Euler Tour Trees

Outline for Today

- Dynamic Connectivity
- Figuring out what's connected in a graph as the edges change.
- Euler Tour Representations
- An inspired and clever way to represent trees.
- Euler Tour Trees
- Encoding Euler tours in a creative way.
- Extending ETTs
- Extending our basic structure.

The Dynamic Connectivity Problem

The Connectivity Problem

- The graph connectivity problem is the following:

Given an undirected graph G, preprocess the graph so we can answer queries of the form "are nodes u and v connected?"

- Using $\Theta(m+n)$ preprocessing, can preprocess the graph to answer queries in time $O(1)$.

Dynamic Connectivity

- The dynamic connectivity problem is the following:

Maintain an undirected graph G so that edges may be inserted an deleted and connectivity queries may be answered efficiently.

- This is a much harder problem!

Special Cases

- Last time, we covered the incremental connectivity problem in which edges can only be added and not removed.
- Today, we'll cover dynamic connectivity in forests, a special case in which the graph is known to be a forest.
- Next time, we'll cover fully-dynamic connectivity, in which there are no restrictions on which edges can be added and removed.

Dynamic Connectivity in Forests

Dynamic Connectivity in Forests

- Consider the following special-case of the dynamic connectivity problem:
Maintain an undirected forest F so that edges may be inserted an deleted and connectivity queries may be answered efficiently.
- Each deleted edge splits a tree in two; each added edge joins two trees and never closes a cycle.

Dynamic Connectivity in Forests

- Consider the following special-case of the dynamic connectivity problem:
Maintain an undirected forest F so that edges may be inserted an deleted and connectivity queries may be answered efficiently.
- Each deleted edge splits a tree in two; each added edge joins two trees and never closes a cycle.

Dynamic Connectivity in Forests

- Goal: Support these three operations:
- link(u,v): Add in edge uv. The assumption is that u and v are in separate trees.
- cut(u, v): Cut the edge $u v$. The assumption is that the edge exists in the forest.
- are-connected (u, v) : Return whether u and v are connected.
- The data structure we'll develop can perform these operations time $\mathbf{O}(\log n)$ each.

Euler Tours

Euler Tours

- An Euler tour is a path through a graph G that visits every edge exactly once.
- It mathematically formalizes the "trace this figure without picking up your pencil or redrawing any lines" puzzles.

Euler Tours

- An Euler tour is a path through a graph G that visits every edge exactly once.
- It mathematically formalizes the "trace this figure without picking up your pencil or redrawing any lines" puzzles.
- Classic Theorem 1: A graph G has a closed Euler tour if and only if G is connected and every node in G has even degree.
- Classic Theorem 2: A directed graph G has a closed Euler tour if and only if G is strongly connected and every node's indegree equals its outdegree.

Euler Tours on Trees

- Trees do not have Euler tours.

ac cd db bd dffd dc ce ec ca
- Technique: replace each undirected edge $u v$ with two directed edges $u v$ and $v u$.
- The resulting graph then has an Euler tour.

Properties of Euler Tours

- Fact: Any cyclic shift of an Euler tour of a tree is also an Euler tour.

ab ba ag gh hi id dc cd de ed di ij ji ih hg gf fg ga

Properties of Euler Tours

- Fact: Any cyclic shift of an Euler tour of a tree is also an Euler tour.

cd de ed di ij jii ih hg gf fg ga ab ba ag gh hi id dc

Rerooting a Tour

- In some cases, we will need to cyclicly shift a tour to put an edge leaving a particular node x at front.
- We will call this operation reroot(x).

ij ji ih hg gf fg ga ab ba ag gh hi id dc cd de ed di

Rerooting a Tour

- To perform reroot(x):
- Pick any edge $r x$ leaving our new start node r.
- Split the tour into A and B, where A consists of everything up to but not including $r x$ and B consists of everything from $r x$ forward.
- Concatenate $B A$.

