

Holm Forests

Outline for Today
● Recap from Last Time

● Reviewing Euler tour trees and their augmentations.
● Why Fully Dynamic Connectivity is Hard

● Seeing how this differs from the forest case.
● Localizing Edges

● And bringing in some CS161 topics in clever ways.
● “Blame It On The Little Guy”

● A very creative way to decrease runtime costs.
● The Holm Forest

● A brilliant way to solve dynamic connectivity.

Recap from Last Time

Dynamic Connectivity in Forests
● Consider the following special-case of the dynamic

connectivity problem:
Maintain an undirected forest F so that edges may be
inserted an deleted and connectivity queries may be

answered efficiently.
● Each deleted edge splits a tree in two; each added

edge joins two trees and never closes a cycle.

Euler Tour Trees
● The Euler tour tree data structure

solves dynamic connectivity in forests
with these (amortized) costs:
● are-connected: O(log n)
● link: O(log n)
● cut: O(log n)

● These bounds can be made worst-case
efficient using different types of balanced
BSTs instead of splay trees.

Extending Euler Tour Trees
● Euler tour trees can be augmented to aggregate information about

the trees in the forest. With the right augmentations, we can
support the following operations in (amortized) O(log n) time each.
● size(x), which returns the number of nodes in x’s tree.
● add-packet(x, p), which attaches packet p to node x; and
● remove-packet(x), which removes and returns some packet reachable

from x, chosen arbitrarily from all the options.

New Stuff!

Goal: Solve dynamic connectivity on
arbitrary undirected graphs.

Why is Fully-Dynamic Connectivity Hard?

Can We Use Euler Tours?
● In the case of maintaining a forest, we

represented each tree as an Euler tour.
● Can we do something like that for general graphs?
● Problem: While we can form Euler tours in the

general case, the behavior during a cut depends
on whether the cut disconnects the graph.

a

b

c

d

e

f

g

h

ab bc cd da ad dc ce ef fg gh he eh hg gf fe ec cb ba

Can We Use Euler Tours?
● In the case of maintaining a forest, we

represented each tree as an Euler tour.
● Can we do something like that for general graphs?
● Problem: While we can form Euler tours in the

general case, the behavior during a cut depends
on whether the cut disconnects the graph.

a

b

c

d

e

f

g

h

ab bc cd da ad dc ce ef fg gh he eh hg gf fe ec cb ba

Can We Use Euler Tours?
● In the case of maintaining a forest, we

represented each tree as an Euler tour.
● Can we do something like that for general graphs?
● Problem: While we can form Euler tours in the

general case, the behavior during a cut depends
on whether the cut disconnects the graph.

a

b

c

d

e

f

g

h

ab ba ad dc ce ef fg gh he eh hg gf fe ec cd da

Can We Use Euler Tours?
● In the case of maintaining a forest, we

represented each tree as an Euler tour.
● Can we do something like that for general graphs?
● Problem: While we can form Euler tours in the

general case, the behavior during a cut depends
on whether the cut disconnects the graph.

a

b

c

d

e

f

g

h

ab ba ad dc ce ef fg gh he eh hg gf fe ec cd da

Can We Use Euler Tours?
● In the case of maintaining a forest, we

represented each tree as an Euler tour.
● Can we do something like that for general graphs?
● Problem: While we can form Euler tours in the

general case, the behavior during a cut depends
on whether the cut disconnects the graph.

a

b

c

d

e

f

g

h

ab ba ad dc cd da ef fg gh he eh hg gf fe

Can We Use Forests?
● We already have a solution for dynamic

connectivity that works for forests. Can we adapt
that to work for general graphs?

● Key Insight: If all we care about is connectivity,
we just need to maintain a spanning forest of the
graph.

Maintaining a Forest

Every edge is either a
tree edge in the forest or ℱ
an auxiliary edge running
between two nodes in the

same tree in .ℱ

Maintaining a Forest

If an edge connects
two different trees
in , we add it as a ℱ

tree edge.

Maintaining a Forest

If an edge’s
endpoints are

already connected,
we add it as an
auxiliary edge.

