

Euler Tour Trees

Outline for Today
● Dynamic Connectivity

● Figuring out what’s connected in a graph as the
edges change.

● Euler Tour Representations
● An inspired and clever way to represent trees.

● Euler Tour Trees
● Encoding Euler tours in a creative way.

● Extending ETTs
● Extending our basic structure.

The Dynamic Connectivity Problem

The Connectivity Problem
● The graph connectivity problem is the following:

Given an undirected graph G, preprocess the graph so
we can answer queries of the form “are nodes u and v

connected?”
● Using Θ(m + n) preprocessing, can preprocess the

graph to answer queries in time O(1).

0
0

0

0

1

3

1

2 2

3

3

3 2

2

2

2

0

Dynamic Connectivity
● The dynamic connectivity problem is the following:

Maintain an undirected graph G so that edges may be
inserted an deleted and connectivity queries may be

answered efficiently.
● This is a much harder problem!

Special Cases
● Last time, we covered the incremental

connectivity problem in which edges can only
be added and not removed.

● Today, we’ll cover dynamic connectivity in
forests, a special case in which the graph is
known to be a forest.

● Next time, we’ll cover fully-dynamic
connectivity, in which there are no restrictions
on which edges can be added and removed.

Dynamic Connectivity in Forests

Dynamic Connectivity in Forests
● Consider the following special-case of the dynamic

connectivity problem:
Maintain an undirected forest F so that edges may be
inserted an deleted and connectivity queries may be

answered efficiently.
● Each deleted edge splits a tree in two; each added

edge joins two trees and never closes a cycle.

Dynamic Connectivity in Forests
● Consider the following special-case of the dynamic

connectivity problem:
Maintain an undirected forest F so that edges may be
inserted an deleted and connectivity queries may be

answered efficiently.
● Each deleted edge splits a tree in two; each added

edge joins two trees and never closes a cycle.

Dynamic Connectivity in Forests
● Goal: Support these three operations:

● link(u, v): Add in edge uv. The assumption is
that u and v are in separate trees.

● cut(u, v): Cut the edge uv. The assumption is
that the edge exists in the forest.

● are-connected(u, v): Return whether u and
v are connected.

● The data structure we'll develop can perform
these operations time O(log n) each.

Euler Tours

Euler Tours
● An Euler tour is a path through a graph G that

visits every edge exactly once.
● It mathematically formalizes the “trace this

figure without picking up your pencil or
redrawing any lines” puzzles.

Euler Tours
● An Euler tour is a path through a graph G that

visits every edge exactly once.
● It mathematically formalizes the “trace this

figure without picking up your pencil or
redrawing any lines” puzzles.

● Classic Theorem 1: A graph G has a closed
Euler tour if and only if G is connected and
every node in G has even degree.

● Classic Theorem 2: A directed graph G has a
closed Euler tour if and only if G is strongly
connected and every node’s indegree equals its
outdegree.

Euler Tours on Trees
● Trees do not have Euler tours.

● Technique: replace each undirected edge
uv with two directed edges uv and vu.

● The resulting graph then has an Euler tour.

a b

e

c d

f
ac cd db bd df fd dc ce ec ca

Properties of Euler Tours
● Fact: Any cyclic shift of an Euler tour of

a tree is also an Euler tour.

g

a

f

b

h i j

d
c

e

ab ba ag gh hi id dc cd de ed di ij ji ih hg gf fg ga

Properties of Euler Tours
● Fact: Any cyclic shift of an Euler tour of

a tree is also an Euler tour.

g

a

f

b

h i j

d
c

e

cd de ed di ij ji ih hg gf fg ga ab ba ag gh hi id dc

Rerooting a Tour
● In some cases, we will need to cyclicly shift a tour to put an

edge leaving a particular node x at front.
● We will call this operation reroot(x).

g

a

f

b

h i j

d
c

e

ij ji ih hg gf fg ga ab ba ag gh hi id dc cd de ed di

Rerooting a Tour
● To perform reroot(x):

● Pick any edge rx leaving our new start node r.
● Split the tour into A and B, where A consists of

everything up to but not including rx and B consists of
everything from rx forward.

