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Outline for Today
● Recap from Last Time

● Reviewing Euler tour trees and their augmentations.
● Why Fully Dynamic Connectivity is Hard

● Seeing how this differs from the forest case.
● Localizing Edges

● And bringing in some CS161 topics in clever ways.
● “Blame It On The Little Guy”

● A very creative way to decrease runtime costs.
● The Holm Forest

● A brilliant way to solve dynamic connectivity.



  

Recap from Last Time



  

Dynamic Connectivity in Forests
● Consider the following special-case of the dynamic 

connectivity problem:
Maintain an undirected forest F so that edges may be 
inserted an deleted and connectivity queries may be 

answered efficiently.
● Each deleted edge splits a tree in two; each added 

edge joins two trees and never closes a cycle.



  

Euler Tour Trees
● The Euler tour tree data structure 

solves dynamic connectivity in forests 
with these (amortized) costs:
● are-connected: O(log n)
● link: O(log n)
● cut: O(log n)

● These bounds can be made worst-case 
efficient using different types of balanced 
BSTs instead of splay trees.



  

Extending Euler Tour Trees
● Euler tour trees can be augmented to aggregate information about 

the trees in the forest. With the right augmentations, we can 
support the following operations in (amortized) O(log n) time each.
● size(x), which returns the number of nodes in x’s tree.
● add-packet(x, p), which attaches packet p to node x; and
● remove-packet(x), which removes and returns some packet reachable 

from x, chosen arbitrarily from all the options.



  

New Stuff!



  

Goal: Solve dynamic connectivity on 
arbitrary undirected graphs.



  

Why is Fully-Dynamic Connectivity Hard?



  

Can We Use Euler Tours?
● In the case of maintaining a forest, we 

represented each tree as an Euler tour.
● Can we do something like that for general graphs?
● Problem: While we can form Euler tours in the 

general case, the behavior during a cut depends 
on whether the cut disconnects the graph.
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Can We Use Euler Tours?
● In the case of maintaining a forest, we 

represented each tree as an Euler tour.
● Can we do something like that for general graphs?
● Problem: While we can form Euler tours in the 

general case, the behavior during a cut depends 
on whether the cut disconnects the graph.
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Can We Use Forests?
● We already have a solution for dynamic 

connectivity that works for forests. Can we adapt 
that to work for general graphs?

● Key Insight: If all we care about is connectivity, 
we just need to maintain a spanning forest of the 
graph.



  

Maintaining a Forest

Every edge is either a 
tree edge in the forest  or ℱ
an auxiliary edge running 
between two nodes in the 

same tree in .ℱ



  

Maintaining a Forest

If an edge connects 
two different trees 
in , we add it as a ℱ

tree edge.



  

Maintaining a Forest

If an edge’s 
endpoints are 

already connected, 
we add it as an 
auxiliary edge.



  

Maintaining a Forest

Deleting an auxiliary 
edge won’t change 
our spanning forest, 

and so we just 
remove it.



  

Maintaining a Forest

Deleting a tree edge changes 
the spanning forest. We need to 
figure out whether there is an 

auxiliary edge that would 
reconnect the tree we just split.



  

Maintaining a Forest

Intuition: This is the 
“hard” part of 

maintaining dynamic 
connectivity in a 
general graph.



  

Maintaining a Forest

Some auxiliary edges don’t 
touch the two trees we just 
disconnected. Processing 
them is a waste of time.



  

Maintaining a Forest

Some auxiliary edges link 
nodes that are part of the 
same tree fragment. We 

want to minimize the time 
spent processing them.



  

Maintaining a Forest



  

Maintaining a Forest

As before, we don’t 
want to process this 

edge – it doesn’t 
touch either tree.



  

Maintaining a Forest

We already know that 
this edge won’t connect 
these two trees. Is there 

a way to avoid 
rescanning it?



  

Maintaining a Forest



  

The Challenges
● Goal: After disconnecting a tree T into 

two trees T₁ and T₂, search for an edge 
that will reconnect it.