ij ji ih hg gf fg ga ab ba ag gh hi id dc cd de ed di

Euler Tours and Dynamic Trees

- Given two trees T_{1} and T_{2}, where $u \in T_{1}$ and $v \in T_{2}$, executing link (u, v) links the trees together by adding edge $u v$.
- Watch what happens to the Euler tours:

ab bd db bc ce ec cb ba

Euler Tours and Dynamic Trees

- Given two trees T_{1} and T_{2}, where $u \in T_{1}$ and $v \in T_{2}$, executing link(u, v) links the trees together by adding edge $u v$.
- Watch what happens to the Euler tours:

ab bd db bc ce ec cb ba af fg gj jk kj ji ij jg gh hg gf fa

Euler Tours and Dynamic Trees

- Given two trees T_{1} and T_{2}, where $u \in T_{1}$ and $v \in T_{2}$, executing link (u, v) links the trees together by adding edge $u v$.
- Watch what happens to the Euler tours:

Euler Tours and Dynamic Trees

- Given two trees T_{1} and T_{2}, where $u \in T_{1}$ and $v \in T_{2}$, executing link (u, v) links the trees together by adding edge $u v$.
- Watch what happens to the Euler tours:

ab bd db bc ce ec cb ba

Euler Tours and Dynamic Trees

- Given two trees T_{1} and T_{2}, where $u \in T_{1}$ and $v \in T_{2}$, executing link (u, v) links the trees together by adding edge $u v$.
- Watch what happens to the Euler tours:

се ec cb ba ab bd db bc

Euler Tours and Dynamic Trees

- Given two trees T_{1} and T_{2}, where $u \in T_{1}$ and $v \in T_{2}$, executing link(u, v) links the trees together by adding edge $u v$.
- Watch what happens to the Euler tours:

ce ec cb ba ab bd db bc cg gh hg gf fg gj jk kj ji ij jg gc

Euler Tours and Dynamic Trees

- Given two trees T_{1} and T_{2}, where $u \in T_{1}$ and $v \in T_{2}$, executing link(u, v) links the trees together by adding edge $u v$.
- To link(u, v):
- Let E_{1} and E_{2} be Euler tours of T_{1} and T_{2}, respectively.
- reroot(u).
- reroot(v).
- Concatenate $E_{1} u v E_{2} v u$.

Euler Tours and Dynamic Trees

- Given a tree T, executing cut(u, v) cuts the edge $u v$ from the tree (assuming it exists).
- Watch what happens to the Euler tour of T :

ce ec cb ba ab bd db bc cg gh hg gf fg gj jk kj ji ij jg gc

Euler Tours and Dynamic Trees

- Given a tree T, executing cut(u, v) cuts the edge $u v$ from the tree (assuming it exists).
- Watch what happens to the Euler tour of T :

ce ec cb ba ab bd db bc cg gh hg gf fg gj jk kj ji ij jg gc

Euler Tours and Dynamic Trees

- Given a tree T, executing cut(u, v) cuts the edge $u v$ from the tree (assuming it exists).
- Watch what happens to the Euler tour of T :

ce ec ba ab bd db cg gh hg gf fg gj jk kj ji ij jg gc

Euler Tours and Dynamic Trees

- Given a tree T, executing cut(u, v) cuts the edge $u v$ from the tree (assuming it exists).
- Watch what happens to the Euler tour of T :

ba ab bd db
ce eccg gh hg gf fg gj jk kj ji ij jg gc

Euler Tours and Dynamic Trees

- Given a tree T, executing cut(u, v) cuts the edge $u v$ from the tree (assuming it exists).
- To perform cut(u,v):
- Let E be the Euler tour containing $u v$ and $v u$.
- Remove $u v$ and $v u$ from E to form E_{1}, E_{2}, and E_{3}.
- Then $E_{1} E_{3}$ and E_{2} are Euler tours of the two new trees.

Checking Connectivity

- We also need a way to answer queries of the form areconnected (u, v).
- This query focuses on nodes, but our Euler tours store edges.
- Cute Trick: Introduce a self-loop on each node that represents the node itself. Add that to each tour as a proxy for the node itself.
- Now, we can answer are-connected (x, y) by seeing if $x x$ and yy are part of the same tour.

