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Recap from Last Time



  

Our Machine Model
● We will assume we’re working on a machine 

where memory is segmented into w-bit words.
● Although on any one fixed machine w is a constant, 

in general, don’t assume this is the case. 32-bit was 
the norm until fairly recently, and before that 16-bit 
was standard.

● We’ll assume C integer operators work in 
constant time, and won’t assume other integer 
operations (say, finding most significant bits, 
counting 1 bits set) are available.
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Word-Level Parallelism
● Last time, we saw five powerful primitives built using 

word-level parallelism:
● Parallel compare: We can compare a bunch of small 

numbers in parallel in O(1) machine word operations.
● Parallel tile: We can take a small number and “tile” it 

multiple times in O(1) machine word operations.
● Parallel add: If we have a bunch of “flag” bits spread out 

evenly, we can add them all up in O(1) machine word 
operations.

● Parallel rank: We can find the rank of a small number in an 
array of small numbers in O(1) machine word operations.

● Most-significant bit: We can compute msb(n) for any w-bit 
integer n in O(1) machine word operations.
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Integer LCP
● Computing msb efficiently lets us implement a 

number of other efficient primitives.
● Given two integers m and n, the longest common 

prefix of m and n, denoted lcp(m, n), is the length 
of the longest bitstring they both start with.

● Claim: We can compute this in time O(1).

00011010 01101110 01111000 01001101 00101111 00001101 01110111 01100001

00011010 01000101 00010100 00100000 01010000 00100010 01000100 00001000

00000000 00101011 01100100 01101101 01111111 00101111 00110011 01101001

⊕

m ⊕ n
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Integer LCP
● Computing msb efficiently lets us implement a 

number of other efficient primitives.
● Given two integers m and n, the longest common 

prefix of m and n, denoted lcp(m, n), is the length 
of the longest bitstring they both start with.

● Claim: We can compute this in time O(1).

00011010 01101110 01111000 01001101 00101111 00001101 01110111 01100001

00011010 01000101 00010100 00100000 01010000 00100010 01000100 00001000

00000000 00101011 01100100 01101101 01111111 00101111 00110011 01101001

⊕

w - 1 - msb(m ⊕ n)



  

New Stuff!



  

The Sardine Tree Revisited
● Last time, we designed a data structure 

nicknamed the sardine tree that
● stores s-bit keys, where s is much smaller 

than w, and
● supports all operations in time O(logw/s n).

● Our goal for today will be to generalize 
this to work with arbitrary integer keys, 
not just s-bit keys.



  

The Sardine Tree Revisited
● At a high level, the sardine tree is a B-tree augmented with 

extra information to support fast rank queries.
● The branching factor is Θ(w / s), the number of keys we can 

fit into a single machine word.
● We use a parallel rank operation at each node to determine 

which keys to check and which child to descend into.
● Therefore, each operation’s cost is O(logw/s n): O(1) work per 

each of O(logw/s n) nodes visited.
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The Sardine Tree Revisited
● The sardine tree is a specific case of a more general framework.
● Build a B-tree where each node is augmented with a data 

structure called a ranker with the following properties:
● The ranker stores Θ(K) total keys.
● It supports queries of the form rank(x), which returns the rank of x 

among those keys, in time O(1).
The cost of performing a search is then O(logK n), since the tree 
height is O(logK n) and we do O(1) work per node.
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The Sardine Tree Revisited
● The sardine tree ranker works by packing the 

Θ(w/s) keys into a machine word, then using 
our parallel rank operation from last time.

● Since there are Θ(w/s) keys per node, the 
runtime of each B-tree operation is O(logw/s n), 
though the keys are severely size-limited.
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● The fusion tree is a B-tree augmented with a 
ranker that stores wε keys for some constant ε 
we’ll pick later. Its keys are full w-bit words.

● The cost of a lookup, successor, or 
predecessor in a fusion tree is therefore

O(logw
ε n) = O(log n / log wε) = O(logw n).

Fusion Trees
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● The sardine tree solves the following problem:
Support rank queries for a
large number of small keys.

● To build the fusion tree, we’ll solve this problem:
Support rank queries for a
small number of large keys.

Where We’re Going
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Where We’re Going
● The parallel rank operation we devised last 

time permits O(1)-time rank queries, provided 
that all the keys fit into a machine word.

● In general, we can’t assume that a collection 
of arbitrary keys all fit into a machine word.

● Goal: Compress multiple w-bit keys so that
● they fit in a machine word so we can use parallel 

rank, and
● the compression preserves enough information 

about their order so that the ranks we get back are 
meaningful.



