
  

Fusion Trees
Part One



  

Outline for Today
● Word-Level Parallelism

● Harnessing the intrinsic parallelism inside the 
processor.

● Word-Parallel Operations
● Comparing, tiling, and ranking numbers; adding 

and packing bits.
● The Sardine Tree

● Unconditionally beating a BST for very small 
integers.

● Most-Significant Bits
● Finding the most significant bit in O(1) time/space.



  

Working With Integers



  

Working with Integers
● Many practical problems involve working specifically with 

integer values.
● CPU Scheduling: Each thread has some associated integer 

priority, and we need to maintain those priorities in sorted order.
● Network Routing: Each computer has an associated IP 

address, and we need to figure out which connections are active.
● ID Management: We need to store social security numbers, zip 

codes, phone numbers, credit card numbers, etc. and perform 
basic lookups and range searches on them.

● We’ve seen many general-purpose data structures for 
keeping things in order and looking things up.

● Question: Can we improve those data structures if we 
know in advance that we’re working with integer data?



  

Working with Integers
● Integers are interesting objects to work with:

● Their values can directly be used as indices in 
lookup tables.

● They can be treated as strings of bits, so we can 
use techniques from string processing.

● They fit into machine words, so we can process the 
bits in parallel with individual word operations.

● The data structures we’ll explore over the next 
two lectures will give you a sense of what sorts 
of techniques are possible with integer data.



  

Our Machine Model
● We will assume we’re working on a machine 

where memory is segmented into w-bit words.
● We’ll assume that the C integer operators 

work in constant time, and will not assume we 
have access to operators beyond them.

+  -  *  /  %  <<  >>  &  |  ^  =  <=

● Why these operations? Because they’re 
standard across most machines. There’s a 
bunch of papers exploring what a 
“reasonable” set of operations should look 
like, but we won’t explore them here.



  

Some Runtime Analyses
● What are the big-O runtimes of these two pieces of code?
int squigglebah(unsigned int value) {
    int result = 0;
    for (int i = 0; i < sizeof(unsigned int) * 8; i++) {
        result += value & 1;
        value >>= 1;
    }
    return result;
}

void humblegwah(vector<unsigned int>& v) {
    while (true) {
        for (unsigned int& i: v) {
            if (i == 0) return;
            else i >>= 1;
        }
    }
}

Answer at
https://pollev.com/cs166spr23

https://pollev.com/cs166spr23


  

A Key Technique: Word-Level Parallelism



  

Word-Level Parallelism
● On a standard computer, arithmetic and logical 

operations on a machine word take time O(1).
● We can perform certain classes of operations 

(addition, shifts, etc.) on Θ(w) bits in time O(1).
● Think of this as a weak form of parallel 

computation, where we can work over multiple bits 
in parallel with a limited set of operations.

● With some creativity, we can harness these 
primitives to build operations that run in time 
O(1) but work on ω(1) objects.

● Let’s see a quick example...



  

Word-Level Parallelism

 1101110  0101110  1111000  1001101  0101111  0001101  1110111  1100001

a₁ a₂ a₃ a₄ a₅ a₆ a₇ a₈

 0011010  1000101  0010100  0100000  1010000  0100010  1000100  0001000

b₁ b₂ b₃ b₄ b₅ b₆ b₇ b₈



  

Word-Level Parallelism

01101110 00101110 01111000 01001101 00101111 00001101 01110111 01100001

00011010 01000101 00010100 00100000 01010000 00100010 01000100 00001000+

10001000 01110011 10001100 01101101 01111111 00101111 10111011 01101001

We’ve performed eight 
logical additions with a 
single add instruction!



  

The Landscape
● Preprocessing/runtime tradeoffs:

“Yes, we have to do a lot of work, but it’s a one-time 
cost and everything is cheaper after that.”

● Randomization:
“We might have to do a lot of work,
but it’s unlikely that we’ll do so.”

● Amortization:
“Yes, we have to do a lot of work every once and a 
while, but only after a period of doing very little.”

● Word-level parallelism:
“We have to do a lot of work, but we don’t
have to perform many operations to do it.”



  

Sardine Trees

These actually aren’t called sardine trees. 
I couldn’t find a name for them anywhere 

and thought that this title was 
appropriate. Let me know if there’s a 

more proper name to associate with them!