Maintaining a Forest

Deleting an auxiliary
edge won’t change
our spanning forest,

and so we just
remove it.

Maintaining a Forest

Deleting a tree edge changes
the spanning forest. We need to
figure out whether there is an

auxiliary edge that would
reconnect the tree we just split.

Maintaining a Forest

Intuition: This is the
“hard” part of

maintaining dynamic
connectivity in a
general graph.

Maintaining a Forest

Some auxiliary edges don’t
touch the two trees we just
disconnected. Processing
them is a waste of time.

Maintaining a Forest

Some auxiliary edges link
nodes that are part of the
same tree fragment. We

want to minimize the time
spent processing them.

Maintaining a Forest

Maintaining a Forest

As before, we don’t
want to process this

edge – it doesn’t
touch either tree.

Maintaining a Forest

We already know that
this edge won’t connect
these two trees. Is there

a way to avoid
rescanning it?

Maintaining a Forest

The Challenges
● Goal: After disconnecting a tree T into

two trees T₁ and T₂, search for an edge
that will reconnect it.

● Challenge 1: Avoid scanning edges that
don’t have endpoints in either T₁ or T₂.

● Challenge 2: Avoid rescanning edges
that, based on past cuts, couldn’t
possibly work.

What We Need To Do
● Suppose we cut the tree

edge xy, splitting a tree T
into Tx and Ty.

● We need to search for an
auxiliary edge that could
reconnect Tx and Ty.

● Observation: Auxiliary
edges with one endpoint in
Tx either run between Tx and
itself or between Tx and Ty.

● Goal: Organize auxiliary
edges so we can find just
those incident to Tx.

y

xTx Ty

What We Need To Do
● Fortunately, we’ve already seen

a way to do this!
● Recall: Euler tour trees can be

augmented so that we can
● attach packets to nodes, and
● quickly execute queries of the form

“find and remove some packet in
this tree.”

● Replace “packet” with “auxiliary
edge” and we can find an
auxiliary edge with one endpoint
in Tx in amortized time O(log n).

● Intuition: We can “quickly” find
an edge touching Tx. This will not
be our bottleneck.

y

xTx Ty

Avoiding Rescans

Avoiding Rescans

Auxiliary Edge

Tree Edge

Avoiding Rescans

Auxiliary Edge

Tree Edge

Avoiding Rescans

Auxiliary Edge

Tree Edge

Avoiding Rescans

Auxiliary Edge

Tree Edge

Avoiding Rescans

Auxiliary Edge

Tree Edge

Don’t rescan red edges.
We know they only

link red trees.

Avoiding Rescans

Auxiliary Edge

Tree Edge

Avoiding Rescans

Auxiliary Edge

Tree Edge

Avoiding Rescans

Auxiliary Edge

Tree Edge

Avoiding Rescans

Auxiliary Edge

Tree Edge

Avoiding Rescans

Auxiliary Edge

Tree Edge

Avoiding Rescans

Auxiliary Edge

Tree Edge

A Germ of an Idea
● Begin with all edges having the same

color.
● When cutting a tree edge, assign edges

in one of the two trees a new color.
● When an edge fails to reconnect a tree,

give it the color of the tree it belongs to.
● When looking for a replacement edge,

don’t use edges that are the same color
as the tree itself, since those can’t work.

Refining This Idea
● Idea: Assign each edge a level, initially 0.
● Initial Proposal:

● When cutting an edge at level l, pick one of the
two resulting trees and raise all its level-l edges
to level (l+1).

● When looking for an edge to reconnect the tree,
if an edge at level l fails to reconnect, raise it to
level l+1.

● There are a lot of details we still need to
work out, but this is a reasonable guess for a
starting point.

Refining This Idea

0

0

0

 0

0

0

0

0

0

0

 0
0

0

0

0 00 0

0

0

0

0

0

0

 0
 0

Aux Edge

Tree Edge

0

0

 0

 0

Refining This Idea

1

1

 0

2

1

1

1

1

1

 1
2

2

2

1 0

0

0

2

 2
 1

Aux Edge

Tree Edge

0

0

 0

 0

We have a spanning tree
for our graph. Each

edge has an associated
level.