Checking Connectivity

- This also makes it a lot easier to reroot a tour at a node x.
- We simply find $x x$, then rotate that edge to the front of the tour.

Checking Connectivity

- This also makes it a lot easier to reroot a tour at a node x.
- We simply find $x x$, then rotate that edge to the front of the tour.

Putting It All Together

- To link(x, y):
- Rotate $x x$ and $y y$ to the fronts
of their tours T_{x} and T_{y}.
- Join the tours together as
a
aa $T_{x} x y T_{y} y x$.
- To cut(x, y):
- Delete the edges $x y$ and $y x$ from the tour T to form tours T_{1}, T_{2}, T_{3}.
- Regroup the tours as $T_{1} T_{3}$ and T_{2}.
- To answer areconnected (x, y):
- Determine whether $x x$ and $y y$ are in the same tour.

Putting It All Together

- To link(x, y):
- Rotate $x x$ and $y y$ to the fronts of their tours T_{x} and T_{y}.
- Join the tours together as

aa ab bb ba
- To cut(x, y):
- Delete the edges $x y$ and $y x$ from the tour T to form tours T_{1}, T_{2}, T_{3}.
- Regroup the tours as $T_{1} T_{3}$ and T_{2}.
- To answer areconnected (x, y):
- Determine whether $x x$ and $y y$ are in the same tour.

Putting It All Together

- To link(x, y):
- Rotate $x x$ and $y y$ to the fronts of their tours T_{x} and T_{y}.
- Join the tours together as $T_{x} x y T_{y} y x$.

$a a \operatorname{ab} b b b a$
- To cut(x, y):
- Delete the edges $x y$ and $y x$ from the tour T to form tours T_{1}, T_{2}, T_{3}.
- Regroup the tours as $T_{1} T_{3}$ and T_{2}.
- To answer areconnected (x, y):
- Determine whether $x x$ and $y y$ are in the same tour.

Putting It All Together

- To link(x, y):
- Rotate $x x$ and $y y$ to the fronts of their tours T_{x} and T_{y}.
- Join the tours together as $T_{x} x y T_{y} y x$.
- To cut(x, y):
- Delete the edges $x y$ and $y x$ from the tour T to form tours T_{1}, T_{2}, T_{3}.
- Regroup the tours as $T_{1} T_{3}$ and T_{2}.
- To answer areconnected (x, y):
- Determine whether $x x$ and $y y$ are in the same tour.
aa ab bb ba ac cc ca

Putting It All Together

- To link(x, y):
- Rotate $x x$ and $y y$ to the fronts of their tours T_{x} and T_{y}.
- Join the tours together as $T_{x} x y T_{y} y x$.
- To cut(x, y):
- Delete the edges $x y$ and $y x$ from the tour T to form tours T_{1}, T_{2}, T_{3}.
- Regroup the tours as $T_{1} T_{3}$ and T_{2}.
- To answer areconnected (x, y):
- Determine whether $x x$ and $y y$ are in the same tour.
aa ab bb ba ac cc ca ad dd de ee ed da

Putting It All Together

- To link(x, y):
- Rotate $x x$ and $y y$ to the fronts of their tours T_{x} and T_{y}.
- Join the tours together as $T_{x} x y T_{y} y x$.
- To cut(x, y):
- Delete the edges $x y$ and $y x$ from the tour T to form tours T_{1}, T_{2}, T_{3}.
- Regroup the tours as $T_{1} T_{3}$ and T_{2}.
- To answer areconnected (x, y):
- Determine whether $x x$ and $y y$ are in the same tour.
aa ab bb ba ac cc ca ad dd da

Putting It All Together

- To link(x, y):
- Rotate $x x$ and $y y$ to the fronts of their tours T_{x} and T_{y}.
- Join the tours together as $T_{x} x y T_{y} y x$.
- To cut(x, y):
- Delete the edges $x y$ and $y x$ from the tour T to form tours T_{1}, T_{2}, T_{3}.
- Regroup the tours as $T_{1} T_{3}$ and T_{2}.
- To answer areconnected(x, y):
- Determine whether $x x$ and $y y$ are in the same tour.
cc ca ad dd da aa ab bb ba ac ce ee ec

Implementing This Approach

The Story So Far

- We've seen how to implement reroot, link, cut, and are-connected in terms of operations on Euler tours.
- The efficiency of those operations depend on how we choose to encode our sequences.
- Question: What data structure should we use to store those sequences?

