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Outline for Today
● Dynamic Connectivity

● Figuring out what’s connected in a graph as the 
edges change.

● Euler Tour Representations
● An inspired and clever way to represent trees.

● Euler Tour Trees
● Encoding Euler tours in a creative way.

● Extending ETTs
● Extending our basic structure.



  

The Dynamic Connectivity Problem



  

The Connectivity Problem
● The graph connectivity problem is the following:

Given an undirected graph G, preprocess the graph so 
we can answer queries of the form “are nodes u and v 

connected?”
● Using Θ(m + n) preprocessing, can preprocess the 

graph to answer queries in time O(1).
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Dynamic Connectivity
● The dynamic connectivity problem is the following:

Maintain an undirected graph G so that edges may be 
inserted an deleted and connectivity queries may be 

answered efficiently.
● This is a much harder problem!



  

Special Cases
● Last time, we covered the incremental 

connectivity problem in which edges can only 
be added and not removed.

● Today, we’ll cover dynamic connectivity in 
forests, a special case in which the graph is 
known to be a forest.

● Next time, we’ll cover fully-dynamic 
connectivity, in which there are no restrictions 
on which edges can be added and removed.



  

Dynamic Connectivity in Forests



  

Dynamic Connectivity in Forests
● Consider the following special-case of the dynamic 

connectivity problem:
Maintain an undirected forest F so that edges may be 
inserted an deleted and connectivity queries may be 

answered efficiently.
● Each deleted edge splits a tree in two; each added 

edge joins two trees and never closes a cycle.



  

Dynamic Connectivity in Forests
● Consider the following special-case of the dynamic 

connectivity problem:
Maintain an undirected forest F so that edges may be 
inserted an deleted and connectivity queries may be 

answered efficiently.
● Each deleted edge splits a tree in two; each added 

edge joins two trees and never closes a cycle.



  

Dynamic Connectivity in Forests
● Goal: Support these three operations:

● link(u, v): Add in edge uv. The assumption is 
that u and v are in separate trees.

● cut(u, v): Cut the edge uv. The assumption is 
that the edge exists in the forest.

● are-connected(u, v): Return whether u and 
v are connected.

● The data structure we'll develop can perform 
these operations time O(log n) each.



  

Euler Tours



  

Euler Tours
● An Euler tour is a path through a graph G that 

visits every edge exactly once.
● It mathematically formalizes the “trace this 

figure without picking up your pencil or 
redrawing any lines” puzzles.



  

Euler Tours
● An Euler tour is a path through a graph G that 

visits every edge exactly once.
● It mathematically formalizes the “trace this 

figure without picking up your pencil or 
redrawing any lines” puzzles.

● Classic Theorem 1: A graph G has a closed 
Euler tour if and only if G is connected and 
every node in G has even degree.

● Classic Theorem 2: A directed graph G has a 
closed Euler tour if and only if G is strongly 
connected and every node’s indegree equals its 
outdegree.



  

Euler Tours on Trees
● Trees do not have Euler tours.

  
 
  

 
● Technique: replace each undirected edge 
uv with two directed edges uv and vu.

● The resulting graph then has an Euler tour.
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Properties of Euler Tours
● Fact: Any cyclic shift of an Euler tour of 

a tree is also an Euler tour.

g

a

f

b

h i j

d
c

e

ab ba ag gh hi id dc cd de ed di ij ji ih hg gf fg ga



  

Properties of Euler Tours
● Fact: Any cyclic shift of an Euler tour of 

a tree is also an Euler tour.
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Rerooting a Tour
● In some cases, we will need to cyclicly shift a tour to put an 

edge leaving a particular node x at front.
● We will call this operation reroot(x).
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Rerooting a Tour
● To perform reroot(x):

● Pick any edge rx leaving our new start node r.
● Split the tour into A and B, where A consists of 

everything up to but not including rx and B consists of 
everything from rx forward.

● Concatenate B A.
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Euler Tours and Dynamic Trees
● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂, 

executing link(u, v) links the trees together by 
adding edge uv.

● Watch what happens to the Euler tours:
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ab bd db bc ce ec cb ba fg gj jk kj ji ij jg gh hg gf



  

Euler Tours and Dynamic Trees
● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂, 

executing link(u, v) links the trees together by 
adding edge uv.