Notice anything about
which spanning tree we

picked?

Answer at
https://pollev.com/cs166spr23

https://pollev.com/cs166spr23

Maximum Spanning Forests
● Key Idea: Maintain the following

invariant throughout all operations:
The forest ℱ is a maximum spanning

forest with respect to levels.
● We’ll use this both to formalize the

details of all the operations and to ensure
correctness.

● Plus, this will help us in some tricky
corner cases!

MSF Implications

1

1

 0

2

1

1

1

1

1

 1
2

2

2

1 0

0

0

2

 2
 1

Aux Edge

Tree Edge

0

0

 0

 0

Suppose we add a
new edge into the
graph. What level

should it get?

Answer: Give it level
0, which ensures we

still have a MSF.
0

MSF Implications

1

1

 0

2

1

1

1

1

1

 1
2

2

2

1 0

0

0

2

 2
 1

Aux Edge

Tree Edge

0

0

 0

 0

Suppose we delete
this edge of level 0.

Proof Idea: If such
an edge existed, we

would have used it in
the MSF.

0

Claim: No auxiliary
edge of level 1 or

higher can reconnect
the tree.

Invariant: ℱ is a maximum spanning forest.

To check are-connected(x, y):
Return whether x and y are connected in ℱ.

To link(x, y):
If are-connected(x, y), add xy as an auxiliary edge to ℱ.
Otherwise add xy as a tree edge to ℱ.

To cut(x, y), where xy is a tree edge of level l:
Delete xy from ℱ.
Let Tx and Ty be the trees in ℱ containing x and y.
Select one of Tₓ and Ty arbitrarily; WLOG assume it’s Tx.
Increment the level of each tree edge of level l in Tx.
For each auxiliary edge uv in ℱ touching Tx:

If uv connects Tx and Ty, add uv as a tree edge to ℱ. Stop.
Else increment its level.

Does this work?
How fast is it?

An Initial Idea

An Important Detail

1

1

 0

2

1

1

1

1

1

 1
2

2

2

1 0

0

0

2

 2
 1

Aux Edge

Tree Edge

0

0

 0

 0

0

An Important Detail

1

1

 0

2

1

1

1

1

1

 1
2

2

2

1 0

0

0

 3

Aux Edge

Tree Edge

0

0 0

0

Both of these edges
would reconnect. Which

should we pick?

Answer: The edge of level
1, since we want to
maintain an MSF.

 1

 0

An Important Detail

1

1

 0

2

1

1

1

1

1

 1
2

2

2

1 0

0

0

 3

Aux Edge

Tree Edge

0

0 0

0

 1

 0

Both of these edges
would reconnect. Which

should we pick?

Answer: The edge of level
1, since we want to
maintain an MSF.

A Tricky Case
4

3 3

 0

2 2

1 1

2

3

0 0
0

● Suppose we remove the
indicated edge.

● Let’s follow our standard
procedure:
● Incremental all edges of

level 4 in the left subtree.
● Try reconnecting using

auxiliary edges in
decreasing level order.

● Problem: The resulting
tree is not a maximum
spanning forest.

● What went wrong?

1

4

0

A Tricky Case
5

3 3

 0

2 2

1 1

0 0

● Suppose we remove the
indicated edge.

● Let’s follow our standard
procedure:
● Increment all edges of level

4 in the left subtree.
● Try reconnecting using

auxiliary edges in
decreasing level order.

● Problem: The resulting
tree is not a maximum
spanning forest.

● What went wrong? 0

4

3

2

1

A Tricky Case
5

3 3

 0

 2

 1

0 0

● Suppose we remove the
indicated edge.

● Let’s follow our standard
procedure:
● Increment all edges of level

4 in the left subtree.
● Try reconnecting using

auxiliary edges in
decreasing level order.

● Problem: The resulting
tree is not a maximum
spanning forest.

● What went wrong? 0

4

3

2

2

1

1

A Tricky Case
● Pick an auxiliary edge of

level l. Why wasn’t it in the
MSF?