● Concatenate B A.

g

a

f

b

h i j

d
c

e

ij ji ih hg gf fg ga ab ba ag gh hi id dc cd de ed di

Euler Tours and Dynamic Trees
● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂,

executing link(u, v) links the trees together by
adding edge uv.

● Watch what happens to the Euler tours:
a

b
c

d

e

f
h

g j

i

k

ab bd db bc ce ec cb ba fg gj jk kj ji ij jg gh hg gf

Euler Tours and Dynamic Trees
● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂,

executing link(u, v) links the trees together by
adding edge uv.

● Watch what happens to the Euler tours:
a

b
c

d

e

f
h

g j

i

k

ab bd db bc ce ec cb ba af fg gj jk kj ji ij jg gh hg gf fa

Euler Tours and Dynamic Trees
● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂,

executing link(u, v) links the trees together by
adding edge uv.

● Watch what happens to the Euler tours:

Euler Tours and Dynamic Trees
● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂,

executing link(u, v) links the trees together by
adding edge uv.

● Watch what happens to the Euler tours:
a

b
c

d

e

f
h

g j

i

k

ab bd db bc ce ec cb ba fg gj jk kj ji ij jg gh hg gf

Euler Tours and Dynamic Trees
● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂,

executing link(u, v) links the trees together by
adding edge uv.

● Watch what happens to the Euler tours:
a

b
c

d

e

f
h

g j

i

k

ce ec cb ba ab bd db bc gh hg gf fg gj jk kj ji ij jg

Euler Tours and Dynamic Trees
● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂,

executing link(u, v) links the trees together by
adding edge uv.

● Watch what happens to the Euler tours:
a

b
c

d

e

f
h

g j

i

k

ce ec cb ba ab bd db bc cg gh hg gf fg gj jk kj ji ij jg gc

Euler Tours and Dynamic Trees
● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂,

executing link(u, v) links the trees together by
adding edge uv.

● To link(u, v):
● Let E₁ and E₂ be Euler tours of T₁ and T₂,

respectively.
● reroot(u).
● reroot(v).
● Concatenate E₁ uv E₂ vu.

Euler Tours and Dynamic Trees
● Given a tree T, executing cut(u, v) cuts the edge
uv from the tree (assuming it exists).

● Watch what happens to the Euler tour of T:

a

b
c

d

e

f
h

g j

i

k

ce ec cb ba ab bd db bc cg gh hg gf fg gj jk kj ji ij jg gc

Euler Tours and Dynamic Trees
● Given a tree T, executing cut(u, v) cuts the edge
uv from the tree (assuming it exists).

● Watch what happens to the Euler tour of T:

a

b
c

d

e

f
h

g j

i

k

ce ec cb ba ab bd db bc cg gh hg gf fg gj jk kj ji ij jg gc

Euler Tours and Dynamic Trees
● Given a tree T, executing cut(u, v) cuts the edge
uv from the tree (assuming it exists).

● Watch what happens to the Euler tour of T:

a

b
c

d

e

f
h

g j

i

k

ce ec cb ba ab bd db bc cg gh hg gf fg gj jk kj ji ij jg gc

Euler Tours and Dynamic Trees
● Given a tree T, executing cut(u, v) cuts the edge
uv from the tree (assuming it exists).

● Watch what happens to the Euler tour of T:

a

b
c

d

e

f
h

g j

i

k

ba ab bd db ce ec cg gh hg gf fg gj jk kj ji ij jg gc

Euler Tours and Dynamic Trees
● Given a tree T, executing cut(u, v) cuts the edge
uv from the tree (assuming it exists).

● To perform cut(u, v):
● Let E be the Euler tour containing uv and vu.
● Remove uv and vu from E to form E₁, E₂, and E₃.
● Then E₁E₃ and E₂ are Euler tours of the two new

trees.