  

The Setup
● Let w denote the machine word size.
● Imagine you want to store a collection of

s-bit integers, where s is small compared 
to w.
● For example, storing 7- bit integers on a 64-

bit machine would have s = 7 and w = 64.
● Can we build an ordered dictionary that 

takes advantage of the small key size?



  

A Refresher: B-Trees
● A B-tree is a multiway tree with a tunable parameter b 

called the order of the tree.
● Each nodes stores Θ(b) keys. The height of the tree is 

Θ(logb n).
● Most operations (lookup, insert, delete, successor, 

predecessor, etc.) perform a top-down search of the tree, 
doing some amount of work per node.

● Runtime of each operation is O(f(b) logb n), where f(b) is the 
amount of work done per node.

46 74 103

18 27 30 36 40 52 58 64 68 78 84 88 93 99 109116127

… … … …



  

B-Tree Traversals
● Most B-tree operations work by choosing some subtree to 

descend into, then descending there.
● Claim: The subtree we want is given by the number of keys in 

the current node less than or equal to the query key k. This 
quantity is the rank of k.

● For example, in the top node of the B-tree shown below:
rank(40) = 0    rank(74) = 2     rank(107) = 3

● Question: How quickly can we determine the rank of a key in a 
B-tree node?

46 74 103

18 27 30 36 40 52 58 64 68 78 84 88 93 99 109116127

… … … …



  

B-Tree Traversals
● We can determine rank(k) with a linear search in each

B-tree node for a total lookup cost of O(b · logb n).
● We can determine rank(k) with a binary search in each B-

tree node for a total lookup cost of
O(logb n · log b) = O(log n).

● Claim: If we can fit all the keys in a node into O(1) machine 
words, we can determine rank(k) in time O(1) for total 
lookup cost of O(logb n).

46 74 103

18 27 30 36 40 52 58 64 68 78 84 88 93 99 109116127

… … … …



  

How is this possible?



  

Warmup: Comparing Two Values
● Imagine we have two s-bit integers x and 

y and want to determine whether x ≥ y.
● How might we do this?

0 0 1 1–
1001

1 1 0 0–
11

0 0
0001

This bit tells us whether the first number 
was as least as big as the second!

1 1 0 0
10

0 0 1 1
1

1 1
0

1 1



  

Comparing Multiple Values
● This technique can be extended to work 

on multiple values in parallel.
● For example, here’s how we’d compare 

eight pairs of 7-bit numbers by doing a 
single 64-bit subtraction:

 1101110  0101110  1111000  1001101  0101111  0001101  1110111  1100001

a₁ a₂ a₃ a₄ a₅ a₆ a₇ a₈

 0011010  1000101  0010100  0100000  1010000  0100010  1000100  0001000

b₁ b₂ b₃ b₄ b₅ b₆ b₇ b₈



  

Comparing Multiple Values
● This technique can be extended to work 

on multiple values in parallel.
● For example, here’s how we’d compare 

eight pairs of 7-bit numbers by doing a 
single 64-bit subtraction:

11101110 10101110 11111000 11001101 10101111 10001101 11110111 11100001

00011010 01000101 00010100 00100000 01010000 00100010 01000100 00001000–

11010100 01101001 11100100 10101101 01011111 01101011 10110011 11011001

This technique is used in practice, including 
the glibc version of strlen. Thanks to former CS166 

student Jane Lange for pointing this out!

https://github.com/lattera/glibc/blob/master/string/strlen.c


  

Fundamental Primitive: Parallel Compare
 

Input: Two machine words. The first holds an array 
x₁, … xₙ with one bit of space between each number. 
The second holds an array y₁, …, yₙ with one bit of 
space between each number.

 

Output: A machine word with the result of xᵢ ≥ yᵢ 
encoded as a bit in the blank spaces between the 
numbers in the input array.

 

Procedure:
 

   1. Use a bitwise OR to place 1s between the xᵢ’s.
 

   2. Use a bitwise AND to place 0s between the yᵢ’s.
 

   3. Compute X – Y. The bit preceding
xᵢ – yᵢ is 1 if xᵢ ≥ yᵢ and 0 otherwise.



  

Back to B-Trees
● Recall: The whole reason we’re interested in 

making these comparisons is so that we can find 
how many keys in a B-tree node are less than or 
equal to a query key k.