● Watch what happens to the Euler tours:
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Euler Tours and Dynamic Trees
● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂, 

executing link(u, v) links the trees together by 
adding edge uv.

● Watch what happens to the Euler tours:
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Euler Tours and Dynamic Trees
● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂, 
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Euler Tours and Dynamic Trees
● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂, 

executing link(u, v) links the trees together by 
adding edge uv.

● Watch what happens to the Euler tours:
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Euler Tours and Dynamic Trees
● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂, 

executing link(u, v) links the trees together by 
adding edge uv.

● To link(u, v):
● Let E₁ and E₂ be Euler tours of T₁ and T₂, 

respectively.
● reroot(u).
● reroot(v).
● Concatenate E₁ uv E₂ vu.



  

Euler Tours and Dynamic Trees
● Given a tree T, executing cut(u, v) cuts the edge 
uv from the tree (assuming it exists).

● Watch what happens to the Euler tour of T:
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Euler Tours and Dynamic Trees
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Euler Tours and Dynamic Trees
● Given a tree T, executing cut(u, v) cuts the edge 
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Euler Tours and Dynamic Trees
● Given a tree T, executing cut(u, v) cuts the edge 
uv from the tree (assuming it exists).

● Watch what happens to the Euler tour of T:
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Euler Tours and Dynamic Trees
● Given a tree T, executing cut(u, v) cuts the edge 
uv from the tree (assuming it exists).

● To perform cut(u, v):
● Let E be the Euler tour containing uv and vu.
● Remove uv and vu from E to form E₁, E₂, and E₃.
● Then E₁E₃ and E₂ are Euler tours of the two new 

trees.



  

Checking Connectivity
● We also need a way to answer queries of the form are-

connected(u, v).
● This query focuses on nodes, but our Euler tours store edges.
● Cute Trick: Introduce a self-loop on each node that 

represents the node itself. Add that to each tour as a proxy for 
the node itself.

● Now, we can answer are-connected(x, y) by seeing if xx and 
yy are part of the same tour.
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Checking Connectivity
● This also makes it a lot easier to reroot a tour at a 

node x.
● We simply find xx, then rotate that edge to the 

front of the tour.
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Checking Connectivity
● This also makes it a lot easier to reroot a tour at a 

node x.
● We simply find xx, then rotate that edge to the 

front of the tour.
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Putting It All Together
● To link(x, y):

● Rotate xx and yy to the fronts 
of their tours Tx and Ty.

● Join the tours together as 
Tx xy Ty yx.

● To cut(x, y):
● Delete the edges xy and yx 

from the tour T to form tours 
T₁, T₂, T₃.

● Regroup the tours as T₁ T₃ 
and T₂.

● To answer are-
connected(x, y):
● Determine whether xx and yy 

are in the same tour.
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Putting It All Together
● To link(x, y):

● Rotate xx and yy to the fronts 
of their tours Tx and Ty.

● Join the tours together as 
Tx xy Ty yx.

● To cut(x, y):
● Delete the edges xy and yx 

from the tour T to form tours 
T₁, T₂, T₃.

● Regroup the tours as T₁ T₃ 
and T₂.
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connected(x, y):
● Determine whether xx and yy 

are in the same tour.
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Putting It All Together
● To link(x, y):

● Rotate xx and yy to the fronts 
of their tours Tx and Ty.

● Join the tours together as
Tx xy Ty yx.

● To cut(x, y):
● Delete the edges xy and yx 

from the tour T to form tours 
T₁, T₂, T₃.

● Regroup the tours as T₁ T₃ 
and T₂.

● To answer are-
connected(x, y):
● Determine whether xx and yy 

are in the same tour.
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Putting It All Together
● To link(x, y):

● Rotate xx and yy to the fronts 
of their tours Tx and Ty.

● Join the tours together as
Tx xy Ty yx.

● To cut(x, y):
● Delete the edges xy and yx 

from the tour T to form tours 
T₁, T₂, T₃.

● Regroup the tours as T₁ T₃ 
and T₂.