Representation Issues

- We need a representation that lets us perform the following operations:
- Locate specific edges (reroot, link, cut, are-connected).
- Split a sequence at a point (reroot, cut).
- Join two sequences together (reroot, link).
- Remove an edge from a sequence (cut).
- Append an edge to a sequence (link).
- Check if two edges are in the same sequence (are-connected).
- What data structures might be appropriate here?

Answer at
https://pollev.com/cs166spr23

Representation Issues

- Idea 1: Use doubly-linked lists, plus an auxiliary hash table / BST to locate edges.
- Assuming we have a hash table telling us where edges are, we can split, join, and rotate tours in time O(1).
- Problem: There isn't an easy way to test whether two nodes are in the same tour. Scanning within the linked list make take time $\Theta(n)$.
- Can we do better?

Representation Issues

- In incremental connectivity, we selected a representative for each CC.
- We then had elements store parent pointers that formed a path to the representative.
- Could we do something like that here?

Representation Issues

- The idea of using trees to store representatives is a good one.
- If the trees are wide and flat, it won't take too long to find the representative.
- If we don't have to update "too many" pointers when CC's change, our operations can run quickly.
- The trees we used last time won't (immediately) work here.
- We have to store the elements of the tour in sequential order. There was no such notion of order in disjoint set forests.
- In disjoint-set forests, linked items can never be cut, allowing for some clever optimizations.
- What's another tree we can use?

Binary Search(less) Trees

- Idea 2: Store our sequences in a balanced BST, sorted by their position within the sequence.
- We'll use the shape and algorithm of a BST, but won't have the ability to conventionally search the tree top-down.
- We'll rely on the fact that we have external pointers that let us jump to items within the BST.

aa ab bb bc cc cb bd dd db ba

$e e$ ef ff fe

Binary Search(less) Trees

- We can now answer are-connected (x, y) in time O(log n).
- Find $x x$ and $y y$ using our auxiliary lookup table.
- Walk up from $x x$ and $y y$ to the roots of their trees.
- See if they're the same root.

aa ab bb bc cc cb bd dd db ba

Binary Search(less) Trees

- Challenge: We need to be able to cut a sequence just before an edge, and we need to be able to join two sequences together efficiently.
- Answer: Use splay trees! They support these operations in amortized time $O(\log n)$.

aa ab bb bc cc cb bd dd db ba

Binary Search(less) Trees

- Answer: Use splay trees! They support these operations in amortized time $\mathrm{O}(\log n)$.

Binary Search(less) Trees

- Answer: Use splay trees! They support these operations in amortized time $\mathrm{O}(\log n)$.

Binary Search(less) Trees

- Answer: Use splay trees! They support these operations in amortized time $\mathrm{O}(\log n)$.

Binary Search(less) Trees

- Answer: Use splay trees! They support these operations in amortized time O(log n).

n).ae

Binary Search(less) Trees

- Answer: Use splay trees! They support these operations in amortized time $\mathrm{O}(\log n)$.

Euler Tour Trees

- To answer are-connected (x, y) :

Euler Tour Trees

- To answer are-connected (x, y):
- Splay xx.

Euler Tour Trees

- To answer are-connected (x, y) :
- Splay $x x$.
- Splay yy.

Euler Tour Trees

- To answer are-connected(x, y):
- Splay $x x$.
- Splay yy.
- Return whether $x x$ was encountered on the second splay.
- Amortized cost: $\mathbf{O}(\log n)$.