Checking Connectivity
● We also need a way to answer queries of the form are-

connected(u, v).
● This query focuses on nodes, but our Euler tours store edges.
● Cute Trick: Introduce a self-loop on each node that

represents the node itself. Add that to each tour as a proxy for
the node itself.

● Now, we can answer are-connected(x, y) by seeing if xx and
yy are part of the same tour.

a
b

c

d e

f
h

g

ba aa ab bb bd dd db ce ee ec cg gg gh hh hg gf ff fg gc cc

Checking Connectivity
● This also makes it a lot easier to reroot a tour at a

node x.
● We simply find xx, then rotate that edge to the

front of the tour.

a
b

c

d e

f
h

g

ba aa ab bb bd dd db ce ee ec cg gg gh hh hg gf ff fg gc cc

Checking Connectivity
● This also makes it a lot easier to reroot a tour at a

node x.
● We simply find xx, then rotate that edge to the

front of the tour.

a
b

c

d e

f
h

g

ba aa ab bb bd dd db gg gh hh hg gf ff fg gc cc ce ee ec cg

Putting It All Together
● To link(x, y):

● Rotate xx and yy to the fronts
of their tours Tx and Ty.

● Join the tours together as
Tx xy Ty yx.

● To cut(x, y):
● Delete the edges xy and yx

from the tour T to form tours
T₁, T₂, T₃.

● Regroup the tours as T₁ T₃
and T₂.

● To answer are-
connected(x, y):
● Determine whether xx and yy

are in the same tour.

a b

c d

e f

aa bb

cc dd

ee ff

Putting It All Together
● To link(x, y):

● Rotate xx and yy to the fronts
of their tours Tx and Ty.

● Join the tours together as
Tx xy Ty yx.

● To cut(x, y):
● Delete the edges xy and yx

from the tour T to form tours
T₁, T₂, T₃.

● Regroup the tours as T₁ T₃
and T₂.

● To answer are-
connected(x, y):
● Determine whether xx and yy

are in the same tour.

a b

c d

e f

aa ab bb ba

cc dd

ee ff

Putting It All Together
● To link(x, y):

● Rotate xx and yy to the fronts
of their tours Tx and Ty.

● Join the tours together as
Tx xy Ty yx.

● To cut(x, y):
● Delete the edges xy and yx

from the tour T to form tours
T₁, T₂, T₃.

● Regroup the tours as T₁ T₃
and T₂.

● To answer are-
connected(x, y):
● Determine whether xx and yy

are in the same tour.

a b

c

f

aa ab bb ba

cc

ff

ee
 ed

 dd
 de
d

e

Putting It All Together
● To link(x, y):

● Rotate xx and yy to the fronts
of their tours Tx and Ty.

● Join the tours together as
Tx xy Ty yx.

● To cut(x, y):
● Delete the edges xy and yx

from the tour T to form tours
T₁, T₂, T₃.

● Regroup the tours as T₁ T₃
and T₂.

● To answer are-
connected(x, y):
● Determine whether xx and yy

are in the same tour.

a b

c

f

aa ab bb ba ac cc ca

ff

ee
 ed

 dd
 de
d

e

Putting It All Together
● To link(x, y):

● Rotate xx and yy to the fronts
of their tours Tx and Ty.

● Join the tours together as
Tx xy Ty yx.

● To cut(x, y):
● Delete the edges xy and yx

from the tour T to form tours
T₁, T₂, T₃.

● Regroup the tours as T₁ T₃
and T₂.

● To answer are-
connected(x, y):
● Determine whether xx and yy

are in the same tour.

a b

c

f

aa ab bb ba ac cc ca ad dd de ee ed da

ff

d

e

Putting It All Together
● To link(x, y):

● Rotate xx and yy to the fronts
of their tours Tx and Ty.

● Join the tours together as
Tx xy Ty yx.

● To cut(x, y):
● Delete the edges xy and yx

from the tour T to form tours
T₁, T₂, T₃.

● Regroup the tours as T₁ T₃
and T₂.