  

Compressing Our Numbers
● Let’s imagine we have a collection of wε 

numbers, each of which is w bits long.
● For simplicity, we’re going to assume 

that those numbers are given to us in 
advance and in sorted order.
● We’ll relax this later on.

00010100 00010111 00011011 01101001 01101110



  

Back to Tries
● Think about what 

happens if we 
make a trie from 
these numbers.

● We have few 
numbers (wε) and 
these numbers 
are large (size w), 
so most nodes will 
have one child.

● Idea: Use a 
Patricia trie!
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Back to Tries
● Since there are wε 

numbers, there 
are exactly wε – 1 
junctions in the 
Patricia trie.

● Look at each 
number and focus 
purely on the bits 
that correspond to 
those junctions.
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Back to Tries
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Back to Tries
● Claim: The sorted 

order of these 
original numbers 
matches the 
lexicographical 
order of these new 
bitstrings.

● Proof idea: These 
new bitstrings 
represent paths 
through the 
Patricia trie.
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Back to Tries
● We’re ultimately 

interested in 
compressing our 
numbers so they 
all fit in a 
machine word.

● There are at 
most wε bits in 
each of these 
new numbers – 
that’s really 
promising!
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Back to Tries
● Suppose we get 

some query key k. 
Which bits of k 
should we extract 
from it to form its 
code?

● Problem: This 
depends on which 
path it would take 
through the 
Patricia trie, and 
it’s not clear how 
to do this in time 
O(1).
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Patricia Codes
● A bit index i is 

called interesting 
if there is a 
branching node in 
the trie at that bit 
index.

● The Patricia code 
of an integer is the 
bitstring consisting 
of just the 
interesting bits in 
that number.
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Patricia Codes
● Claim: The relative 

order of the 
integers in this trie 
is the same as the 
relative numeric 
order of their 
Patricia codes.

● Each bit either 
gives a direction to 
branch at a decision 
point, or is in the 
middle of an edge 
and doesn’t matter.
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Why? Answer at

https://pollev.com/cs166spr23

https://pollev.com/cs166spr23


  

Patricia Codes
● Claim: The relative 

order of the 
integers in this trie 
is the same as the 
relative numeric 
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gives a direction to 
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Patricia Codes
● Claim: With the 

right preprocessing, 
there’s a way to 
(sorta) compute the 
Patricia code of any 
number in time 
O(1).

● We’ll go over the 
details later today.
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Patricia Codes
● Claim: Assuming 

we pick ε to be 
sufficiently small, 
the Patricia codes 
for our wε values 
will fit into a 
machine word.

● This means that we 
can preprocess 
them so that we 
can compute ranks 
of Patricia codes in 
time O(1).
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Patricia Codes
● Our goal is to 

efficiently compute 
ranks among the 
original numbers.

● If all our Patricia 
codes fit into a 
single machine 
word, we can 
compute rank(x) 
in time O(1), 
though it’s a little 
trickier than it 
looks.
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Computing Ranks
● Suppose we 

want to 
determine 
rank(00010101).

● First, compute 
its Patricia 
code:
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Computing Ranks
● Suppose we 

want to 
determine 
rank(00010101).

● First, compute 
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code:

   0

0        
0        

        1
        1

0          
1          

     1
     0
     1
     1

0              
0              
1              

                1
                1
                0
                1

0        
0        
1        

        1
        1
        0

Bit 3

Bit 2

Bit 1

0010 0011 0101 1100 1111

00010100 00010111 00011011 01101001 01101110

0010

00010101

Bit 6



  

Computing Ranks
● Now, compute the 

rank of its Patricia 
code across the trie 
elements.

● Notice that the 
rank of this 
number matches 
the rank of its 
Patricia code. Cool!
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Computing Ranks
● Unfortunately, 

things get a bit 
trickier here. 
Let’s compute 
rank(01001110).

● First, compute 
its Patricia code:
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Computing Ranks
● Unfortunately, 

things get a bit 
trickier here. 
Let’s compute 
rank(01001110).

● First, compute 
its Patricia code:
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Computing Ranks
● Now, compute the 

rank of its Patricia 
code across the 
trie elements.

● Its code has rank 
5, but the number 
itself has rank 3!

● Why did we get 
the wrong answer?
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Computing Ranks
● Imagine we 

did a real, 
proper lookup 
of this key in 
the trie.