Euler Tour Trees

- To reroot(x):

- Splay $x x$.

aa ab bb bc cc cb bd dd db ba

Euler Tour Trees

- To reroot(x):
- Splay $x x$.
- Disconnect x x's left child tree T.

Euler Tour Trees

- To reroot(x):

Euler Tour Trees

- To reroot(x):
- Splay $x x$.
- Disconnect $x x^{\prime}$ s left child tree T.
- Splay the rightmost node in x 's subtree.
- Make T the right child of the root.
- Amortized cost: $\mathbf{O}(\log n)$.

cc cb bd dd db ba aa ab bb bc

Euler Tour Trees

- To link (x, y) :

cc cd ... dc
$\boldsymbol{j} \boldsymbol{j} \boldsymbol{j} k . . . j k$

Euler Tour Trees

- To link (x, y) :
- reroot(x) and reroot(y).

Euler Tour Trees

- To link (x, y) :
- reroot(x) and reroot(y).
- Add $x y$ as the rightmost node of x 's tree.

$y y y f . . . f y$

Euler Tour Trees

- To link (x, y) :
- reroot(x) and reroot(y).
- Add $x y$ as the rightmost node of x 's tree.
- Splay xy.

Euler Tour Trees

- To link(x, y):
- reroot(x) and reroot(y).
- Add $x y$ as the rightmost node of x 's tree.
- Splay $x y$.
- Set $y y^{\prime}$ s tree as $x y^{\prime}$ s right child.

Euler Tour Trees

- To link(x, y):
- reroot(x) and reroot(y).
- Add $x y$ as the rightmost node of x 's tree.
- Splay $x y$.
- Set $y y^{\prime}$ s tree as $x y$'s right child.
- Add $y x$ as the rightmost node of the tree.

xx xa ... ax xy yy yf ... fy yx

Euler Tour Trees

- To link(x, y):
- reroot(x) and reroot(y).
- Add $x y$ as the rightmost node of χ 's tree.
- Splay xy.
- Set yy's tree as $x y$'s right child.
- Add $y x$ as the rightmost node of the tree.
- Splay yx.

Euler Tour Trees

- To link(x, y):
- reroot(x) and reroot(y).
- Add $x y$ as the rightmost node of χ 's tree.
- Splay xy.
- Set yy's tree as $x y$'s right child.
- Add $y x$ as the rightmost node of the tree.
- Splay yx.
- Amortized cost: O(log n).

Euler Tour Trees

- To cut (x, y) :

Euler Tour Trees

- To cut (x, y) :
- Splay xy.

Euler Tour Trees

- To cut (x, y) :
- Splay xy.
- Delete xy.

Euler Tour Trees

- To cut (x, y) :
- Splay xy.
- Delete xy.
- Splay yx.

Euler Tour Trees

- To cut (x, y) :
- Splay xy.
- Delete xy.
- Splay $y x$.
- Delete yx.

Euler Tour Trees

- To cut (x, y) :
- Splay xy.
- Delete xy.
- Splay yx.
- Delete yx.
- Let T_{1} and T_{2} be the trees on the left and right.

Euler Tour Trees

- To cut (x, y) :
- Splay xy.
- Delete xy.
- Splay yx.
- Delete yx.
- Let T_{1} and T_{2} be the trees on the left and right.
- Splay the rightmost node of T_{1}.

Euler Tour Trees

- To cut (x, y) :
- Splay xy.
- Delete xy.
- Splay yx.
- Delete yx.
- Let T_{1} and T_{2} be the trees on the left and right.
- Splay the rightmost node of T_{1}.

Euler Tour Trees

- To cut (x, y) :
- Splay xy.
- Delete xy.
- Splay yx.
- Delete yx.
- Let T_{1} and T_{2} be the trees on the left and right.
- Splay the rightmost node of T_{1}.
- Attach T_{2} as the right child of that node.