● Challenge 1: Avoid scanning edges that 
don’t have endpoints in either T₁ or T₂.

● Challenge 2: Avoid rescanning edges 
that, based on past cuts, couldn’t 
possibly work.



  

What We Need To Do
● Suppose we cut the tree 

edge xy, splitting a tree T 
into Tx and Ty.

● We need to search for an 
auxiliary edge that could 
reconnect Tx and Ty.

● Observation: Auxiliary 
edges with one endpoint in 
Tx either run between Tx and 
itself or between Tx and Ty.

● Goal: Organize auxiliary 
edges so we can find just 
those incident to Tx.

y
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What We Need To Do
● Fortunately, we’ve already seen 

a way to do this!
● Recall: Euler tour trees can be 

augmented so that we can
● attach packets to nodes, and
● quickly execute queries of the form 

“find and remove some packet in 
this tree.”

● Replace “packet” with “auxiliary 
edge” and we can find an 
auxiliary edge with one endpoint 
in Tx in amortized time O(log n).

● Intuition: We can “quickly” find 
an edge touching Tx. This will not 
be our bottleneck.
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Avoiding Rescans



  

Avoiding Rescans

Auxiliary Edge

Tree Edge
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Avoiding Rescans

Auxiliary Edge

Tree Edge



  

Avoiding Rescans

Auxiliary Edge

Tree Edge

Don’t rescan red edges.
We know they only

link red trees.



  

Avoiding Rescans
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Avoiding Rescans
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Avoiding Rescans
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Tree Edge



  

Avoiding Rescans

Auxiliary Edge

Tree Edge



  

A Germ of an Idea
● Begin with all edges having the same 

color.
● When cutting a tree edge, assign edges 

in one of the two trees a new color.
● When an edge fails to reconnect a tree, 

give it the color of the tree it belongs to.
● When looking for a replacement edge, 

don’t use edges that are the same color 
as the tree itself, since those can’t work.



  

Refining This Idea
● Idea: Assign each edge a level, initially 0.
● Initial Proposal:

● When cutting an edge at level l, pick one of the 
two resulting trees and raise all its level-l edges 
to level (l+1).

● When looking for an edge to reconnect the tree, 
if an edge at level l fails to reconnect, raise it to 
level l+1.

● There are a lot of details we still need to 
work out, but this is a reasonable guess for a 
starting point.



  

Refining This Idea
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Refining This Idea
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We have a spanning tree
for our graph. Each

edge has an associated
level.

Notice anything about 
which spanning tree we 

picked?

Answer at
https://pollev.com/cs166spr23

https://pollev.com/cs166spr23


  

Maximum Spanning Forests
● Key Idea: Maintain the following 

invariant throughout all operations:
The forest ℱ is a maximum spanning 

forest with respect to levels.
● We’ll use this both to formalize the 

details of all the operations and to ensure 
correctness.

● Plus, this will help us in some tricky 
corner cases!



  

MSF Implications
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Suppose we add a 
new edge into the 
graph. What level 

should it get?

Answer: Give it level 
0, which ensures we 

still have a MSF.
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MSF Implications
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Suppose we delete 
this edge of level 0.

Proof Idea: If such 
an edge existed, we 

would have used it in 
the MSF.

0  

Claim: No auxiliary 
edge of level 1 or 

higher can reconnect 
the tree.



  

Invariant: ℱ is a maximum spanning forest.

To check are-connected(x, y):
Return whether x and y are connected in ℱ.

To link(x, y):
If are-connected(x, y), add xy as an auxiliary edge to ℱ.
Otherwise add xy as a tree edge to ℱ.

To cut(x, y), where xy is a tree edge of level l:
Delete xy from ℱ.
Let Tx and Ty be the trees in ℱ containing x and y.
Select one of Tₓ and Ty arbitrarily; WLOG assume it’s Tx.
Increment the level of each tree edge of level l in Tx.
For each auxiliary edge uv in ℱ touching Tx:

If uv connects Tx and Ty, add uv as a tree edge to ℱ. Stop.
Else increment its level.

