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Outline for Today
● Iterated Functions

● Making an implicit idea explicit.
● Incremental Connectivity

● Finding connected nodes as a graph changes.
● Disjoint-Set Forests

● A surprisingly simple and subtle data structure.
● Analyzing Disjoint-Set Forests

● A clever, nuanced analysis with a surprising result.



  

Iterated Functions



  

Iterated Functions
● Recursive functions work by converting a 

problem of size n into one or more 
subproblems of a smaller size.

● How much smaller those subproblems 
are indicates how many levels of 
recursion we’ll have.
● n → n – 1: Θ(n) levels.
● n → ⁿ/₂: Θ(log n) levels



  

Iterated Functions
● Let f be a function. The iterated function of 

f, denoted f★ is a function defined as follows:
 
 

● Intuitively, f*(n) is (roughly) the number of 
times you need to apply f to n to reduce it to 
a sufficiently small constant.
● If f(n) ≤ 1, no steps are needed.
● Otherwise, you need one step to turn n into f(n), 

then f★(f(n)) more steps from there.

f * (n)={ 0 if f (n)≤1
1+ f * ( f (n)) otherwise



  

Iterated Functions

f(n) = n – 1

f(n) = ⁿ/₂

f(n) = n1/2

f(n) = log n

f(n) = n1/2

f*(n)

Θ( ?? )

Θ( ?? )

Θ( ?? )

Θ( ?? )

Θ(n)

Θ(log n)

Θ(log log n)

Θ(log* n)

As seen in…

Linear search

Binary search

Rabin’s closest pair
of points algorithm

Succinct binary rank



  

Iterated Logarithms
● Intuition: The log function is incredibly effective at 

shrinking down large quantities.
● Number of protons in the known universe: ≈2240.
● log(0) 2240 = 1,766,847,[… 57 digits …],292,619,776
● log(1) 2240 = 240
● log(2) 2240 ≈ 7.91
● log(3) 2240 ≈ 2.98
● log(4) 2240 ≈ 1.58
● log(5) 2240 ≈ 0.66

● So log* 2240 = 4.
● The iterated logarithm of n, denoted log* n, 

grows much more slowly than log n.



  

Intuiting log* n
● What is log* n for the value of n shown 

below?

 
 

● Answer: log* n = 16.
● The value of n is inconceivably large, and yet 

log* n is small enough to hold in your hand. 
The log* function grows very, very slowly!

n = 2222222222222222



  

Iterated Iterates
● What is the value of this expression?

● After taking one log*, we’re left with 16 = 2²².
● After taking another log*, we’re left with 2.
● After taking another log*, we’re left with 0.
● So the above expression evaluates to 2.
● How big of an input do we need to get log** n to 

be 3?

log** (222222222222222

)



  

Just how slowly can a function grow?



  

Incremental Dynamic Connectivity



  

Kruskal’s Algorithm
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● Kruskal’s Algorithm finds an MST of a graph. It 
works as follows:
● Remove all edges from the graph and sort them from 

lowest to highest.
● Repeatedly insert edges back into the graph, as long as 

their endpoints aren’t already reachable from each other.
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works as follows:
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Incremental Connectivity
● Kruskal’s algorithm needs a data structure that 

solves incremental connectivity.
● We begin with an empty graph.
● We need to be able to add new edges to the graph and 

check whether arbitrary pairs of nodes are connected.
● Question: How efficiently can we do this?
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Representatives
● Idea: Assign a 

representative to each 
CC in the graph.

● To see if two nodes are 
in the same CC, check if 
they have the same 
representative.

● To link together two 
different CCs, change 
the representative of all 
the nodes in one CC to 
be the representative of 
the other CC.
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Representatives
● Here’s how we’ll implement 

this idea.
● Each node has a parent 

pointer.
● Representatives’ parent 

pointers are null.
● Other nodes’ parent pointers 

form chains leading to the 
representative.

● Although the original graph 
is undirected, parent 
pointers are directed.

● This data structure is called 
a disjoint-set forest.



  

Representatives
● We’ll support two 

operations.
● find(x) returns x’s 

representative. It works by 
following parent pointers 
until we hit the 
representative.

● union(x, y) merges the 
clusters containing x and y. 
It works by finding x and 
y’s representatives. If they 
aren’t equal, it assigns one 
of those representatives 
the other as a parent.
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Representatives
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Representatives
● Unfortunately, this 

system can be very 
slow.