● To answer are-
connected(x, y):
● Determine whether xx and yy

are in the same tour.

a b

c

f

aa ab bb ba ac cc ca ad dd da

ff

d

e
ee

Putting It All Together
● To link(x, y):

● Rotate xx and yy to the fronts
of their tours Tx and Ty.

● Join the tours together as
Tx xy Ty yx.

● To cut(x, y):
● Delete the edges xy and yx

from the tour T to form tours
T₁, T₂, T₃.

● Regroup the tours as T₁ T₃
and T₂.

● To answer are-
connected(x, y):
● Determine whether xx and yy

are in the same tour.

a b

c

f

cc ca ad dd da aa ab bb ba ac ce ee ec

ff

d

e

Implementing This Approach

The Story So Far
● We’ve seen how to implement reroot,

link, cut, and are-connected in terms
of operations on Euler tours.

● The efficiency of those operations depend
on how we choose to encode our
sequences.

● Question: What data structure should
we use to store those sequences?

Representation Issues
● We need a representation that lets us perform the

following operations:
● Locate specific edges (reroot, link, cut, are-connected).
● Split a sequence at a point (reroot, cut).
● Join two sequences together (reroot, link).
● Remove an edge from a sequence (cut).
● Append an edge to a sequence (link).
● Check if two edges are in the same sequence (are-connected).

● What data structures might be appropriate here?

Answer at
https://pollev.com/cs166spr23

https://pollev.com/cs166spr23

Representation Issues
● Idea 1: Use doubly-linked lists, plus an auxiliary hash

table / BST to locate edges.
● Assuming we have a hash table telling us where edges are,

we can split, join, and rotate tours in time O(1).
● Problem: There isn’t an easy way to test whether two

nodes are in the same tour. Scanning within the linked
list make take time Θ(n).

● Can we do better?

aa aaab bb bc cc cb ddba ee

a b

d

c

e

de de

Representation Issues
● In incremental

connectivity, we selected
a representative for
each CC.

● We then had elements
store parent pointers
that formed a path to
the representative.

● Could we do something
like that here?

0 0 0

1 0 00

0 2 01

3 0 00

0 0 00

0

Representation Issues
● The idea of using trees to store

representatives is a good one.
● If the trees are wide and flat, it

won’t take too long to find the
representative.

● If we don’t have to update “too
many” pointers when CC’s change,
our operations can run quickly.

● The trees we used last time
won’t (immediately) work here.
● We have to store the elements of

the tour in sequential order. There
was no such notion of order in
disjoint set forests.

● In disjoint-set forests, linked items
can never be cut, allowing for
some clever optimizations.

● What’s another tree we can use?

0 0 0

1 0 00

0 2 01

3 0 00

0 0 00

0

Binary Search(less) Trees
● Idea 2: Store our sequences in a balanced BST, sorted by their

position within the sequence.
● We’ll use the shape and algorithm of a BST, but won’t have the

ability to conventionally search the tree top-down.
● We’ll rely on the fact that we have external pointers that let us

jump to items within the BST.

aa ab bb bc cc cb bd dd db ba
aa

ab

bc

bb cc

cb

dd

bd db

ba

a b
d

c

e f
ee ef ff fe

ee

ef

ff

fe

Binary Search(less) Trees
● We can now answer are-connected(x, y) in time

O(log n).
● Find xx and yy using our auxiliary lookup table.
● Walk up from xx and yy to the roots of their trees.
● See if they’re the same root.

aa ab bb bc cc cb bd dd db ba
aa

ab

bc

bb cc

cb

dd

bd db

ba

a b
d

c

e f
ee ef ff fe

ee

ef

ff

fe

Binary Search(less) Trees
● Challenge: We need to be able to cut a sequence

just before an edge, and we need to be able to join
two sequences together efficiently.

● Answer: Use splay trees! They support these
operations in amortized time O(log n).

aa ab bb bc cc cb bd dd db ba
aa

ab

bc

bb cc

cb

dd

bd db

ba

a b
d

c

e f
ee ef ff fe

ee

ef

ff

fe

Binary Search(less) Trees

aa ab bb bc cc cb bd dd db ba …
… ae ee ef ff fe ea

aa

ab

bc

bb cc

cb

dd

bd db

ba

a b
d

c

e f

ee

ef

ff

fe

ae

● Answer: Use splay
trees! They support
these operations in
amortized time O(log n).