Does this work?
How fast is it?

An Initial Idea



  

An Important Detail
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An Important Detail
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Both of these edges
would reconnect. Which 

should we pick?

Answer: The edge of level 
1, since we want to 
maintain an MSF.
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A Tricky Case
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● Suppose we remove the 
indicated edge.

● Let’s follow our standard 
procedure:
● Incremental all edges of 

level 4 in the left subtree.
● Try reconnecting using 

auxiliary edges in 
decreasing level order.

● Problem: The resulting 
tree is not a maximum 
spanning forest.

● What went wrong? 
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A Tricky Case
● Pick an auxiliary edge of 

level l. Why wasn’t it in the 
MSF?

● Adding it must close a 
cycle where it’s (tied for) 
the cheapest edge.

● Thus the MSF cycle 
containing the edge must 
be made of edges of levels 
l or higher.

● If we increment the level of 
an auxiliary edge from 
level l to l+1, this is no 
longer guaranteed.
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A Tricky Case
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Resolving the Issue
● When we cut an edge of 

level l, we already increment 
the level of all edges of level 
l in one of the new trees.

● Revised Rule: If we fail to 
reconnect at level l, when 
proceeding to level l – 1, 
increment all edges of level 
l – 1 before trying to 
reconnect.
● This preserves the MSF 

property. (Why?)
● This ensures that auxiliary 

edges, when incremented, 
preserve the MSF property.
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An Interesting Case
● Suppose we delete the 

indicated edge.
● Claim: None of the edges of 

level 4 in the bottom region 
can reconnect the trees.

● Why?
● If any of them reconnected, 

they would close a cycle in the 
original tree using an edge of 
weight 2.

● But then we didn’t have an 
MSF – we should have used 
the edge of level 4.

● What can we do with this 
insight?
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An Interesting Case
● Idea: After cutting 

an edge of level l, 
don’t look at the full 
subtrees formed. 
Instead just look at 
subtrees using edges 
of levels l and above.

● Use the same 
algorithms as before, 
except restricted to 
those trees.
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An Interesting Case
● Idea: After cutting 

an edge of level l, 
don’t look at the full 
subtrees formed. 
Instead just look at 
subtrees using edges 
of levels l and above.

● Use the same 
algorithms as before, 
except restricted to 
those trees.
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An Interesting Case
● Idea: After cutting 

an edge of level l, 
don’t look at the full 
subtrees formed. 
Instead just look at 
subtrees using edges 
of levels l and above.

● Use the same 
algorithms as before, 
except restricted to 
those trees.
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An Interesting Case
● Idea: After cutting 

an edge of level l, 
don’t look at the full 
subtrees formed. 
Instead just look at 
subtrees using edges 
of levels l and above.

● Use the same 
algorithms as before, 
except restricted to 
those trees.
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To Recap
● To maintain our MSF, we need to do the following:

● If we cut an edge at level l, we need to search for auxiliary edges 
first at level l, then l – 1, then l – 2, etc. Otherwise the edge we 
add might not result in an MSF.

● When searching for auxiliary edges, we only need to search the 
part of the tree reachable by edges of level i or higher. Any other 
auxiliary edges in the tree can’t possibly be part of the MSF.

● For each level i, before we search for auxiliary edges, we need to 
increase the level of all tree edges at level i to level i+1. 
Otherwise when an edge fails to reconnect and we boost its level, 
we might not get an MSF.

● Putting this all together:
● We need a mechanism to quickly find all auxiliary edges of a given 

level, in a subtree reachable using only edges of a given level or 
higher, while being able to find all tree edges of a given level 
quickly.



  

Layered Forests
● Idea: Store multiple 

versions of the forest, 
each focusing on edges of 
some level or above.

● Let ℱl to be the forest of 
all edges of level l or 
higher.

● We maintain a series of 
forests ₀ ⊇ ₁ ⊇ ₂ ⊇ …, ℱ ℱ ℱ
with one forest per level.