● Notice that we 
fall off the trie 
at the marked 
point.
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Computing Ranks
● We made some 

“good” decisions 
followed by some 
“bogus” decisions.

● The good decisions 
are the ones where 
we were on the trie.

● The bogus decisions 
were from after we 
fell off.
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1100

01101001

Computing Ranks
● Look at the longest 

common prefix 
between our query 
key and the key 
next to it.

● Since the LCP has 
length two, we 
know that the first 
two bits of our 
number stayed on 
the trie, and then 
we fell off.
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01101001

Computing Ranks
● We fell off the 

trie by reading 
a 0.

● That means 
that we belong 
before 
everything in 
the subtree 
after that point.
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01001110

1111

1100

01101001

Computing Ranks
● Idea: Change our 

number to put a 0 
in all positions after 
the mismatch, then 
recompute the 
Patricia code.

● This means “all 
previous 
comparisons are 
good, and then we 
lose on tiebreaks to 
everything else.”
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Computing Ranks
● Let’s do a 

second rank 
query with this 
new code.

● That places us 
at rank 3, 
which is the 
proper 
position.
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1000000010000000

Computing Ranks
● Let’s show this 

idea in action 
again by 
computing 
rank(10000000).

● First, compute 
its Patricia code:
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Computing Ranks
● Next, compute 

the rank of 
the Patricia 
code.

● It has rank 0 
among 
Patricia codes.
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1100

01101001

Computing Ranks
● Look at the longest 

common prefix 
between our query 
key and the key 
next to it.

● Since the LCP has 
length 0, we know 
that the first zero 
bits of our number 
stayed on the trie, 
and then we fell 
off.
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10000000

0000

Computing Ranks
● We fell off the 

trie by reading 
a 0.

● That means 
that we below 
after all the 
elements in the 
subtree after 
that point.

   0

0        
0        

        1
        1

0          
1          

     1
     0
     1
     1

0              
0              
1              

                1
                1
                0
                1

0        
0        
1        

        1
        1
        0

Bit 3

Bit 2

Bit 1

Fall off 
here. Bit 6

1100

01101001

0011 0101

00010111 00011011

1111

01101110

0010

00010100



  
10000000

00001111

11111111

Computing Ranks
● Idea: Change our 

number to put a 1 
in all positions after 
the mismatch, then 
recompute the 
Patricia code.

● This means “all 
previous 
comparisons are 
good, and then we 
win on tiebreaks to 
everything else.”
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Computing Ranks
● Let’s do a 

second rank 
query with this 
new code.

● That places us 
at rank 5, 
which is the 
proper 
position.
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Rank in O(1)
● To search for a key:

● Compute its Patricia code.
● Use a parallel rank to determine the rank of its Patricia code.
● Use our msb function from earlier to determine the longest 

matching prefix between the key and the values adjacent to it.
● Based on the next bit, either replace all successive bits in the 

Patricia code either with 0s or with 1s.
● Run a second parallel rank to determine the actual rank of 

the element in the sequence.
● Total cost: O(1).
● I’m glossing over a few details here; check the original 

paper for details.



  

Implementing our Patricia Trie Scheme



  

Implementing this Idea
● We now have a 

clever approach for 
compressing keys 
based on Patricia 
tries.

● In this discussion, 
I’ve drawn the 
actual trie off to the 
side here.

● We used this trie to 
determine where 
the “interesting” 
bits were.
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Implementing this Idea
● We can find all the 

interesting bits in 
a collection of keys 
without actually 
building this trie.

● Idea: There’s a 
connection 
between 
branching nodes 
in the trie and the 
lcp’s of the keys.

00011011 01101001 0110111000010100 00010111

How? Answer at

https://pollev.com/cs166spr23
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https://pollev.com/cs166spr23
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Implementing this Idea
● We can find all the 

interesting bits in 
a collection of keys 
without actually 
building this trie.

● Idea: There’s a 
connection 
between 
branching nodes 
in the trie and the 
lcp’s of the keys.
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interesting bits in 
a collection of keys 
without actually 
building this trie.
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Implementing this Idea
● Since we don’t 

need the Patricia 
trie, we can cast it 
off into the 
luminiferous 
aether.

● We can just store 
the indices of the 
interesting bits 
and the Patricia 
codes of the keys. 
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Implementing this Idea
● Since we don’t 

need the Patricia 
trie, we can cast it 
off into the 
luminiferous 
aether.

● We can just store 
the indices of the 
interesting bits 
and the Patricia 
codes of the keys. 
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0101
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0011

00010111

Bit 1

Implementing this Idea
● We’ve assumed up 

to this point that 
we can compute 
Patricia codes in 
time O(1).