● Idea: Store the (s-bit) keys in the B-tree node in 
a single (w-bit) machine word, with zeros 
interspersed:

00101001 01011101 01100111 01101010 01101011 01101101 01101110 01111111

y₁ y₂ y₃ y₄ y₅ y₆ y₇ y₈



  

Rank in O(1)
● To perform a lookup for the key k, form a number by 

replicating k multiple times with 1s interspersed.
Subtract the B-tree key number from it to do a parallel 
comparison.
Count up how many of the sentinel bits in the resulting 
number are equal to 1. This is the number of keys in the 
node less than or equal to k.

00101001 01011101 01100111 01101010 01101011 01101101 01101110 01111111

y₁ y₂ y₃ y₄ y₅ y₆ y₇ y₈
1100111

k



  

Rank in O(1)
● To perform a lookup for the key k, form a number by 

replicating k multiple times with 1s interspersed.
● Subtract the B-tree key number from it to do a parallel 

comparison.
● Count up how many of the sentinel bits in the resulting 

number are equal to 1. This is the number of keys in the 
node less than or equal to k.

00101001 01011101 01100111 01101010 01101011 01101101 01101110 01111111

11100111 11100111 11100111 11100111 11100111 11100111 11100111 11100111

–

10111110 10001010 10000000 01111101 01111100 01111010 01111001 01101000

Rank: 3

How do we 
do this?

Or this?



  

Back in Base Ten
● Suppose you have a one-digit number m.
● You want to form this base-10 number:

mmm
● Is there a nice series of arithmetical operations that 

will produce this?
● Answer: Compute m × 111.
● Why does this work?

     m × 111 = m  2 + ≪ m  1 + ≪ m  0≪

     = m00 + 0m0 + 00m
     = mmm.



  

Back in Base Ten
● Suppose you have a two-digit number mn.
● You want to form this base-10 number:

mnmnmn
● Is there a nice series of arithmetical operations that 

will produce this?
● Answer: Compute mn × 10,101.
● Why does this work?

 mn × 10,101 = mn  4 + ≪ mn  2 + ≪ mn  0≪

      = mn0000 + 00mn00 + 0000mn
      = mnmnmn.



  

Back in Base Ten
● Suppose you have a three-digit number mnp.
● You want to form this base-10 number:

mnp000mnp0mnp
● Is there a nice series of arithmetical operations that 

will produce this?
● Answer: Compute mnp × 10,000,010,001.

   = mnp000mnp0mnp
   = mnp  10 + ≪ mnp  4 + ≪ mnp  0≪

   = mnp × 1010 + mnp × 104 + mnp × 100

   = mnp × 10,000,010,001



  

Fundamental Primitive: Parallel Tile
 

Input: A number k much smaller than a 
machine word.
 

Output: A machine word holding multiple 
tiled copies of k, spread out with gaps 
between each copy.
 

Procedure:
 

   1. Form a number M with a 1 bit at the
end of each location to tile k.

 

   2. Compute M × k.



  

Computing Rank in O(1)
const uint64_t kMultiplier = 0b1000000010000000...100000001;
const uint64_t kOnesMask   = 0b1000000010000000...010000000;

uint64_t tiledK     = (k * kMultiplier) | kOnesMask;
uint64_t comparison = (tiledK – packedKeys) & kOnesMask;

00101001 01011101 01100111 01101010 01101011 01101101 01101110 01111111

11100111 11100111 11100111 11100111 11100111 11100111 11100111 11100111

–

10000000 10000000 10000000 00000000 00000000 00000000 00000000 00000000

How do we count 
how many of these 

bits are set?



  

Summing Up Flags
● After performing our subtraction, we’re left with a 

number like this one, where the highlighted bits 
are “interesting” to us.

● Goal: Add up these “interesting” values using at 
most O(1) total operations on words.

a0000000 b0000000 c0000000 d0000000



  

An Initial Idea
● To sum up the flags, we could extract 

each bit individually and add the result.
● The catch: This takes time Θ(r), where r 

is the number of times we tiled our value.
● Can we do better?

a0000000 b0000000 c0000000 d0000000



  

A Shifty Solution
● Given this number:

a0000000 b0000000 c0000000 d0000000 
we want to compute a + b + c + d.