● Each edge of level l then 
appears in all forests of 
level l and below.
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Layered Forests
● To make it faster to 

find auxiliary edges, 
each auxiliary edge 
of level l will be 
stored attached only 
to ℱl.

● After all, we only 
need to look for 
auxiliary edges of 
level l when we’re 
focusing on trees 
made of edges of 
level l or above.
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Invariant 1: ℱ₀ is a maximum spanning forest.
Invariant 2: ℱ₀ ⊇ ℱ₁ ⊇ ℱ₂ ⊇ …

To check are-connected(x, y):
Return whether x and y are connected in ℱ₀.

To link(x, y):
If are-connected(x, y), add xy as an auxiliary edge to ℱ₀.
Otherwise add xy as a tree edge to ℱ₀.

To cut(x, y), where xy is a tree edge of level l:
Delete xy from ℱ₀, ℱ₁, …, and ℱl.
For each level i from l down to 0:

Let Tx and Ty be the trees in ℱi containing x and y.
Select one of Tₓ and Ty arbitrarily; WLOG assume it’s Tx.
Increment the level of each tree edge of level i in Tx,
adding each as tree edges to ℱᵢ₊₁.
For each auxiliary edge uv in ℱi touching Tx:

If uv connects Tx and Ty, add uv as a tree edge to ℱr for r ≤ i. Stop.
Else remove uv as an aux edge from ℱᵢ, increment its level, and add it 
as an aux edge to ℱi+1.

How fast
is this?



  

Invariant 1: ℱ₀ is a maximum spanning forest.
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adding each as tree edges to ℱᵢ₊₁.
For each auxiliary edge uv in ℱi touching Tx:

If uv connects Tx and Ty, add uv as a tree edge to ℱr for r ≤ i. Stop.
Else remove uv as an aux edge from ℱᵢ, increment its level, and add it 
as an aux edge to ℱi+1.

How fast
is this?

This is an are-connected 
query in ₀. It takes ℱ

amortized time O(log n).
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Otherwise add xy as a tree edge to ℱ₀.

To cut(x, y), where xy is a tree edge of level l:
Delete xy from ℱ₀, ℱ₁, …, and ℱl.
For each level i from l down to 0:

Let Tx and Ty be the trees in ℱi containing x and y.
Select one of Tₓ and Ty arbitrarily; WLOG assume it’s Tx.
Increment the level of each tree edge of level i in Tx,
adding each as tree edges to ℱᵢ₊₁.
For each auxiliary edge uv in ℱi touching Tx:

If uv connects Tx and Ty, add uv as a tree edge to ℱr for r ≤ i. Stop.
Else remove uv as an aux edge from ℱᵢ, increment its level, and add it 
as an aux edge to ℱi+1.

How fast
is this?

This is an are-connected query 
in ₀, plus either a ℱ link in ₀ or ℱ
an augmentation update to ₀ ℱ

to add xy as a tree edge.

Cost: amortized O(log n).



  

Invariant 1: ℱ₀ is a maximum spanning forest.
Invariant 2: ℱ₀ ⊇ ℱ₁ ⊇ ℱ₂ ⊇ …

To check are-connected(x, y):
Return whether x and y are connected in ℱ₀.

To link(x, y):
If are-connected(x, y), add xy as an auxiliary edge to ℱ₀.
Otherwise add xy as a tree edge to ℱ₀.

To cut(x, y), where xy is a tree edge of level l:
Delete xy from ℱ₀, ℱ₁, …, and ℱl.
For each level i from l down to 0:

Let Tx and Ty be the trees in ℱi containing x and y.
Select one of Tₓ and Ty arbitrarily; WLOG assume it’s Tx.
Increment the level of each tree edge of level i in Tx,
adding each as tree edges to ℱᵢ₊₁.
For each auxiliary edge uv in ℱi touching Tx:

If uv connects Tx and Ty, add uv as a tree edge to ℱr for r ≤ i. Stop.
Else remove uv as an aux edge from ℱᵢ, increment its level, and add it 
as an aux edge to ℱi+1.

How fast
is this?

This is a cut operation across 
all the levels.