● To answer are-
connected(x, y):
● Determine whether xx and yy 

are in the same tour.
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Putting It All Together
● To link(x, y):

● Rotate xx and yy to the fronts 
of their tours Tx and Ty.

● Join the tours together as
Tx xy Ty yx.

● To cut(x, y):
● Delete the edges xy and yx 

from the tour T to form tours 
T₁, T₂, T₃.

● Regroup the tours as T₁ T₃ 
and T₂.

● To answer are-
connected(x, y):
● Determine whether xx and yy 

are in the same tour.
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Putting It All Together
● To link(x, y):

● Rotate xx and yy to the fronts 
of their tours Tx and Ty.

● Join the tours together as
Tx xy Ty yx.

● To cut(x, y):
● Delete the edges xy and yx 

from the tour T to form tours 
T₁, T₂, T₃.

● Regroup the tours as T₁ T₃ 
and T₂.

● To answer are-
connected(x, y):
● Determine whether xx and yy 

are in the same tour.
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Putting It All Together
● To link(x, y):

● Rotate xx and yy to the fronts 
of their tours Tx and Ty.

● Join the tours together as
Tx xy Ty yx.

● To cut(x, y):
● Delete the edges xy and yx 

from the tour T to form tours 
T₁, T₂, T₃.

● Regroup the tours as T₁ T₃ 
and T₂.

● To answer are-
connected(x, y):
● Determine whether xx and yy 

are in the same tour.
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Implementing This Approach



  

The Story So Far
● We’ve seen how to implement reroot, 

link, cut, and are-connected in terms 
of operations on Euler tours.

● The efficiency of those operations depend 
on how we choose to encode our 
sequences.

● Question: What data structure should 
we use to store those sequences?



  

Representation Issues
● We need a representation that lets us perform the 

following operations:
● Locate specific edges (reroot, link, cut, are-connected).
● Split a sequence at a point (reroot, cut).
● Join two sequences together (reroot, link).
● Remove an edge from a sequence (cut).
● Append an edge to a sequence (link).
● Check if two edges are in the same sequence (are-connected).

● What data structures might be appropriate here?

Answer at
https://pollev.com/cs166spr23

https://pollev.com/cs166spr23


  

Representation Issues
● Idea 1: Use doubly-linked lists, plus an auxiliary hash 

table / BST to locate edges.
● Assuming we have a hash table telling us where edges are, 

we can split, join, and rotate tours in time O(1).
● Problem: There isn’t an easy way to test whether two 

nodes are in the same tour. Scanning within the linked 
list make take time Θ(n).

● Can we do better?
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Representation Issues
● In incremental 

connectivity, we selected 
a representative for 
each CC.

● We then had elements 
store parent pointers 
that formed a path to 
the representative.

● Could we do something 
like that here?

0 0 0

1 0 00

0 2 01

3 0 00

0 0 00

0



  

Representation Issues
● The idea of using trees to store 

representatives is a good one.
● If the trees are wide and flat, it 

won’t take too long to find the 
representative.

● If we don’t have to update “too 
many” pointers when CC’s change, 
our operations can run quickly.

● The trees we used last time 
won’t (immediately) work here.
● We have to store the elements of 

the tour in sequential order. There 
was no such notion of order in 
disjoint set forests.

● In disjoint-set forests, linked items 
can never be cut, allowing for 
some clever optimizations.

● What’s another tree we can use?
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0 2 01

3 0 00

0 0 00
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Binary Search(less) Trees
● Idea 2: Store our sequences in a balanced BST, sorted by their 

position within the sequence.
● We’ll use the shape and algorithm of a BST, but won’t have the 

ability to conventionally search the tree top-down.
● We’ll rely on the fact that we have external pointers that let us 

jump to items within the BST.
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Binary Search(less) Trees
● We can now answer are-connected(x, y) in time 

O(log n).
● Find xx and yy using our auxiliary lookup table.
● Walk up from xx and yy to the roots of their trees.
● See if they’re the same root.
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Binary Search(less) Trees
● Challenge: We need to be able to cut a sequence 

just before an edge, and we need to be able to join 
two sequences together efficiently.

● Answer: Use splay trees! They support these 
operations in amortized time O(log n).
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Binary Search(less) Trees

aa ab bb bc cc cb bd dd db ba …
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● Answer: Use splay 
trees! They support 
these operations in 
amortized time O(log n).