● If we aren’t careful 
with how we link 
trees, the cost of a 
find or union can 
grow to Θ(n), where 
n is the number of 
nodes in the graph.

● Can we do better?



  

Union-By-Rank
● Assign each node a 

rank, initially 0.
● When linking two 

representatives x and y:
● If one representative has 

a lower rank than the 
other, set its parent to the 
other.

● Otherwise, arbitrarily set 
x’s parent to y, then 
increment y’s rank.

● This keeps the lengths of 
parent chains low.

0 0 0

1 0 00

0 2 01

3 0 00

0 0 00

0



  

Union-By-Rank
● Lemma: A node of rank r 

has children of ranks 
0, 1, 2, …, and r – 1.

● Proof: Induction!
● A node of rank 0 has no 

children.
● A node v of rank r + 1, at 

the time its rank was 
increased, was a tree of 
rank r that got another tree 
of rank r as a child.

● By the IH v already had 
children of ranks 
0, 1, 2, …, r – 1. Now it also 
has a child of rank r. ■

0 0 0

1 0 00

0 2 01

3 0 00

0 0 00

0

Why?

Answer at
https://pollev.com/cs166spr23

https://pollev.com/cs166spr23


  

Union-By-Rank
● Lemma: A node of rank r 
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0



  

Union-By-Rank
● Our lemma tells us, 

indirectly, that the 
“simplest” tree whose 
root has rank r is a 
binomial tree of order r.

● A nice consequence of 
this is that all trees in a 
forest of n nodes have 
height O(log n), so each 
union and find takes 
time O(log n).

● Can we do better?

0 0 0

1 0 00

0 2 01

3 0 00

0 0 00

0



  

An Observation
● Suppose we call 

find(x) multiple 
times.

● Each time we do 
that, we may have to 
traverse a chain of 
O(log n) nodes to find 
its representative.

● Do we really need to 
scan things so many 
times?

0 0 0

1 0 00

0 2 01

3 0 00

0 0 00

0



  

Path Compression
● Path compression is 

an optimization on the 
find operation.

● After figuring out x’s 
representative, change 
the parent pointers of 
all of x’s ancestors to 
point directly to x’s 
representative.

● This makes it a lot 
faster to find 
representatives across 
multiple operations.

0

1

2

3
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Path Compression
● The resulting code for our data structure is surprisingly simple:

Node* find(Node* source) {
    if (source->parent == nullptr) return source;

    /* Path compression: update parent before returning. */
    source->parent = find(source parent);→
    return source->parent;
}

void doUnion(Node* one, Node* two) {
    /* Find the representatives. */
    one = find(one);
    two = find(two);
    if (one->rank > two->rank) swap(one, two);

    /* Link and update ranks if needed. */
    one->parent = two;
    if (one->rank == two->rank) two->rank++;
}

● Now, all we have to do is analyze the runtime.



  

Analyzing Disjoint-Set Forests



  

History
● The analysis of union-by-rank plus path compression 

has a long history.
● For a while, its actual efficiency was an open problem!
● In 1979 Tarjan proved a tight upper bound on the 

runtime using a clever and nuanced analysis, and 
provided a matching lower bound.

● In 2003 Seidel and Sharir arrived at the same upper 
bound using a totally different technique.

● Both analyses require a careful analysis of the costs of 
the operations and result in a very surprising result.

● The analysis I’ll share comes from Seidel and Sharir 
and is based on this set of lecture slides from an 
algorithms course at Harvard.

https://www.cs.princeton.edu/courses/archive/spr09/cos423/Lectures/path-compression.pdf


  

Our Analysis
● We’re going to analyze a 

slightly simplified version of 
this problem.

● We’ll be given a forest  ℱ
formed purely from union-by-
rank, then do a series of path 
compressions on it.
● These don’t have to go all the 

way from a node to its 
representative.

● Our goal will be to bound the 
total amount of work done.

● Great Exercise: Show that 
this analysis carries over to 
the case of interleaved 
unions and finds.

0 1 0

1 0 00

0 2 01

3 0 10

0 0 20

0



  

Our Analysis
● Some notation we’ll use throughout this analysis:

● Let n be the number of nodes in the disjoint-set forest.
● Let m be the number of operations performed.
● Let r be the maximum rank of any node in the forest. (We know 

r = O(log n), but could be lower.)
● In practice, we’ll have m = Ω(n), and we’ll assume this in our 

analysis.

1

000 0

1

0

2

0

3

2

1

00

1

0 0 000



  

Our Analysis
● We will specifically focus on the number of times a node’s 

parent changes.
● Why?