● We can’t efficiently isolate a, b, c, and d.
● Claim: We don’t have to!

a0000000 b0000000 c0000000 d0000000

a0000000 b0000000 c0000000 d0000000 00000000

a0000000 b0000000 c0000000 d0000000 00000000 00000000

a0000000 b0000000 c0000000 d0000000 00000000 00000000 00000000

+

???????? ???????? ??????su m??????? ???????? ???????? ????????

This is a series of shifts and 
adds. It’s equivalent to 
multiplying our original 

number by some well-chosen 
spreader!



  

Fundamental Primitive: Parallel Add
  

Input: A machine word with “interesting” 
bits spaced evenly across the word.
  

Output: The sum of those “interesting” 
bits.
 

Procedure:
 

   1. Perform a parallel tile with an
appropriate multiplier to place all
leading bits on top of one another.

 

   2. Use a bitmask and bitshift to isolate
those bits.



  

Computing Rank in O(1)
const uint64_t kMultiplier = 0b1000000010000000...100000001;
const uint64_t kOnesMask   = 0b1000000010000000...010000000;

uint64_t tiledK     = (k * kMultiplier) | kOnesMask;
uint64_t comparison = (tiledK – packedKeys) & kOnesMask;

const uint64_t kStacker = 0b1000001000001...1000001;
const uint8_t  kShift   = 31;
const uint64_t kMask    = 0b111;

uint64_t rank = ((comparison * kStacker) >> kShift) & kMask;

a0000000 b0000000 c0000000 d0000000

a0000000 b0000000 c0000000 d0000000 00000000

a0000000 b0000000 c0000000 d0000000 00000000 00000000

a0000000 b0000000 c0000000 d0000000 00000000 00000000 00000000

+

???????? ???????? ???????? ???????? ???????? ???????? ?????sum



  

Fundamental Primitive: Parallel Rank
  

Input: An array of integers packed into a machine 
word with one bit of space between integers, and a 
key k.
 

Output: How many elements of the array are less 
than or equal to k.
 

Procedure:
 

   1. Perform a parallel tile to create n
copies of the key k, prefixed by 1’s.

 

   2. Perform a parallel compare of the
key k against values x₁, …, xₙ.

 

   3. Perform a parallel add to sum those
values into some total t.

 

4. Return t.



  

The Sardine Tree
● Let w be the word size and s be some (much) smaller 

number of bits.
● A sardine tree is a B-tree of order Θ(w/s) where the 

keys in a node are packed into a single machine word.
● Get it? The keys are “packed” tightly into a machine word! 

I’m funny.
● Each node is annotated with several values (the masks 

and multipliers from the preceding slide), which are 
updated in time O(1) whenever a key is added or 
removed.

● Supports all ordered dictionary operations in time
O(logb n) = O(logw/s n).



  

The Scorecard
● Here’s the performance 

breakdown for the 
sardine tree.

● Notice that the runtime 
performance is strictly 
better than that of a 
BST!

● Notice that the space 
usage, as measured in 
words, is sublinear, 
since each node stores 
multiple keys!

The Sardine Tree
● lookup: O(logw/s n)
● insert: O(logw/s n)
● delete: O(logw/s n)
● max: O(logw/s n)
● succ: O(logw/s n)
● Space: Θ(n · s/w) words



  

What’s Next
● Question: Can we get 

performance along these 
lines even if the keys fill full 
machine words?

● The strategy used in the 
sardine tree on its own 
won’t get us there – but 
many of those same 
techniques will!

● We’ll see how to do this next 
time. In the meantime, let’s 
see some other cool tricks 
we can do with word-level 
parallelism.

Mystery Structure?
● lookup: O(logw n)
● insert: O(logw n)
● delete: O(logw n)
● max: O(logw n)
● succ: O(logw n)
● Space: Θ(n)



  

Word-Level Parallelism Tricks #2:
Most-Significant Bits



  

Most-Significant Bits
● The most-significant bit function, denoted 
msb(n), outputs the index of the highest 1 bit 
set in the binary representation of number n.