  

Binary Search(less) Trees
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● Answer: Use splay 
trees! They support 
these operations in 
amortized time O(log n).
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Binary Search(less) Trees
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Binary Search(less) Trees
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● Answer: Use splay 

trees! They support 
these operations in 
amortized time O(log n).



  

● To answer
are‑connected(x, y):
● Splay xx.
● Splay yy.
● Return whether xx 

was encountered 
on the second 
splay.

● Amortized cost:
O(log n).

Euler Tour Trees
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aa bb

● To answer
are‑connected(x, y):
● Splay xx.
● Splay yy.
● Return whether xx 

was encountered 
on the second 
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● Amortized cost:
O(log n).

Euler Tour Trees
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● To answer
are‑connected(x, y):
● Splay xx.
● Splay yy.
● Return whether xx 
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on the second 
splay.

● Amortized cost:
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● To answer
are‑connected(x, y):
● Splay xx.
● Splay yy.
● Return whether xx 

was encountered 
on the second 
splay.

● Amortized cost:
O(log n).

Euler Tour Trees
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Why do we splay both
xx and yy?

Answer at
https://pollev.com/cs166spr23

https://pollev.com/cs166spr23


  

aa bb

Euler Tour Trees

dd

bd db

ba

ab

bc cb

cc

● To reroot(x):
● Splay xx.
● Disconnect xx’s left 

child tree T.
● Splay the rightmost 

node in xx’s subtree.
● Make T the right 

child of the root.
● Amortized cost: 

O(log n).
aa ab bb bc cc cb bd dd db ba



  

aa bb

Euler Tour Trees

dd
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● To reroot(x):
● Splay xx.
● Disconnect xx’s left 

child tree T.
● Splay the rightmost 

node in xx’s subtree.
● Make T the right 

child of the root.
● Amortized cost: 

O(log n).
cc cb bd dd db ba

aa ab bb bc



  

db

dd

aa bb

Euler Tour Trees

bd

ab

bc

● To reroot(x):
● Splay xx.
● Disconnect xx’s left 

child tree T.
● Splay the rightmost 

node in xx’s subtree.
● Make T the right 

child of the root.
● Amortized cost: 

O(log n). aa ab bb bc

cc cb bd dd db ba

cb

cc

ba



  

db

dd

Euler Tour Trees

bd

● To reroot(x):
● Splay xx.
● Disconnect xx’s left 

child tree T.
● Splay the rightmost 

node in xx’s subtree.
● Make T the right 

child of the root.
● Amortized cost: 

O(log n). cc cb bd dd db ba aa ab bb bc

cb

cc

ba

aa bb

ab

bc



  

Euler Tour Trees
● To link(x, y):

● reroot(x) and 
reroot(y).

● Add xy as the rightmost 
node of x’s tree.

● Splay xy.
● Make y’s right child xy.
● Add yx as the rightmost 

node of the tree.
● Splay yx.

● Amortized cost: 
O(log n).

cc cd … dc jj jk … jk

xx

yy



  

Euler Tour Trees
● To link(x, y):

● reroot(x) and 
reroot(y).

● Add xy as the rightmost 
node of x’s tree.

● Splay xy.
● Make y’s right child xy.
● Add yx as the rightmost 

node of the tree.
● Splay yx.

● Amortized cost: 
O(log n).
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Euler Tour Trees
● To link(x, y):

● reroot(x) and 
reroot(y).

● Add xy as the rightmost 
node of x’s tree.

● Splay xy.
● Make y’s right child xy.
● Add yx as the rightmost 

node of the tree.
● Splay yx.

● Amortized cost: 
O(log n).
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xy
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Euler Tour Trees
● To link(x, y):

● reroot(x) and 
reroot(y).

● Add xy as the rightmost 
node of x’s tree.

● Splay xy.
● Set yy’s tree as xy’s 

right child.
● Add yx as the rightmost 

node of the tree.
● Splay yx.

