting
algorithm.

● Proof: If

use exponential tree
sort. Otherwise, use
y-fast trie sort.

Integer Sorting
● These algorithms are

asymptotically
incomparable, since w
and n are independent
quantities.

● Question: What is the
crossover point?

O (n √ log n)

log w ≥ √log n ,

y-Fast Trie Sort

O(n log w)

Exponential Tree Sort

O(n logw n + n log log n)

More to Explore
● In 1994, Fredman and Willard (the creators of the fusion tree)

invented the AF-heap, a variation on a Fibonacci heap with extract-
min taking time O(log n / log log n) and used it to get a linear time
algorithm for computing minimum spanning trees.

● In 1995, Andersson et al adapted the size-reduction techniques from
fusion trees to develop signature sort, a randomized sorting
algorithm for integers. Assuming w = lg2+ε n, it runs in expected time
O(n).

● In 1997, using the linear-time MST algorithm, Thorup developed a
linear-time algorithm for undirected SSSP.

● In 2002, Han developed a deterministic O(n log log n)-time algorithm
for integer sorting that uses only linear space, and with Thorup
developed a randomized O(n log log n)-time algorithm for integer
sorting that only uses linear space.

● In 2007, Andersson and Thorup developed a deterministic, worst-case
efficient integer ordered dictionary with each operation costing
aaaaaaaaa , which is provably optimal under reasonable assumptions.

O (n √ log log n)

O (√ log n
log log n)

Why This Matters
● These data structures, while primarily of

theoretical interest, give a glimpse of what’s still
out there.

● They also give a feel for how connected
everything is – we’re using all the topics we’ve
covered across the quarter!

● And they expose some underlying assumptions
about our models of computation that we
previously might not have paid much attention
to!

That’s a wrap!

A Huge Word of Thanks

Thanks to all of you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87