Binary Search(less) Trees

aa ab bb bc cc cb bd dd db ba …
… ae ee ef ff fe ea

a b
d

c

e f

ee

ef

ff

fe

ba

dbbd

aa

ab

bc

bb cc

ae

● Answer: Use splay
trees! They support
these operations in
amortized time O(log n).

dd

cb

Binary Search(less) Trees

aa ab bb bc cc cb bd dd db ba …
… ae ee ef ff fe ea

a b
d

c

e f

ee

ef

ff

fe

ba

dbbd

aa

ab

bc

bb cc

ae

● Answer: Use splay
trees! They support
these operations in
amortized time O(log n).

dd

cb

Binary Search(less) Trees

aa ab bb bc cc cb bd dd db ba …
… ae ee ef ff fe ea

a b
d

c

e f

ee

ef

ff

fe

ba

dbbd

aa

ab

bc

bb cc

ae

● Answer: Use splay
trees! They support
these operations in
amortized time O(log n).

dd

cb

ea

fe

ff

aa ab bb bc cc cb bd dd db ba …
… ae ee ef ff fe ea

a b
d

c

e f

ee

ba

dbbd

aa

ab

bc

bb cc

dd

cb

Binary Search(less) Trees

ef

ae

ea
● Answer: Use splay

trees! They support
these operations in
amortized time O(log n).

● To answer
are‑connected(x, y):
● Splay xx.
● Splay yy.
● Return whether xx

was encountered
on the second
splay.

● Amortized cost:
O(log n).

Euler Tour Trees

aa

ab

bc

bb cc

cb

dd

bd db

ba

aa bb

● To answer
are‑connected(x, y):
● Splay xx.
● Splay yy.
● Return whether xx

was encountered
on the second
splay.

● Amortized cost:
O(log n).

Euler Tour Trees

dd

bd db

ba

ab

bc cb

cc

● To answer
are‑connected(x, y):
● Splay xx.
● Splay yy.
● Return whether xx

was encountered
on the second
splay.

● Amortized cost:
O(log n).

Euler Tour Trees

bd

aa bb

ab

bc

db

ba

cb

cc

dd

● To answer
are‑connected(x, y):
● Splay xx.
● Splay yy.
● Return whether xx

was encountered
on the second
splay.

● Amortized cost:
O(log n).

Euler Tour Trees

bd

aa bb

ab

bc

db

ba

cb

cc

dd

Why do we splay both
xx and yy?

Answer at
https://pollev.com/cs166spr23

https://pollev.com/cs166spr23

aa bb

Euler Tour Trees

dd

bd db

ba

ab

bc cb

cc

● To reroot(x):
● Splay xx.
● Disconnect xx’s left

child tree T.
● Splay the rightmost

node in xx’s subtree.
● Make T the right

child of the root.
● Amortized cost:

O(log n).
aa ab bb bc cc cb bd dd db ba

aa bb

Euler Tour Trees

dd

bd db

ba

ab

bc cb

cc

● To reroot(x):
● Splay xx.
● Disconnect xx’s left

child tree T.
● Splay the rightmost

node in xx’s subtree.
● Make T the right

child of the root.
● Amortized cost:

O(log n).
cc cb bd dd db ba

aa ab bb bc

db

dd

aa bb

Euler Tour Trees

bd

ab

bc

● To reroot(x):
● Splay xx.
● Disconnect xx’s left

child tree T.
● Splay the rightmost

node in xx’s subtree.
● Make T the right

child of the root.
● Amortized cost:

O(log n). aa ab bb bc

cc cb bd dd db ba

cb

cc

ba

db

dd

Euler Tour Trees

bd

● To reroot(x):
● Splay xx.
● Disconnect xx’s left

child tree T.
● Splay the rightmost

node in xx’s subtree.
● Make T the right

child of the root.
● Amortized cost:

O(log n). cc cb bd dd db ba aa ab bb bc

cb

cc

ba

aa bb

ab

bc

Euler Tour Trees
● To link(x, y):

● reroot(x) and
reroot(y).