● Adding it must close a
cycle where it’s (tied for)
the cheapest edge.

● Thus the MSF cycle
containing the edge must
be made of edges of levels
l or higher.

● If we increment the level of
an auxiliary edge from
level l to l+1, this is no
longer guaranteed.

 0

2 2

1 1

2

0 0
0

1

4

0

4

3 3
3

A Tricky Case
● Pick an auxiliary edge of

level l. Why wasn’t it in the
MSF?

● Adding it must close a
cycle where it’s (tied for)
the cheapest edge.

● Thus the MSF cycle
containing the edge must
be made of edges of levels
l or higher.

● If we increment the level of
an auxiliary edge from
level l to l+1, this is no
longer guaranteed.

 0

1 1

0 0
0

1

4

0

4

3 3

2 2
2

3

A Tricky Case
● Pick an auxiliary edge of

level l. Why wasn’t it in the
MSF?

● Adding it must close a
cycle where it’s (tied for)
the cheapest edge.

● Thus the MSF cycle
containing the edge must
be made of edges of levels
l or higher.

● If we increment the level of
an auxiliary edge from
level l to l+1, this is no
longer guaranteed.

 0

1 1

0 0
0

1

4

0

2 2
2

4

3 3
4

Resolving the Issue
● When we cut an edge of

level l, we already increment
the level of all edges of level
l in one of the new trees.

● Revised Rule: If we fail to
reconnect at level l, when
proceeding to level l – 1,
increment all edges of level
l – 1 before trying to
reconnect.
● This preserves the MSF

property. (Why?)
● This ensures that auxiliary

edges, when incremented,
preserve the MSF property.

5

 0

0

 44
4

3

2

1

3

2

1

 3

 2

 1

An Interesting Case
● Suppose we delete the

indicated edge.
● Claim: None of the edges of

level 4 in the bottom region
can reconnect the trees.

● Why?
● If any of them reconnected,

they would close a cycle in the
original tree using an edge of
weight 2.

● But then we didn’t have an
MSF – we should have used
the edge of level 4.

● What can we do with this
insight?

4

4

4

4

4 4 4

4

4

4

 4

 02

3

4

An Interesting Case
● Idea: After cutting

an edge of level l,
don’t look at the full
subtrees formed.
Instead just look at
subtrees using edges
of levels l and above.

● Use the same
algorithms as before,
except restricted to
those trees.

4

4

4

4 4 4

4

4

4

 4

 02

3

Level 4

4

An Interesting Case
● Idea: After cutting

an edge of level l,
don’t look at the full
subtrees formed.
Instead just look at
subtrees using edges
of levels l and above.

● Use the same
algorithms as before,
except restricted to
those trees.

4

4

4

4 4 4

4

4

4

 4

 02

Level 3

5

3

An Interesting Case
● Idea: After cutting

an edge of level l,
don’t look at the full
subtrees formed.
Instead just look at
subtrees using edges
of levels l and above.

● Use the same
algorithms as before,
except restricted to
those trees.

 4

Level 2

5

4

3

4

4

4

4 4 4

4

4

4

 0

An Interesting Case
● Idea: After cutting

an edge of level l,
don’t look at the full
subtrees formed.
Instead just look at
subtrees using edges
of levels l and above.

● Use the same
algorithms as before,
except restricted to
those trees.

 4

5

4

3

4

4

4

4 4 4

4

4

4

 0

To Recap
● To maintain our MSF, we need to do the following:

● If we cut an edge at level l, we need to search for auxiliary edges
first at level l, then l – 1, then l – 2, etc. Otherwise the edge we
add might not result in an MSF.

● When searching for auxiliary edges, we only need to search the
part of the tree reachable by edges of level i or higher. Any other
auxiliary edges in the tree can’t possibly be part of the MSF.

● For each level i, before we search for auxiliary edges, we need to
increase the level of all tree edges at level i to level i+1.
Otherwise when an edge fails to reconnect and we boost its level,
we might not get an MSF.

● Putting this all together:
● We need a mechanism to quickly find all auxiliary edges of a given

level, in a subtree reachable using only edges of a given level or
higher, while being able to find all tree edges of a given level
quickly.