● Each operation does O(1) work, plus work proportional to the 
number of parents changed.

● The total work done is then Θ(m + #changes).

1

000 0

1

0

2

0

3

2

1

00

1

0 0 000



  

A Starting Analysis
● Lemma: The number of pointer changes is at most m + n · r / 2.
● Proof Sketch: Consider nodes of zero and nonzero rank.

● Nodes of rank 0: A node of rank 0 only has its parent change if it is the start 
node of a compress. There are m compresses, so these pointers change at most 
m times.

● Nodes of nonzero rank: When a parent changes, the new parent’s rank is 
bigger than the old parent’s rank, so a node’s rank can increase at most r times. 
There are at most n / 2 nodes of nonzero rank. This gives a bound of n · r / 2.

1

000 0

1

0

2

0

3

2

1

00

1

0 0 000



  

A Starting Analysis
● Our starting analysis is weak.

● Compressing a path impacts 
other nodes not on that path.

● Nodes with high starting rank 
have can’t have their parents 
change too many times.

● These effects work differently 
in different parts of the tree.
● The first effect is more 

pronounced at the bottom of the 
forest.

● The second effect is more 
pronounced at the top.

● Idea: Split the forest into a 
“top forest” and “bottom 
forest,” and analyze the costs 
in each forest separately.



  

Forest Slicing
● As before, let r be the 

maximum rank in .ℱ
● Suppose that, somehow, 

we pick a rank s(r) as a 
separating rank.

● Then, split our forest  ℱ
into two forests:
● ₋ ℱ consists of all nodes of 

rank s(r) or below.
● ₊ ℱ consists of all nodes of 

rank above s(r).
● Goal: Split the cost of 

compressions across ₋ ℱ
and ₊.ℱ

rank r

rank s(r)                  

₊ℱ

₋ℱ



  

Some Terminology
● Let C(m, n, r) be the maximum number of pointer 

changes that can be made if there are m 
compresses, n nodes, and the maximum rank is r.

● Using this notation, our earlier result is that
C(m, n, r) ≤ m + n · r / 2.

● Question: What is C(m, n, 0)? What’s C(m, n, 1)?
● Goal: Split  into ₊ and ₋, find a way to write a ℱ ℱ ℱ

recurrence relation for C(m, n, r), then solve the 
recurrence to get a tight bound on the cost of any 
series of unions and finds.



  

Forest Slicing
● Focus on any one compression 

from x to y. Let’s see how it 
interacts with ₋ and ₊.ℱ ℱ

● Case 1: x and y are both in ₊.ℱ
● We can recursively handle this 

compression when bounding the 
work done purely in ₊.ℱ

x

y
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Forest Slicing
● Case 2: x and y are both 

in ₋.ℱ
● We can recursively 

handle this compression 
when bounding the work 
done purely in ₋.ℱ y

x
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● Case 2: x and y are both 
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● We can recursively 

handle this compression 
when bounding the work 
done purely in ₋.ℱ y

x



  

Forest Slicing

x

y
● Case 3: x is in ₋ and ℱ y is 

in ₊.ℱ
● We compress from b to y, 

purely in ₊.ℱ
● a, whose parent was already 

in ₊, gets a new parent in ℱ
₊.ℱ

● Every node from x 
(inclusive) and a (exclusive), 
whose parents were in ₋, ℱ
now has a parent in ₊.ℱ



  

Forest Slicing

b

a

x

y
● Case 3: x is in ₋ and ℱ y is 
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a x

b

y



  

Forest Slicing
Case 3: x is in ₋ and ℱ y is 
in ₊.ℱ

● We compress from b to y, 
purely in ₊.ℱ

● a, whose parent was already 
in ₊, gets a new parent in ℱ

₊.ℱ
● Every node from x 

(inclusive) and a (exclusive), 
whose parents were in ₋, ℱ
now has a parent in ₊.ℱ

Recursively
handle this when
processing ₊.ℱ

Happens once
per compression
from ₋ to ₊.ℱ ℱ

Happens once
per non-root node

in ₋, countingℱ
across all

compressions



  

Forest Slicing
● Claim: The cost of 

compressions crossing from 
₋ to ₊ can be bounded byℱ ℱ

● the cost of some compressions 
done purely in ₊ (the top parts ℱ
of the compressions),

● the total number of compressions 
from ₋ to ₊ (changing the ℱ ℱ
parents of nodes in ₋ whose ℱ
parents are already in ₊), andℱ

● the number of nodes in ₋ whose ℱ
parents are in ₋ (each of which ℱ
may get a parent in ₊ for the ℱ
first time at most once).