 

Suppose there are L levels in 
the forest. Then this takes 

(amortized) time O(L log n).



  

Invariant 1: ℱ₀ is a maximum spanning forest.
Invariant 2: ℱ₀ ⊇ ℱ₁ ⊇ ℱ₂ ⊇ …

To check are-connected(x, y):
Return whether x and y are connected in ℱ₀.

To link(x, y):
If are-connected(x, y), add xy as an auxiliary edge to ℱ₀.
Otherwise add xy as a tree edge to ℱ₀.

To cut(x, y), where xy is a tree edge of level l:
Delete xy from ℱ₀, ℱ₁, …, and ℱl.
For each level i from l down to 0:

Let Tx and Ty be the trees in ℱi containing x and y.
Select one of Tₓ and Ty arbitrarily; WLOG assume it’s Tx.
Increment the level of each tree edge of level i in Tx,
adding each as tree edges to ℱᵢ₊₁.
For each auxiliary edge uv in ℱi touching Tx:

If uv connects Tx and Ty, add uv as a tree edge to ℱr for r ≤ i. Stop.
Else remove uv as an aux edge from ℱᵢ, increment its level, and add it 
as an aux edge to ℱi+1.

How fast
is this?

This is a link operation 
across all the levels. It 
takes (amortized) time 

O(L log n).



  

Invariant 1: ℱ₀ is a maximum spanning forest.
Invariant 2: ℱ₀ ⊇ ℱ₁ ⊇ ℱ₂ ⊇ …

To check are-connected(x, y):
Return whether x and y are connected in ℱ₀.

To link(x, y):
If are-connected(x, y), add xy as an auxiliary edge to ℱ₀.
Otherwise add xy as a tree edge to ℱ₀.

To cut(x, y), where xy is a tree edge of level l:
Delete xy from ℱ₀, ℱ₁, …, and ℱl.
For each level i from l down to 0:

Let Tx and Ty be the trees in ℱi containing x and y.
Select one of Tₓ and Ty arbitrarily; WLOG assume it’s Tx.
Increment the level of each tree edge of level i in Tx,
adding each as tree edges to ℱᵢ₊₁.
For each auxiliary edge uv in ℱi touching Tx:

If uv connects Tx and Ty, add uv as a tree edge to ℱr for r ≤ i. Stop.
Else remove uv as an aux edge from ℱᵢ, increment its level, and add it 
as an aux edge to ℱi+1.

How fast
is this?

These steps might take a long time if there are a 
lot of edges to move.

However, each individual edge’s level can 
only be incremented L times.

Idea: Amortize away this cost by “blaming” it 
on the cost of adding the edge.



  

The Amortized Analysis
● Suppose the forest has a maximum of L levels.
● Raising the level of an individual edge takes 

time O(log n), so across all cut operations, we 
spend at most O(L log n) work on any one edge.

● With the right choice of Φ, we can get these 
amortized costs on the operations:
● link: O(L log n), paying the full cost of raising the 

edge’s level up front.
● cut:   O(L log n), accounting for the costs of all 

operations not attributable to edge raising.
● Question: How big can L get?
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0

 

Bounding the Max Level
● Problem: Without further restrictions, 

the maximum level in a forest of n nodes 
is L = n – 2.

● How can that happen? How can we 
prevent it?
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Bounding the Max Level
● Problem: Without further restrictions, 

the maximum level in a forest of n nodes 
is L = n – 2.

● How can that happen? How can we 
prevent it?



  

Bounding the Max Level
● Suppose we cut the indicated edge.
● We need to pick one tree and raise all its 

edges of level 0 to level 1. Which one 
makes the most sense to select?

● Answer: The bottom one, since it has 
fewer total edges.
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0

 

0

 

0

 

0

 

0     



  

Blame It On The Little Guy
● Claim: If we always pick the smaller tree when 

boosting levels, the maximum level will be L = O(log n).
● Why?