Layered Forests
● Idea: Store multiple

versions of the forest,
each focusing on edges of
some level or above.

● Let ℱl to be the forest of
all edges of level l or
higher.

● We maintain a series of
forests ₀ ⊇ ₁ ⊇ ₂ ⊇ …, ℱ ℱ ℱ
with one forest per level.

● Each edge of level l then
appears in all forests of
level l and below.

1

1

2

1

1

1

1

1

2

2

2

1 0

0

 3

0

 1

₀ℱ

0

0

0

Layered Forests
● Idea: Store multiple

versions of the forest,
each focusing on edges of
some level or above.

● Let ℱl to be the forest of
all edges of level l or
higher.

● We maintain a series of
forests ₀ ⊇ ₁ ⊇ ₂ ⊇ …, ℱ ℱ ℱ
with one forest per level.

● Each edge of level l then
appears in all forests of
level l and below.

1

1

2

1

1

1

1

1

2

2

2

1

 3
 1

₁ℱ

1

1

1

1

1

1

1

1

 1

0

0

0

Layered Forests
● Idea: Store multiple

versions of the forest,
each focusing on edges of
some level or above.

● Let ℱl to be the forest of
all edges of level l or
higher.

● We maintain a series of
forests ₀ ⊇ ₁ ⊇ ₂ ⊇ …, ℱ ℱ ℱ
with one forest per level.

● Each edge of level l then
appears in all forests of
level l and below.

2

2

2

2

 3

₂ℱ

2

2

2

2

1

1

1

1

1

1

1

1

 1

0

0

0

Layered Forests
● Idea: Store multiple

versions of the forest,
each focusing on edges of
some level or above.

● Let ℱl to be the forest of
all edges of level l or
higher.

● We maintain a series of
forests ₀ ⊇ ₁ ⊇ ₂ ⊇ …, ℱ ℱ ℱ
with one forest per level.

● Each edge of level l then
appears in all forests of
level l and below.

 3

₃ℱ

Layered Forests
● To make it faster to

find auxiliary edges,
each auxiliary edge
of level l will be
stored attached only
to ℱl.

● After all, we only
need to look for
auxiliary edges of
level l when we’re
focusing on trees
made of edges of
level l or above.

1

1

 0

2

1

1

1

1

1

 1
2

2

2

1 0

0

0

2

 2
 1

0

0

 0

 0

0

 1

 1

Layered Forests
● To make it faster to

find auxiliary edges,
each auxiliary edge
of level l will be
stored attached only
to ℱl.

● After all, we only
need to look for
auxiliary edges of
level l when we’re
focusing on trees
made of edges of
level l or above.

1

1

 0

2

1

1

1

1

1

2

2

2

1 0

0

0

2

 2

0

0

 0

 0

0

₀ℱ

 0

0

0

0

0

0

 0

 0

0

 1

 1

Layered Forests
● To make it faster to

find auxiliary edges,
each auxiliary edge
of level l will be
stored attached only
to ℱl.

● After all, we only
need to look for
auxiliary edges of
level l when we’re
focusing on trees
made of edges of
level l or above.

1

1

2

1

1

1

1

1

2

2

2

1

2

 2

₁ℱ

 1

 1
1

1

1

1

1

1

1

1

 0

0

0

0

0

0

 0

 0

0

Layered Forests
● To make it faster to

find auxiliary edges,
each auxiliary edge
of level l will be
stored attached only
to ℱl.

● After all, we only
need to look for
auxiliary edges of
level l when we’re
focusing on trees
made of edges of
level l or above.

2

2

2

2

2

 2

₂ℱ

Invariant 1: ℱ₀ is a maximum spanning forest.
Invariant 2: ℱ₀ ⊇ ℱ₁ ⊇ ℱ₂ ⊇ …

To check are-connected(x, y):
Return whether x and y are connected in ℱ₀.

To link(x, y):
If are-connected(x, y), add xy as an auxiliary edge to ℱ₀.
Otherwise add xy as a tree edge to ℱ₀.