Euler Tour Trees

- To cut (x, y) :
- Splay xy.
- Delete xy.
- Splay yx.
- Delete yx.
- Let T_{1} and T_{2} be the trees on the left and right.
- Splay the rightmost node of T_{1}.
- Attach T_{2} as the right child of that node.
- Amortized cost: $\mathbf{O}(\log \boldsymbol{n})$.

Euler Tour Trees

- With all things said and done, we get the following amortized runtimes for each operation:
- are-connected: O(log n)
- link: O(log n)
- cut: O(log n)
- These bounds can be made worst-case efficient using different types of balanced BSTs instead of splay trees, but splaying is probably the fastest way to do this.

Extending Euler Tour Trees

Extending Euler Tour Trees

- We now have a (relatively) simple and fast data structure for solving dynamic connectivity in forests.
- What else can we do with them?

Extending Euler Tour Trees

- Suppose we want to add an operation size(x) that returns the number of nodes in the tree containing x.
- How might we accomplish this?

Tree Sizes

- We can determine size(x) as follows:
- Figure out which Euler tour $x x$ is in.
- Count how many nodes of the form $z z$ it contains.
- A naive implementation of this algorithm might take time $\Theta(n)$ if all nodes are in the same tree. Can we do better?

aa ab bb bc cc cb bd dd db ba

Tree Sizes

- We're storing our Euler tours in balanced BSTs.
- We want to be able to answer the following question about a given BST:

How many nodes of the form xx are in this BST?

- This can be done in time $\mathrm{O}(\log n)$. How?

Tree Sizes

- Idea: Augment the BSTs holding our Euler tours.
- Specifically, each node stores the number of self-loops at or below it in the tree.
- This information can be maintained through rotations and after each splay tree operation.

Tree Sizes

- To determine size(x):

Tree Sizes

- To determine size(x):
- Splay $x x$.

Tree Sizes

- To determine size(x):

Tree Sizes

- To determine size(x):
- Splay $x x$.
- Return the augmented value in the node for $x \chi$.
- Amortized cost: $\mathbf{O}(\log \boldsymbol{n})$.

Extending Euler Tour Trees

- Suppose that each node represents a network router.
- We want to add these two operations:
- add-packet(x, p), which attaches packet p to node x; and
- remove-packet(x), which removes and returns some packet reachable from x, chosen arbitrarily from all the options.
- How might we do this?

Packet Finding

- Given the Euler tour representation of our trees, this essentially boils down to the following:
Augment a BST containing nodes and edges so that we can quickly identify a node with a packet.
- How might we do this?

Packet Finding

- Augment each node $x x$ with a list of the packets it stores.
- Augment each tree node with a bit indicating whether there's a packet in its subtree.
- We can use this
latter information to quickly find nodes holding packets.

Packet Finding

- To find and remove a packet:

Packet Finding

- To find and remove a packet:
- Walk from the root to any node containing a packet, using the augmentation to guide the search.

Packet Finding

- To find and remove a packet:
- Walk from the root to any node containing a packet, using the augmentation to guide the search.
- Splay that node to the root.

Packet Finding

- To find and remove a packet:
- Walk from the root to any node containing a packet, using the augmentation to guide the search.
- Splay that node to the root.
- Remove a packet from it, updating the root's augmentation.

Packet Finding

- To find and remove a packet:
- Walk from the root to any node containing a packet, using the augmentation to guide the search.
- Splay that node to the root.
- Remove a packet from it, updating the root's augmentation.
- Amortized cost: $O(\log n)$.

Generalizing This Idea

- More generally, Euler tour trees play well with augmentations that care about global properties of individual trees.
- There's another way to use splay trees to encode dynamic trees (st-trees, also called link/cut trees, though the later name is ambiguous) that works well for augmenting over paths in trees rather than trees as a whole.
- (Check out the Sleator/Tarjan paper for more details.)

Next Time

- Fully-Dynamic Connectivity
- Solving connectivity in general graphs, not just forests.
- "Blame It On The Little Guy"
- A surprisingly versatile algorithmic strategy.
- Holm's Structure
- An elegant way to solve dynamic connectivity by harnessing augmented ETTs.