Recursively
handle this when
processing ₊.ℱ

Happens once
per compression
from ₋ to ₊.ℱ ℱ

Happens once
per non-root node

in ₋, countingℱ
across all

compressions



  

Putting It All Together
● Claim: The cost of all the compressions 

performed in  is bounded by the following:ℱ
● The cost of some compressions purely in ₋.ℱ
● The cost of some compressions purely in ₊.ℱ

– This includes compressions originally in ₊, plus the ℱ
“tops” of compressions from ₋ to ₊.ℱ ℱ

● The number of compresses from ₋ to ₊.ℱ ℱ
– This accounts for changing the parents of nodes in 

₋ whose parents are already in ₊.ℱ ℱ
● The number of nodes in ₋ with parents in ₋.ℱ ℱ

– Each of these nodes may get a parent in ₊ for the ℱ
first time once.



  

C(m, n, r) ≤ …

Cost of compressions
purely in ₋.ℱ

The number of
compresses from

₋ ℱ to ₊ℱ

Number of nodes in
₋ ℱ with parents in ₋.ℱ

Cost of compressions
purely in ₊.ℱ C( ?? , n₊, r)

                                       rank s(r)

                                       rank r



  

C(m, n, r) ≤ …

Cost of compressions
purely in ₋.ℱ

The number of
compresses from

₋ ℱ to ₊ℱ

Number of nodes in
₋ ℱ with parents in ₋.ℱ

Cost of compressions
purely in ₊.ℱ C(m₊, n₊, r)

The “tops” of all compressions
running from ₋ to ₊ areℱ ℱ

handled in this bunch.

Let m₊ be the number of
compressions charged to ₊,ℱ
including both compressions

purely within ₊ and the “tops”ℱ
of compressions crossing

from ₋ to ₊.ℱ ℱ



  

C(m, n, r) ≤ …

The number of
compresses from

₋ ℱ to ₊ℱ

Number of nodes in
₋ ℱ with parents in ₋.ℱ

Cost of compressions
purely in ₋.ℱ C(m – m₊, n , s(r))

Cost of compressions
purely in ₊.ℱ C(m₊, n₊, r)

                                   rank s(r)
  

                                 rank r
 



  

C(m, n, r) ≤ …

Number of nodes in
₋ ℱ with parents in ₋.ℱ

Cost of compressions
purely in ₋.ℱ C(m – m₊, n , s(r))

Cost of compressions
purely in ₊.ℱ C(m₊, n₊, r)

The number of
compresses from

₋ ℱ to ₊ℱ
m₊

(Since this includes
all compresses
from ₋ to ₊).ℱ ℱ



  

Number of nodes in
₋ ℱ with parents in ₋.ℱ n – n₊ · (s(r) + 2)

                                                    rank s(r)

Every node in ₊ has rankℱ
s(r) + 1 or greater.

 

Each rank-k node has children
of ranks 0, 1, 2, …, k – 1.

 

So every node in ₊ hasℱ
at least s(r) + 1 children, and

they’re all in in ₋.ℱ
 

There are n total nodes, and
n₊ of them are in ₊.ℱ

 

Nodes in ₋: ℱ n – n₊.
 

Nodes in ₋ whose parentsℱ
are in ₊: ℱ n₊ · (s(r) + 1))

 

Nodes in ₋ with parents in ₋:ℱ ℱ
n – n₊ · (s(r) + 2).



  

C(m, n, r) ≤ …

Cost of compressions
purely in ₋.ℱ C(m – m₊, n , s(r))

Cost of compressions
purely in ₊.ℱ C(m₊, n₊, r)

The number of
compresses from

₋ ℱ to ₊ℱ
m₊

Number of nodes in
₋ ℱ with parents in ₋.ℱ n – n₊ · s(r)



  

The Recurrence
● Putting it all together:

    C(m, n, r)  ≤ C(m – m₊, n, s(r)) +
        C(m₊, n₊, r) +
        m₊ + n – n₊ · s(r).

● Now, “all” we need to do is solve this.
● Don’t panic! This is indeed tricky, but it’s 

not as bad as it looks.



  

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
      C(m₊, n₊, r) +
      m₊ + n – n₊ · s(r).
 