To cut(x, y), where xy is a tree edge of level l:
Delete xy from ℱ₀, ℱ₁, …, and ℱl.
For each level i from l down to 0:

Let Tx and Ty be the trees in ℱi containing x and y.
Select one of Tₓ and Ty arbitrarily; WLOG assume it’s Tx.
Increment the level of each tree edge of level i in Tx,
adding each as tree edges to ℱᵢ₊₁.
For each auxiliary edge uv in ℱi touching Tx:

If uv connects Tx and Ty, add uv as a tree edge to ℱr for r ≤ i. Stop.
Else remove uv as an aux edge from ℱᵢ, increment its level, and add it
as an aux edge to ℱi+1.

How fast
is this?

Invariant 1: ℱ₀ is a maximum spanning forest.
Invariant 2: ℱ₀ ⊇ ℱ₁ ⊇ ℱ₂ ⊇ …

To check are-connected(x, y):
Return whether x and y are connected in ℱ₀.

To link(x, y):
If are-connected(x, y), add xy as an auxiliary edge to ℱ₀.
Otherwise add xy as a tree edge to ℱ₀.

To cut(x, y), where xy is a tree edge of level l:
Delete xy from ℱ₀, ℱ₁, …, and ℱl.
For each level i from l down to 0:

Let Tx and Ty be the trees in ℱi containing x and y.
Select one of Tₓ and Ty arbitrarily; WLOG assume it’s Tx.
Increment the level of each tree edge of level i in Tx,
adding each as tree edges to ℱᵢ₊₁.
For each auxiliary edge uv in ℱi touching Tx:

If uv connects Tx and Ty, add uv as a tree edge to ℱr for r ≤ i. Stop.
Else remove uv as an aux edge from ℱᵢ, increment its level, and add it
as an aux edge to ℱi+1.

How fast
is this?

This is an are-connected
query in ₀. It takes ℱ

amortized time O(log n).

Invariant 1: ℱ₀ is a maximum spanning forest.
Invariant 2: ℱ₀ ⊇ ℱ₁ ⊇ ℱ₂ ⊇ …

To check are-connected(x, y):
Return whether x and y are connected in ℱ₀.

To link(x, y):
If are-connected(x, y), add xy as an auxiliary edge to ℱ₀.
Otherwise add xy as a tree edge to ℱ₀.

To cut(x, y), where xy is a tree edge of level l:
Delete xy from ℱ₀, ℱ₁, …, and ℱl.
For each level i from l down to 0:

Let Tx and Ty be the trees in ℱi containing x and y.
Select one of Tₓ and Ty arbitrarily; WLOG assume it’s Tx.
Increment the level of each tree edge of level i in Tx,
adding each as tree edges to ℱᵢ₊₁.
For each auxiliary edge uv in ℱi touching Tx:

If uv connects Tx and Ty, add uv as a tree edge to ℱr for r ≤ i. Stop.
Else remove uv as an aux edge from ℱᵢ, increment its level, and add it
as an aux edge to ℱi+1.

How fast
is this?

This is an are-connected query
in ₀, plus either a ℱ link in ₀ or ℱ
an augmentation update to ₀ ℱ

to add xy as a tree edge.

Cost: amortized O(log n).

Invariant 1: ℱ₀ is a maximum spanning forest.
Invariant 2: ℱ₀ ⊇ ℱ₁ ⊇ ℱ₂ ⊇ …

To check are-connected(x, y):
Return whether x and y are connected in ℱ₀.

To link(x, y):
If are-connected(x, y), add xy as an auxiliary edge to ℱ₀.
Otherwise add xy as a tree edge to ℱ₀.

To cut(x, y), where xy is a tree edge of level l:
Delete xy from ℱ₀, ℱ₁, …, and ℱl.
For each level i from l down to 0:

Let Tx and Ty be the trees in ℱi containing x and y.
Select one of Tₓ and Ty arbitrarily; WLOG assume it’s Tx.
Increment the level of each tree edge of level i in Tx,
adding each as tree edges to ℱᵢ₊₁.
For each auxiliary edge uv in ℱi touching Tx:

If uv connects Tx and Ty, add uv as a tree edge to ℱr for r ≤ i. Stop.
Else remove uv as an aux edge from ℱᵢ, increment its level, and add it
as an aux edge to ℱi+1.