● This is the last 
step we need to 
figure out!

● How do we do 
this?

1111
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0010
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Bit 3

1100

01101001

Bit 2



  

Extracting Patricia Codes
● We’d like to extract the wε interesting bits from 

each machine word, and ideally, to do so quickly.
● We can start by building up a bitmask to mask 

everything except those interesting bits.
● If we can compact these bits together, we’ve got 

the Patricia code!

00011010 01101110 01111000 01001101 00101111 00001101 01110111 01100001

00010000 00000000 00010100 00000000 00010000 00000010 00000000 00000001

00010000 00000000 00010000 00000000 00000000 00000000 00000000 00000001

∧



  

Extracting Patricia Codes
● We now have all the bits we want, but they’re spread 

apart too far.
● We saw last time that by using multiplication by an 

appropriate constant, we can compact bits together.

a0000000b0000000c0000000d0000000

a0000000b0000000c0000000d00000000000000

a0000000b0000000c0000000d000000000000000000000

a0000000b0000000c0000000d0000000000000000000000000000

+

?????????????????????abcd????????????????????????????

a0000000b0000000c0000000d0000000



  

Extracting Patricia Codes
● The approach we used last time worked well 

because we knew those bits were evenly-spaced.
● Problem: Our “interesting” bits aren’t well-

spaced across the word in question.
● This may make it impossible to get all the bits 

next to one another purely using a clever 
multiplication.

a000b000c000d000e000f000g000h000ijkl 
● Fortunately, there’s an escape hatch.



  

Approximate Patricia Codes
● Patricia codes are useful because they

● contain enough information to compute ranks, and
● compact that information into a small space.

● Idea: Maintain the second property by doing a 
“decent” job compacting bits, rather than a 
“perfect” job.

000a0000 00000000 000b0c00 00000000 000d0000 000000e0 00000000 0000000f

abcdef



  

Approximate Patricia Codes
● Patricia codes are useful because they

● contain enough information to compute ranks, and
● compact that information into a small space.

● Idea: Maintain the second property by doing a 
“decent” job compacting bits, rather than a 
“perfect” job.

000a0000 00000000 000b0c00 00000000 000d0000 000000e0 00000000 0000000f

a00000b00c0d00e000000f



  

Approximate Patricia Codes
● An approximate Patricia code is a bitstring 

containing all the interesting bits of a number in the 
same relative order, with some extra 0’s 
deterministically interspersed.

● Claim: We can use approximate Patricia codes rather 
than true Patricia codes to compute ranks. The 
relative orders of the codes will come back the same.

000a0000 00000000 000b0c00 00000000 000d0000 000000e0 00000000 0000000f

a00000b00c0d00e000000f



  

Approximate Patricia Codes
● Theorem: Suppose we have a wε interesting bits. Then there is a 

way to compute a multiplier M, a mask K, and a shift S such that
((n × M)  ≫ S) & K

is an approximate Patricia code for n that uses w4ε bits, and these 
values can be computed in time O(w4ε).

● Proof idea: Create a window of size (wε)3. This gives enough slack 
space to provide a place to shift each individual bit with no 
overlaps. Why? Because for each new bit, the possible conflicts you 
have to worry about depend purely on the other bits placed so far 
(fewer than wε), the other bits in the number (at most wε), and the 
offsets assigned to the other placed bits (at most wε). Therefore, 
there are fewer than (wε)3 constraints, so having (wε)3 slots suffices. 
From there, we multiply in one last factor of wε replicating the 
window to ensure that the bits get spread out in the right order.

● Thanks to former CS166 student Jane Lange for this explanation!



  

Closing In on Fusion Trees
● Our goal is to build a data structure that holds wε 

integers with w bits each in a way that supports 
rank in time O(1).

● Given wε integers, we can do some preprocessing to 
form w4ε-bit approximate Patricia codes for them.

● Storing those approximate codes requires w5ε bits.
● Observation: Suppose we pick ε = ¹/₆. Then we 

can store all of those codes in a single machine 
word!

What is w1/6 on a real computer?
 

We have a ways to go before this 
strategy will have any chance of 

being practical.



  

Fusion Trees
● A fusion tree is a B-tree augmented with the 

preceding strategy for computing ranks 
quickly.

● The B-tree has order w1/6, so its height is 
O(logw n).

● Since the rank of a key in a node can be 
computed in time O(1), the cost of a lookup, 
predecessor, or successor operation is 
O(logw n).