● Amortized cost: 
O(log n). xx xa … ax xy yy yf … fy

xy

xx yy



  

Euler Tour Trees
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Euler Tour Trees
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Euler Tour Trees
● To link(x, y):

● reroot(x) and 
reroot(y).
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● To cut(x, y):
● Splay xy.
● Delete xy.
● Splay yx.
● Delete yx.
● Let T₁ and T₂ be the trees 

on the left and right.
● Splay the rightmost node 

of T₁.
● Attach T₂ as the right 

child of that node.
● Amortized cost: O(log n).

Euler Tour Trees
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Euler Tour Trees
● With all things said and done, we get the 

following amortized runtimes for each 
operation:
● are-connected: O(log n)
● link: O(log n)
● cut: O(log n)

● These bounds can be made worst-case 
efficient using different types of balanced 
BSTs instead of splay trees, but splaying is 
probably the fastest way to do this.
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Extending Euler Tour Trees
● We now have a (relatively) simple and 

fast data structure for solving dynamic 
connectivity in forests.

● What else can we do with them?



  

Extending Euler Tour Trees
● Suppose we want to add an operation 

size(x) that returns the number of nodes 
in the tree containing x.

● How might we accomplish this?



  

Tree Sizes
● We can determine size(x) as follows:

● Figure out which Euler tour xx is in.
● Count how many nodes of the form zz it contains.

● A naive implementation of this algorithm might take time 
Θ(n) if all nodes are in the same tree. Can we do better?

aa ab bb bc cc cb bd dd db ba

a b
d

c

e f
ee ef ff fe



  

Tree Sizes
● We’re storing our Euler tours in balanced BSTs.
● We want to be able to answer the following question about 

a given BST:
How many nodes of the form xx are in this BST?

● This can be done in time O(log n). How?
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bb cc

cb

dd

bd db

ba

ee

ef

ff

fe
aa ab bb bc cc cb bd dd db ba

a b
d

c

e f
ee ef ff fe



  

Tree Sizes
● Idea: Augment the BSTs holding our Euler tours.
● Specifically, each node stores the number of self-loops at or 

below it in the tree.
● This information can be maintained through rotations and 

after each splay tree operation.
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bb cc
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dd

bd db

ba

ee

ef

ff

fe
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1

1 2
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Tree Sizes
● To determine 

size(x):
● Splay xx.
● Return the 

augmented 
value in the 
node for xx.

● Amortized 
cost: O(log n).
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Tree Sizes
● To determine 

size(x):
● Splay xx.
● Return the 

augmented 
value in the 
node for xx.

● Amortized 
cost: O(log n).

xx

n



  

Extending Euler Tour Trees
● Suppose that each node represents a network router.
● We want to add these two operations:

● add-packet(x, p), which attaches packet p to node x; and
● remove-packet(x), which removes and returns some packet 

reachable from x, chosen arbitrarily from all the options.
● How might we do this?



  

Packet Finding
● Given the Euler tour representation of 

our trees, this essentially boils down to 
the following:
Augment a BST containing nodes and 
edges so that we can quickly identify 

a node with a packet.
● How might we do this?



  

Packet Finding
● Augment each node 
xx with a list of the 
packets it stores.

● Augment each tree 
node with a bit 
indicating whether 
there’s a packet in 
its subtree.

● We can use this 
latter information to 
quickly find nodes 
holding packets.

da
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ad cd
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ef

bb cc de
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Packet Finding
● To find and remove a 

packet:
● Walk from the root to 

any node containing a 
packet, using the 
augmentation to guide 
the search.

● Splay that node to the 
root.

● Remove a packet from 
it, updating the root’s 
augmentation.

● Amortized cost: 
O(log n).
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Generalizing This Idea
● More generally, Euler tour trees play well 

with augmentations that care about global 
properties of individual trees.

● There’s another way to use splay trees to 
encode dynamic trees (st-trees, also called 
link/cut trees, though the later name is 
ambiguous) that works well for augmenting 
over paths in trees rather than trees as a 
whole.

● (Check out the Sleator/Tarjan paper for more 
details.)



  

Next Time
● Fully-Dynamic Connectivity

● Solving connectivity in general graphs, not 
just forests.

● “Blame It On The Little Guy”
● A surprisingly versatile algorithmic strategy.

● Holm’s Structure
● An elegant way to solve dynamic 

connectivity by harnessing augmented ETTs.
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