How fast
is this?

This is a cut operation across
all the levels.

Suppose there are L levels in
the forest. Then this takes

(amortized) time O(L log n).

Invariant 1: ℱ₀ is a maximum spanning forest.
Invariant 2: ℱ₀ ⊇ ℱ₁ ⊇ ℱ₂ ⊇ …

To check are-connected(x, y):
Return whether x and y are connected in ℱ₀.

To link(x, y):
If are-connected(x, y), add xy as an auxiliary edge to ℱ₀.
Otherwise add xy as a tree edge to ℱ₀.

To cut(x, y), where xy is a tree edge of level l:
Delete xy from ℱ₀, ℱ₁, …, and ℱl.
For each level i from l down to 0:

Let Tx and Ty be the trees in ℱi containing x and y.
Select one of Tₓ and Ty arbitrarily; WLOG assume it’s Tx.
Increment the level of each tree edge of level i in Tx,
adding each as tree edges to ℱᵢ₊₁.
For each auxiliary edge uv in ℱi touching Tx:

If uv connects Tx and Ty, add uv as a tree edge to ℱr for r ≤ i. Stop.
Else remove uv as an aux edge from ℱᵢ, increment its level, and add it
as an aux edge to ℱi+1.

How fast
is this?

This is a link operation
across all the levels. It
takes (amortized) time

O(L log n).

Invariant 1: ℱ₀ is a maximum spanning forest.
Invariant 2: ℱ₀ ⊇ ℱ₁ ⊇ ℱ₂ ⊇ …

To check are-connected(x, y):
Return whether x and y are connected in ℱ₀.

To link(x, y):
If are-connected(x, y), add xy as an auxiliary edge to ℱ₀.
Otherwise add xy as a tree edge to ℱ₀.

To cut(x, y), where xy is a tree edge of level l:
Delete xy from ℱ₀, ℱ₁, …, and ℱl.
For each level i from l down to 0:

Let Tx and Ty be the trees in ℱi containing x and y.
Select one of Tₓ and Ty arbitrarily; WLOG assume it’s Tx.
Increment the level of each tree edge of level i in Tx,
adding each as tree edges to ℱᵢ₊₁.
For each auxiliary edge uv in ℱi touching Tx:

If uv connects Tx and Ty, add uv as a tree edge to ℱr for r ≤ i. Stop.
Else remove uv as an aux edge from ℱᵢ, increment its level, and add it
as an aux edge to ℱi+1.

How fast
is this?

These steps might take a long time if there are a
lot of edges to move.

However, each individual edge’s level can
only be incremented L times.

Idea: Amortize away this cost by “blaming” it
on the cost of adding the edge.

The Amortized Analysis
● Suppose the forest has a maximum of L levels.
● Raising the level of an individual edge takes

time O(log n), so across all cut operations, we
spend at most O(L log n) work on any one edge.

● With the right choice of Φ, we can get these
amortized costs on the operations:
● link: O(L log n), paying the full cost of raising the

edge’s level up front.
● cut: O(L log n), accounting for the costs of all

operations not attributable to edge raising.
● Question: How big can L get?

0

0

0

0

0

0

0

0

Bounding the Max Level
● Problem: Without further restrictions,

the maximum level in a forest of n nodes
is L = n – 2.

● How can that happen? How can we
prevent it?

7

Bounding the Max Level
● Problem: Without further restrictions,

the maximum level in a forest of n nodes
is L = n – 2.

● How can that happen? How can we
prevent it?

Bounding the Max Level
● Suppose we cut the indicated edge.
● We need to pick one tree and raise all its

edges of level 0 to level 1. Which one
makes the most sense to select?

● Answer: The bottom one, since it has
fewer total edges.

0

0

0

0

0

0

0

0

0

0

0

Blame It On The Little Guy
● Claim: If we always pick the smaller tree when

boosting levels, the maximum level will be L = O(log n).
● Why?