● Add xy as the rightmost
node of x’s tree.

● Splay xy.
● Make y’s right child xy.
● Add yx as the rightmost

node of the tree.
● Splay yx.

● Amortized cost:
O(log n).

cc cd … dc jj jk … jk

xx

yy

Euler Tour Trees
● To link(x, y):

● reroot(x) and
reroot(y).

● Add xy as the rightmost
node of x’s tree.

● Splay xy.
● Make y’s right child xy.
● Add yx as the rightmost

node of the tree.
● Splay yx.

● Amortized cost:
O(log n).

xx xa … ax yy yf … fy

xx yy

Euler Tour Trees
● To link(x, y):

● reroot(x) and
reroot(y).

● Add xy as the rightmost
node of x’s tree.

● Splay xy.
● Make y’s right child xy.
● Add yx as the rightmost

node of the tree.
● Splay yx.

● Amortized cost:
O(log n).

xx xa … ax xy yy yf … fy
xy

xx yy

Euler Tour Trees
● To link(x, y):

● reroot(x) and
reroot(y).

● Add xy as the rightmost
node of x’s tree.

● Splay xy.
● Set yy’s tree as xy’s

right child.
● Add yx as the rightmost

node of the tree.
● Splay yx.

● Amortized cost:
O(log n). xx xa … ax xy yy yf … fy

xy

xx yy

Euler Tour Trees
● To link(x, y):

● reroot(x) and
reroot(y).

● Add xy as the rightmost
node of x’s tree.

● Splay xy.
● Set yy’s tree as xy’s

right child.
● Add yx as the rightmost

node of the tree.
● Splay yx.

● Amortized cost:
O(log n). xx xa … ax xy yy yf … fy

xy

xx yy

Euler Tour Trees
● To link(x, y):

● reroot(x) and
reroot(y).

● Add xy as the rightmost
node of x’s tree.

● Splay xy.
● Set yy’s tree as xy’s

right child.
● Add yx as the rightmost

node of the tree.
● Splay yx.

● Amortized cost:
O(log n). xx xa … ax xy yy yf … fy yx

xy

xx yy

yx

Euler Tour Trees
● To link(x, y):

● reroot(x) and
reroot(y).

● Add xy as the rightmost
node of x’s tree.

● Splay xy.
● Set yy’s tree as xy’s

right child.
● Add yx as the rightmost

node of the tree.
● Splay yx.

● Amortized cost:
O(log n). xx xa … ax xy yy yf … fy yx

xy

xx yy

yx

Euler Tour Trees
● To link(x, y):

● reroot(x) and
reroot(y).

● Add xy as the rightmost
node of x’s tree.

● Splay xy.
● Set yy’s tree as xy’s

right child.
● Add yx as the rightmost

node of the tree.
● Splay yx.

● Amortized cost:
O(log n). xx xa … ax xy yy yf … fy yx

xy

xx yy

yx

● To cut(x, y):
● Splay xy.
● Delete xy.
● Splay yx.
● Delete yx.
● Let T₁ and T₂ be the trees

on the left and right.
● Splay the rightmost node

of T₁.
● Attach T₂ as the right

child of that node.
● Amortized cost: O(log n).

Euler Tour Trees

aa ab … cx xy yy yf … fy yx xt … ba

● To cut(x, y):
● Splay xy.
● Delete xy.
● Splay yx.
● Delete yx.
● Let T₁ and T₂ be the trees

on the left and right.
● Splay the rightmost node

of T₁.
● Attach T₂ as the right

child of that node.
● Amortized cost: O(log n).

Euler Tour Trees

aa ab … cx xy yy yf … fy yx xt … ba

xy

● To cut(x, y):
● Splay xy.
● Delete xy.
● Splay yx.
● Delete yx.
● Let T₁ and T₂ be the trees

on the left and right.
● Splay the rightmost node

of T₁.
● Attach T₂ as the right

child of that node.
● Amortized cost: O(log n).