● The maximum tree size in ₀ is ℱ n nodes.
● The maximum tree size in ₁ is ℱ ⁿ/₂ nodes.
● The maximum tree size in ₂ is ℱ ⁿ/₄ nodes.
● …
● The maximum tree size in ℱlg n is 1 node.

● General Technique: “Blame it on the little guy” by 
repeatedly updating the smaller of two quantities, or 
accounting for work done on the smaller of two 
quantities, etc. This often converts linear bounds to 
logarithmic ones.



  

Invariant 1: ℱ₀ is a maximum spanning forest.
Invariant 2: ℱ₀ ⊇ ℱ₁ ⊇ ℱ₂ ⊇ …
Invariant 3: Each tree in ℱᵢ has at most ⁿ/2ⁱ nodes.
To check are-connected(x, y):

Return whether x and y are connected in ℱ₀.
To link(x, y):

If are-connected(x, y), add xy as an auxiliary edge to ℱ₀.
Otherwise add xy as a tree edge to ℱ₀.

To cut(x, y), where xy is a tree edge of level l:
Delete xy from ℱ₀, ℱ₁, …, and ℱl.
For each level i from l down to 0:

Let Tx and Ty be the trees in ℱi containing x and y.
Select the smaller of Tₓ and Ty; WLOG assume it’s Tx.
Increment the level of each tree edge of level i in Tx,
adding each as tree edges to ℱᵢ₊₁.
For each auxiliary edge uv in ℱi touching Tx:

If uv connects Tx and Ty, add uv as a tree edge to ℱr for r ≤ i. Stop.
Else remove uv as an aux edge from ℱᵢ, increment its level, and add it 
as an aux edge to ℱi+1.

This is our
final structure!

  🎉😃🎉



  

The Final Scorecard
● This final data structure is called the Holm forest 

or layered forest. It maintains an MSF using our 
earlier approach while ensuring that L = O(log n).

● It supports
● link(u, v) in amortized time O(log2 n),
● cut(u, v) in amortized time O(log2 n), and
● are-connected(u, v) in amortized time O(log n).

● These bounds are substantially better than the 
naive approach – isn’t that amazing?



  

The Final-er Scorecard
● There is one further improvement we can make to the 

structure, and it’s clever.
● All connectivity queries are done in ₀.ℱ
● Instead of representing the Euler tour tree for ₀ using ℱ

splay trees, represent them with B-trees of order log n.
● This makes are-connected take worst-case time
● Updating ₀ now takes time              , but we don’t notice ℱ

this because the amortized cost of link and cut is still 
O(log2 n).

● This structure then supports
● link(u, v) in amortized time O(log2 n),
● cut(u, v) in amortized time O(log2 n), and
● are-connected(u, v) in worst-case time

O( log n
log logn ).

O( log2n
log logn )

O( logn
log logn ) .



  

Going Forward
● Here’s some other amazing work folks have done in this 

space:
● In 2000, Thorup introduced randomization into the 

Holm forest to get expected amortized 
O(log n (log log n)3) costs for link and cut, with 
O(log n / log log log n) for are-connected queries.

● In 2013, Kapron et al used randomization without 
amortization to get O(log5 n) worst-case costs per 
link or cut and O(log n / log log n) are-connected 
query times, with a high chance of success.

● Every data structure for dynamic connectivity must have 
link and cut run in Ω(log n) or are-connected run in 
time Ω(log n / log log n). Is there still a ways to go, or 
are these lower bounds too loose? We don’t know!



  

More Dynamic Problems
● Many other dynamic graph problems exist:

● Maintaining an MST; can do in O(log4 n) time per 
insertion or deletion.

● Maintaining single-source or all-pairs shortest paths.
● Maintaining reachability in a directed graph.

● All of these problems were solved in the static 
case 50+ years ago.

● We have somewhat decent solutions to the 
dynamic cases.

● This is an active area of research!



  

Next Time
● Word-Level Parallelism

● Harnessing a degree of parallelism we’ve 
overlooked thus far.

● Sardine Trees
● Outperforming BSTs for small integers.

● MSB in O(1)
● A seemingly impossible bitwise operation.
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