● Some examples:
msb(0110) = 2   msb(010100) = 4   msb(1111) = 3

● Note that msb(0) is undefined.
● Mathematically, msb(n) is the largest value of k 

such that 2k ≤ n. (Do you see why?)



  

Most-Significant Bits
● Although we didn’t have this name earlier in 

the quarter, you’ve seen a place where we 
needed to efficiently compute msb(n).

● Do you remember where?
● Answer: In the sparse table RMQ structure, 

where computing RMQ(i, j) requires computing 
the largest number k where 2k ≤ j – i + 1.

● That’s exactly the value of msb( j – i + 1)!



  

Most-Significant Bits
● On many architectures, there’s a single 

assembly instruction that computes msb(n).
● on x86, it’s BSR (bit scan reverse).

● On others, nothing like this exists.
● Older versions of MIPS, for example.

● Question: How would we compute msb(n) 
assuming we only have access to the regular C 
operators?

+  -  *  /  %  <<  >>  &  |  ^  ==  <=



  

Computing msb
● In Problem Set 1, you (probably) computed 
msb(n) by building a lookup table mapping each 
value of n to msb(n).

● The Good: This takes time O(1) to evaluate.
● The Bad: The preprocessing time, and space 

usage, is Θ(U), where U is the maximum value 
we’ll be querying for.

● The Ugly: In the worst case U = 2w.
● Can we do better?



  

Most-Significant Digits
● Can you compute most-significant digits

● … in time O(w) using O(1) space?
● … in time O(log w) using O(1) space?
● … in time O(1) using O(1) space?

● Remember that the word size w is not a 
constant and that we can only use C-style 
operations.

Answer at

https://pollev.com/cs166spr23

https://pollev.com/cs166spr23


  

Most-Significant Bits
● There’s a simple O(w)-time algorithm for 

computing msb(n) that just checks all the 
bits until a 1 is found:

for (uint8_t bit = 64; bit > 0; bit--) {
    if (n & (uint64_t(1) << (bit - 1))) {
        return bit;
    }
}
flailAndPanic();

● Can we do better?



  

Computing msb
● We can improve this runtime to O(log w) by using a 

binary search:
● Check if any bits in the upper half of the bits of n are set.
● If so, recursively explore the upper half of n.
● If not, recursively explore the lower half of n.

● We can test whether any bit in a range is set by 
ANDing with a mask of 1s and seeing if the result is 
nonzero:

   

● Can we do better?

11011100 10111011 11000100 11010101 11100110 11110111 11000010 00110010

11111111 11111111 11111111 11111111 00000000 00000000 00000000 00000000∧

11011100 10111011 11000100 11010101 00000000 00000000 00000000 00000000



  

Claim: For any machine word size w, there 
is an algorithm that uses O(1) machine 

operations and O(1) space – independently 
of w – and computes msb(n).

This is not 
obvious!



  

How is this possible?



  

Not Starting from Scratch
● We’re not going into this problem blind. We’ve seen a 

bunch of useful techniques so far:
● Parallel compare: We can compare a bunch of small 

numbers in parallel in O(1) machine word operations.
● Parallel tile: We can take a small number and “tile” it 

multiple times in O(1) machine word operations.
● Parallel add: If we have a bunch of “flag” bits spread out 

evenly, we can add them all up in O(1) machine word 
operations.

● Parallel rank: We can find the rank of a small number in an 
array of small numbers in O(1) machine word operations.

● This is an impressive array of techniques. Let’s see if 
we can reuse or adapt them.



  

MSBs as Ranks
● Recall: msb(n) is the largest value of k for 

which 2k ≤ n.
● Idea: Imagine we have an array of all the 

powers of two that we can represent in a 
machine word. Then msb(n) is the rank of 
n in that array!

20 21 22 23 24 25 26 … 250 251 252 253 254 255 256 257 258 … 261 262 263

00000000 00000000 00100000 00000010 00000000 00100000 00100001 00101111



  

The Problem
● We can compute the rank of a value in an array 

assuming that all the array entries fit into a 
single machine word.

● This isn’t the case here:
● w total powers of two to write out.
● Total bits needed: Θ(w2), way too big to fit into a word.