Euler Tour Trees

aa ab … cx yy yf … fy yx xt … ba

● To cut(x, y):
● Splay xy.
● Delete xy.
● Splay yx.
● Delete yx.
● Let T₁ and T₂ be the trees

on the left and right.
● Splay the rightmost node

of T₁.
● Attach T₂ as the right

child of that node.
● Amortized cost: O(log n).

Euler Tour Trees

aa ab … cx yy yf … fy yx xt … ba

yx

● To cut(x, y):
● Splay xy.
● Delete xy.
● Splay yx.
● Delete yx.
● Let T₁ and T₂ be the trees

on the left and right.
● Splay the rightmost node

of T₁.
● Attach T₂ as the right

child of that node.
● Amortized cost: O(log n).

Euler Tour Trees

aa ab … cx yy yf … fy xt … ba

● To cut(x, y):
● Splay xy.
● Delete xy.
● Splay yx.
● Delete yx.
● Let T₁ and T₂ be the trees

on the left and right.
● Splay the rightmost node

of T₁.
● Attach T₂ as the right

child of that node.
● Amortized cost: O(log n).

Euler Tour Trees

T₁

aa ab … cx yy yf … fy

T₂

xt … ba

● To cut(x, y):
● Splay xy.
● Delete xy.
● Splay yx.
● Delete yx.
● Let T₁ and T₂ be the trees

on the left and right.
● Splay the rightmost node

of T₁.
● Attach T₂ as the right

child of that node.
● Amortized cost: O(log n).

Euler Tour Trees

T₁

aa ab … cx yy yf … fy

T₂

xt … ba

● To cut(x, y):
● Splay xy.
● Delete xy.
● Splay yx.
● Delete yx.
● Let T₁ and T₂ be the trees

on the left and right.
● Splay the rightmost node

of T₁.
● Attach T₂ as the right

child of that node.
● Amortized cost: O(log n).

Euler Tour Trees

T₁

aa ab … cx yy yf … fy

T₂

xt … ba

● To cut(x, y):
● Splay xy.
● Delete xy.
● Splay yx.
● Delete yx.
● Let T₁ and T₂ be the trees

on the left and right.
● Splay the rightmost node

of T₁.
● Attach T₂ as the right

child of that node.
● Amortized cost: O(log n).

Euler Tour Trees

T₁

aa ab … cx xt … ba yy yf … fy

T₂

● To cut(x, y):
● Splay xy.
● Delete xy.
● Splay yx.
● Delete yx.
● Let T₁ and T₂ be the trees

on the left and right.
● Splay the rightmost node

of T₁.
● Attach T₂ as the right

child of that node.
● Amortized cost: O(log n).

Euler Tour Trees

T₁

aa ab … cx xt … ba yy yf … fy

T₂

Euler Tour Trees
● With all things said and done, we get the

following amortized runtimes for each
operation:
● are-connected: O(log n)
● link: O(log n)
● cut: O(log n)

● These bounds can be made worst-case
efficient using different types of balanced
BSTs instead of splay trees, but splaying is
probably the fastest way to do this.

Extending Euler Tour Trees

Extending Euler Tour Trees
● We now have a (relatively) simple and

fast data structure for solving dynamic
connectivity in forests.

● What else can we do with them?

Extending Euler Tour Trees
● Suppose we want to add an operation

size(x) that returns the number of nodes
in the tree containing x.

● How might we accomplish this?

Tree Sizes
● We can determine size(x) as follows:

● Figure out which Euler tour xx is in.
● Count how many nodes of the form zz it contains.

● A naive implementation of this algorithm might take time
Θ(n) if all nodes are in the same tree. Can we do better?

aa ab bb bc cc cb bd dd db ba

a b
d

c

e f
ee ef ff fe

Tree Sizes
● We’re storing our Euler tours in balanced BSTs.
● We want to be able to answer the following question about

a given BST:
How many nodes of the form xx are in this BST?