● The maximum tree size in ₀ is ℱ n nodes.
● The maximum tree size in ₁ is ℱ ⁿ/₂ nodes.
● The maximum tree size in ₂ is ℱ ⁿ/₄ nodes.
● …
● The maximum tree size in ℱlg n is 1 node.

● General Technique: “Blame it on the little guy” by
repeatedly updating the smaller of two quantities, or
accounting for work done on the smaller of two
quantities, etc. This often converts linear bounds to
logarithmic ones.

Invariant 1: ℱ₀ is a maximum spanning forest.
Invariant 2: ℱ₀ ⊇ ℱ₁ ⊇ ℱ₂ ⊇ …
Invariant 3: Each tree in ℱᵢ has at most ⁿ/2ⁱ nodes.
To check are-connected(x, y):

Return whether x and y are connected in ℱ₀.
To link(x, y):

If are-connected(x, y), add xy as an auxiliary edge to ℱ₀.
Otherwise add xy as a tree edge to ℱ₀.

To cut(x, y), where xy is a tree edge of level l:
Delete xy from ℱ₀, ℱ₁, …, and ℱl.
For each level i from l down to 0:

Let Tx and Ty be the trees in ℱi containing x and y.
Select the smaller of Tₓ and Ty; WLOG assume it’s Tx.
Increment the level of each tree edge of level i in Tx,
adding each as tree edges to ℱᵢ₊₁.
For each auxiliary edge uv in ℱi touching Tx:

If uv connects Tx and Ty, add uv as a tree edge to ℱr for r ≤ i. Stop.
Else remove uv as an aux edge from ℱᵢ, increment its level, and add it
as an aux edge to ℱi+1.

This is our
final structure!

 🎉😃🎉

The Final Scorecard
● This final data structure is called the Holm forest

or layered forest. It maintains an MSF using our
earlier approach while ensuring that L = O(log n).

● It supports
● link(u, v) in amortized time O(log2 n),
● cut(u, v) in amortized time O(log2 n), and
● are-connected(u, v) in amortized time O(log n).

● These bounds are substantially better than the
naive approach – isn’t that amazing?

The Final-er Scorecard
● There is one further improvement we can make to the

structure, and it’s clever.
● All connectivity queries are done in ₀.ℱ
● Instead of representing the Euler tour tree for ₀ using ℱ

splay trees, represent them with B-trees of order log n.
● This makes are-connected take worst-case time
● Updating ₀ now takes time , but we don’t notice ℱ

this because the amortized cost of link and cut is still
O(log2 n).

● This structure then supports
● link(u, v) in amortized time O(log2 n),
● cut(u, v) in amortized time O(log2 n), and
● are-connected(u, v) in worst-case time

O(log n
log logn).

O(log2n
log logn)

O(logn
log logn) .

Going Forward
● Here’s some other amazing work folks have done in this

space:
● In 2000, Thorup introduced randomization into the

Holm forest to get expected amortized
O(log n (log log n)3) costs for link and cut, with
O(log n / log log log n) for are-connected queries.

● In 2013, Kapron et al used randomization without
amortization to get O(log5 n) worst-case costs per
link or cut and O(log n / log log n) are-connected
query times, with a high chance of success.

● Every data structure for dynamic connectivity must have
link and cut run in Ω(log n) or are-connected run in
time Ω(log n / log log n). Is there still a ways to go, or
are these lower bounds too loose? We don’t know!

More Dynamic Problems
● Many other dynamic graph problems exist:

● Maintaining an MST; can do in O(log4 n) time per
insertion or deletion.

● Maintaining single-source or all-pairs shortest paths.
● Maintaining reachability in a directed graph.

● All of these problems were solved in the static
case 50+ years ago.

● We have somewhat decent solutions to the
dynamic cases.

● This is an active area of research!

Next Time
● Word-Level Parallelism

● Harnessing a degree of parallelism we’ve
overlooked thus far.

● Sardine Trees
● Outperforming BSTs for small integers.

● MSB in O(1)
● A seemingly impossible bitwise operation.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91