  

Fusion Trees
● Here’s the final 

scorecard for fusion 
trees.

● Notice that lookup 
and successor 
queries are 
unconditionally 
asymptotically faster 
than a regular 
balanced BST!

The Fusion Tree
● lookup: O(logw n)
● insert: O(w2/3 logw n)
● delete: O(w2/3 logw n)
● max: O(logw n)
● succ: O(logw n)
● Space: Θ(n)



  

Fusion Trees
● The mutating 

operations insert and 
delete are expensive.

● The costs here arise 
from the cost of 
recomputing the 
multipliers necessary 
for computing 
Patricia codes.

● Can we do better?

The Fusion Tree
● lookup: O(logw n)
● insert: O(w2/3 logw n)
● delete: O(w2/3 logw n)
● max: O(logw n)
● succ: O(logw n)
● Space: Θ(n)



  

Fusion Trees
● In 1996, Arne 

Andersson devised the 
exponential tree, a 
variation on fusion trees 
with these indicated 
runtimes.

● It’s basically a fusion 
tree, except the node 
branching factors decay 
geometrically from one 
layer to the next.

● This still keeps the tree 
height low, but makes 
the amortized cost of 
each operation small.

The Exponential Tree
● lookup: O(logw n)
● insert: O(logw n + log log n)*

● delete: O(logw n + log log n)*

● max: O(logw n)
● succ: O(logw n)
● Space: Θ(n)

* Amortized



  

A Cool Application: Integer Sorting



  

Integer Sorting
● You’re given a list of integers x₁, x₂, …, xₙ to 

sort, and each fits into a machine word.
● Heapsort takes time O(n log n).
● Base-2 radix sort takes time O(nw).
● Base-n radix sort takes time O(nw / log n). 

● Y-fast trie sort takes (expected) time
O(n log w).

● Exponential tree sort takes time
O(n logw n + n log log n).

“Classical” 
techniques

“Modern” 
techniques



  

Integer Sorting
● These algorithms are 

asymptotically 
incomparable, since w 
and n are independent 
quantities. 
 
 
 

● Question: What is the 
crossover point?

y-Fast Trie Sort
 

O(n log w)

Exponential Tree Sort
 

O(n logw n + n log log n)

Answer at

https://pollev.com/cs166spr23

https://pollev.com/cs166spr23


  

Integer Sorting

n log w = n logw n

log w = logw n

log w = log n
log w

log2 w = log n

log w = √ log n
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● Theorem: There is 
a randomized, 
aaaaaaaaa-time 
integer sorting 
algorithm.

● Proof: If

use exponential tree 
sort. Otherwise, use
y-fast trie sort.

Integer Sorting
● These algorithms are 

asymptotically 
incomparable, since w 
and n are independent 
quantities. 
 
 
 

● Question: What is the 
crossover point?

O (n √ log n)

log w ≥ √log n ,

y-Fast Trie Sort
 

O(n log w)

Exponential Tree Sort
 

O(n logw n + n log log n)



  

More to Explore
● In 1994, Fredman and Willard (the creators of the fusion tree) 

invented the AF-heap, a variation on a Fibonacci heap with extract-
min taking time O(log n / log log n) and used it to get a linear time 
algorithm for computing minimum spanning trees.

● In 1995, Andersson et al adapted the size-reduction techniques from 
fusion trees to develop signature sort, a randomized sorting 
algorithm for integers. Assuming w = lg2+ε n, it runs in expected time 
O(n).

● In 1997, using the linear-time MST algorithm, Thorup developed a 
linear-time algorithm for undirected SSSP.

● In 2002, Han developed a deterministic O(n log log n)-time algorithm 
for integer sorting that uses only linear space, and with Thorup 
developed a randomized O(n log log n)-time algorithm for integer 
sorting that only uses linear space.

● In 2007, Andersson and Thorup developed a deterministic, worst-case 
efficient integer ordered dictionary with each operation costing 
aaaaaaaaa , which is provably optimal under reasonable assumptions.

O (n √ log log n)

O (√ log n
log log n )



  

Why This Matters
● These data structures, while primarily of 

theoretical interest, give a glimpse of what’s still 
out there.

● They also give a feel for how connected 
everything is – we’re using all the topics we’ve 
covered across the quarter!

● And they expose some underlying assumptions 
about our models of computation that we 
previously might not have paid much attention 
to!



  

That’s a wrap!



  

A Huge Word of Thanks



  

Thanks to all of you!
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