● This can be done in time O(log n). How?

aa

ab

bc

bb cc

cb

dd

bd db

ba

ee

ef

ff

fe
aa ab bb bc cc cb bd dd db ba

a b
d

c

e f
ee ef ff fe

Tree Sizes
● Idea: Augment the BSTs holding our Euler tours.
● Specifically, each node stores the number of self-loops at or

below it in the tree.
● This information can be maintained through rotations and

after each splay tree operation.

aa

ab

bc

bb cc

cb

dd

bd db

ba

ee

ef

ff

fe

1 1

0 0

0

1

1 2

3

4

1 1

0

2

Tree Sizes
● To determine

size(x):
● Splay xx.
● Return the

augmented
value in the
node for xx.

● Amortized
cost: O(log n).

Tree Sizes
● To determine

size(x):
● Splay xx.
● Return the

augmented
value in the
node for xx.

● Amortized
cost: O(log n).

xx

Tree Sizes
● To determine

size(x):
● Splay xx.
● Return the

augmented
value in the
node for xx.

● Amortized
cost: O(log n).

xx

n

Tree Sizes
● To determine

size(x):
● Splay xx.
● Return the

augmented
value in the
node for xx.

● Amortized
cost: O(log n).

xx

n

Extending Euler Tour Trees
● Suppose that each node represents a network router.
● We want to add these two operations:

● add-packet(x, p), which attaches packet p to node x; and
● remove-packet(x), which removes and returns some packet

reachable from x, chosen arbitrarily from all the options.
● How might we do this?

Packet Finding
● Given the Euler tour representation of

our trees, this essentially boils down to
the following:
Augment a BST containing nodes and
edges so that we can quickly identify

a node with a packet.
● How might we do this?

Packet Finding
● Augment each node
xx with a list of the
packets it stores.

● Augment each tree
node with a bit
indicating whether
there’s a packet in
its subtree.

● We can use this
latter information to
quickly find nodes
holding packets.

da

db

dd

ed

ee

aa

ad cd

dc

ef

bb cc de

ff

fe

bd

Packet Finding
● To find and remove a

packet:
● Walk from the root to

any node containing a
packet, using the
augmentation to guide
the search.

● Splay that node to the
root.

● Remove a packet from
it, updating the root’s
augmentation.

● Amortized cost:
O(log n).

Packet Finding
● To find and remove a

packet:
● Walk from the root to

any node containing a
packet, using the
augmentation to guide
the search.

● Splay that node to the
root.

● Remove a packet from
it, updating the root’s
augmentation.

● Amortized cost:
O(log n).

★

Packet Finding
● To find and remove a

packet:
● Walk from the root to

any node containing a
packet, using the
augmentation to guide
the search.

● Splay that node to the
root.

● Remove a packet from
it, updating the root’s
augmentation.

● Amortized cost:
O(log n).

★

Packet Finding
● To find and remove a

packet:
● Walk from the root to

any node containing a
packet, using the
augmentation to guide
the search.

● Splay that node to the
root.

● Remove a packet from
it, updating the root’s
augmentation.

● Amortized cost:
O(log n).

★

Packet Finding
● To find and remove a

packet:
● Walk from the root to

any node containing a
packet, using the
augmentation to guide
the search.

● Splay that node to the
root.

● Remove a packet from
it, updating the root’s
augmentation.

● Amortized cost:
O(log n).

★

Generalizing This Idea
● More generally, Euler tour trees play well

with augmentations that care about global
properties of individual trees.

● There’s another way to use splay trees to
encode dynamic trees (st-trees, also called
link/cut trees, though the later name is
ambiguous) that works well for augmenting
over paths in trees rather than trees as a
whole.

● (Check out the Sleator/Tarjan paper for more
details.)

Next Time
● Fully-Dynamic Connectivity

● Solving connectivity in general graphs, not
just forests.

● “Blame It On The Little Guy”
● A surprisingly versatile algorithmic strategy.

● Holm’s Structure
● An elegant way to solve dynamic

connectivity by harnessing augmented ETTs.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101