● Question: Can we still harness the benefits of 
this parallel rank operation?

20 21 22 23 24 25 26 … 250 251 252 253 254 255 256 257 258 … 261 262 263

00000000 00000000 00100000 00000010 00000000 00100000 00100001 00101111



  

A Nice Decomposition
● Imagine we want to compute the most-significant bit of a 

w-bit integer.
● In what follows, we’ll pick w = 64, but this works for any w.

● We ultimately want to be finding the MSB of numbers with 
way fewer than w bits.

● Idea: Split w into some number of blocks of size b. Then,
● find the index of the highest block with at least one 1 bit set, 

then
● find the index of the highest bit within that block.

0000000000000000001100001001101001011110000110101110111011000010

0111

Compute msb for a 
w/b-bit number.



  

0111

A Nice Decomposition
● Imagine we want to compute the most-significant bit of a 

w-bit integer.
● In what follows, we’ll pick w = 64, but this works for any w.

● We ultimately want to be finding the MSB of numbers with 
way fewer than w bits.

● Idea: Split w into some number of blocks of size b. Then,
● find the index of the highest block with at least one 1 bit set, 

then
● find the index of the highest bit within that block.

0000000000000000001100001001101001011110000110101110111011000010

Compute msb for a
b-bit number.



  

A Nice Decomposition
● We will compute the MSB for w-bit integers by 

solving MSB for b and w/b-bit integers.
● What choice of b minimizes max{b, w/b}?
● Answer: Pick b = w½.
● So now we need to see how to

● solve msb(n) for integers with w½ bits, and
● replace each block with a bit indicating whether that 

block contains a 1.

00111101

0000000000000000001100001001101001011110000110100000000011000010



  

MSB for w½ Bits
● Recall: We can compute msb(n) by counting how many 

powers of two are less than or equal to n.
● If our numbers have size w½, there are w½ powers of 

two to compare against.
● Each of those powers of two has w½ bits, so all of those 

powers of two can be packed into a single machine 
word!

● Idea: Use our O(1)-time rank algorithm!

 00000001 00000010 00000100 00001000 00010000 00100000 01000000 10000000



  

MSB for w½ Bits
● If our numbers have size w½, there are w½ 

powers of two to compare against, each of 
which has w½ bits.

● Our parallel comparison prepends an extra bit 
to each number to compare.

● That’s barely – just barely – too many bits to fit 
into a machine word.

000000001000000010000000100000001000000010000000100000001000000010000000



  

MSB for w½ Bits
● Claim: This is an engineering problem at this point.
● Option 1: Split the powers of two into two different 

machine words and do two rank calculations.
● Option 2: Special-case the most-significant bit to 

reduce the number of bits to check.
● Either way, we find that the work done here is O(1) 

machine operations, with no dependency on the 
word size w!

000000001000000010000000100000001000000010000000100000001000000010000000



  

A Nice Decomposition
● We need to see how to

● solve msb(n) for integers with w½ bits, and
● replace each block with a bit indicating 

whether that block contains a 1.

0000000000000000001100001001101001011110000110100000000011000010

00111101



  

Identifying Active Blocks

00000000 00011001 11110000 10011010 10000000 00011010 11101110 11000010

b₁ b₂ b₃ b₄ b₅ b₆ b₇ b₈

Observation: A block contains 
a 1 bit if its first bit is 1 or
its lower 7 bits contain a 1.



  

Identifying Active Blocks

b₁ b₂ b₃ b₄ b₅ b₆ b₇ b₈

Observation: A block contains 
a 1 bit if its first bit is 1 or
its lower 7 bits contain a 1.

00000000 00011001 11110000 10011010 10000000 00011010 11101110 11000010

10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000

00000000 00000000 10000000 10000000 10000000 00000000 10000000 10000000

∧



  

High bit set?

Identifying Active Blocks

b₁ b₂ b₃ b₄ b₅ b₆ b₇ b₈
00000000 00011001 11110000 10011010 10000000 00011010 11101110 11000010

00000000 00000000 10000000 10000000 10000000 00000000 10000000 10000000

0

25

112

26

0

26

110

2

A number’s lower 7 bits 
contain a 1 if and only if 

the numeric value of 
those bits is at least 1.

Observation: A block contains 
a 1 bit if its first bit is 1 or
its lower 7 bits contain a 1.



  

High bit set?

Identifying Active Blocks

b₁ b₂ b₃ b₄ b₅ b₆ b₇ b₈
10000000 10011001 11110000 10011010 10000000 10011010 11101110 11000010

00000000 00000000 10000000 10000000 10000000 00000000 10000000 10000000

00000001 00000001 00000001 00000001 00000001 00000001 00000001 00000001

01111111 10011000 11101111 10011001 01111111 10011001 11101101 11000001

–

Observation: A block contains 
a 1 bit if its first bit is 1 or
its lower 7 bits contain a 1.



  

Identifying Active Blocks

b₁ b₂ b₃ b₄ b₅ b₆ b₇ b₈

Observation: A block contains 
a 1 bit if its first bit is 1 or
its lower 7 bits contain a 1.

00000000 00000000 10000000 10000000 10000000 00000000 10000000 10000000

00000000 10000000 10000000 10000000 00000000 10000000 10000000 10000000

00000000 00011001 11110000 10011010 10000000 00011010 11101110 11000010

00000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000

High bit set?

Low bits set?

Any bits set?



  

Identifying Active Blocks
● We now have a word holding flags telling us 

which blocks have a 1 bit set.
● We need to find the highest set flag.
● There are only w½ flags. If we could compact 

them into w½ adjacent bits, we could use our 
earlier algorithm to find the highest one set! 

b₁ b₂ b₃ b₄ b₅ b₆ b₇ b₈
00000000 00011001 11110000 10011010 10000000 00011010 11101110 11000010

00000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000



  

Identifying Active Blocks
● Idea: Adapt the shifting technique we used to 

compute ranks.
● Instead of shifting the bits on top of one another, 

shift the bits next to one another:

a0000000b0000000c0000000d0000000

a0000000b0000000c0000000d00000000000000

a0000000b0000000c0000000d000000000000000000000

a0000000b0000000c0000000d0000000000000000000000000000

+

?????????????????????abcd????????????????????????????

a0000000b0000000c0000000d0000000



  

Fundamental Primitive: Parallel Pack
 

Input: A machine word containing several 
“interesting” bits that are evenly spaced 
apart.
 

Output: A machine word with those 
“interesting” bits placed adjacent to one 
another at the low end of the word.
 

Procedure:
 

   1. Perform a parallel tile with an
appropriate multiplier to place all
leading bits adjacent to one another.

 

   2. Use a bitmask and bitshift to isolate
those bits.

 



  

Putting It All Together
● Use a bitmask to identify all blocks whose high 

bit is set.
● Use a parallel tile and a parallel compare to 

identify all blocks with a 1 bit aside from the 
first.

● Use a parallel pack to pack those bits together.
● Use a parallel rank to determine the highest of 

those bits set, which gives the block index.
● Use a parallel rank to determine the highest 

bit set within that block.



  

The Finished Product
● I’ve posted a link to a working 

implementation of this algorithm for
64-bit integers on the course website.

● Feel free to check it out – it’s really 
magical seeing all the techniques come 
together!



  

What We Covered
● We can use bit-parallel tricks to

● compare multiple values in parallel,
● tile a number across a word,
● sum up evenly-spaced bits in a word,
● compute ranks in an array,
● compact evenly-spaced bits in a word, and
all in O(1) machine word operations!

● Using these techniques, we can modify a B-tree to work strictly 
faster than a conventional BST, provided that we store tiny keys.

● Using these techniques, can we compute the most-significant bit 
of a machine word in time O(1), independent of the machine 
word size.

● And all of this flows from one source: word-level parallelism 
inside of the processor!



  

What’s Next
● Can we build a data structure for 

integers that is strictly better than a 
binary search tree?

● The answer is yes, and it’s called a 
fusion tree.

● Today’s exploration provides the 
techniques we’ll use to build the fusion 
tree. We just need a few more insights to 
get us there!



  

Next Time
● Patricia Codes

● Compressing a small number of big integers 
into a small number of small integers.

● Fusion Trees
● Combining all these techniques together!
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