● Recall: C(m, n, r) ≤ m + n · r / 2.
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The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
      2m₊ + n +
      n₊ · (r / 2 – s(r)).
 

● Recall: C(m, n, r) ≤ m + n · r / 2.



  

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
      2m₊ + n +
      n₊ · (r / 2 – s(r)).
 

● Clever Decision: Set s(r) = r / 2.



  

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, r / 2) +
      2m₊ + n.

 
● Clever Decision: Set s(r) = r / 2.



  
2(         ) + ______

C(m, n, r) ≤ C(m – m₊, n, r / 2) + 2m₊ + n

Starting with m… …take some
of m away…

… and add it
into the total.

C(         , n, r) 2(         ) + n≤

2(         ) + n

2(         ) + n

…

2(         ) + n

≤



  

How many layers
can this recursion

have?

2m + n lg r

C(m, n, r) ≤ C(m – m₊, n, r / 2) + 2m₊ + n

2(         ) + n

2(         ) + n

…

2(         ) + n

≤

C(m, n, r) 2(         ) + n≤



  

Where We Are
● We’ve just proven that

C(m, n, r) ≤ 2m + n lg r.
● The maximum rank in an n-node forest is 

r = O(lg n).
● This gives a bound of O(m + n log log n) for any 

series of operations.
● That’s a lot better than the O(m log n) we started 

with – and it’s just due to better accounting, 
rather than a fundamental reenvisioning of the 
data structure.

● Is this a tight bound, or can we do better?
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The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
      3m₊ + n +
      n₊ · (lg r – s(r)).
 

● Recall: C(m, n, r) ≤ m + n · r / 2.
● Recall: C(m, n, r) ≤ 2m + n lg r.



  

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
      3m₊ + n +
      n₊ · (lg r – s(r)).
 

● Clever Decision: Set s(r) = lg r.



  

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, lg r) +
      3m₊ + n

 
● Clever Decision: Set s(r) = lg r.



  

How many layers
can this recursion

have?

3m + n lg* r

C(m, n, r) ≤ C(m – m₊, n, lg r) + 3m₊ + n

3(         ) + n

3(         ) + n

…

3(         ) + n

≤

C(m, n, r) 3(         ) + n≤



  

Where We Are
● We’ve just proven that

C(m, n, r) ≤ 3m + n lg* r.
● Since r = O(log n) this gives a bound of 

O(m + n log* n) for any series of 
operations.

● That’s a substantial improvement over 
our previous bound – and all we did was 
feed the analysis back into itself!

● Can we do better?



  

(k+1)m + ___

Notice Something?

m + n · r / 2 2m + n lg r

2m + n lg r 3m + n lg* r

km + n f(r)

If we start with this bound
on C(m, n, r)…

… then we get this stronger
bound on C(m, n, r):

(k+1)m + n f*(r)



  

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
      C(m₊, n₊, r) +
      m₊ + n – n₊ · s(r).
 

● Assume: C(m, n, r) ≤ km + n · f(r)



  

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
      (k+1)m₊ + n +
      n₊ · (f(r) – s(r)).
 

● Assume: C(m, n, r) ≤ km + n · f(r)



  

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
      (k+1)m₊ + n +
      n₊ · (f(r) – s(r)).
 

● Clever Idea: Set s(r) = f(r).



  

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, f(r)) +
      (k+1)m₊ + n.
 

● Clever Idea: Set s(r) = f(r).



  

How many layers
can this recursion

have?

     C(m, n, r) ≤ C(m – m₊, n, f(r)) + (k+1)m₊ + n

(k+1)m + nf*(r)

C(m, n, r) (k+1)(     ) + n≤

(k+1)(     ) + n

(k+1)(     ) + n

…

(k+1)(     ) + n

≤



  

Interpreting This Result
● We now have a family of bounds on the cost 

of operations on a disjoint-set forest:
m + n · (ʳ/₂)
2m + n lg r
3m + n lg* r
4m + n lg** r
5m + n lg*** r

…
● Which of these is the “best” bound?



  

Interpreting This Result
● For now, focus on these bounds:

2m + n lg r
3m + n lg* r
4m + n lg** r
5m + n lg*** r
6m + n lg**** r

● More generally, we have bounds of the form
(k + 2)m + n lg*(k) r.

● There’s some point at which making k larger makes that 
first term larger without decreasing the second term.

● What is it?



  

The Ackermann Inverse
● The Ackermann inverse function, denoted α(z), 

is defined as follows:
α(z) = min{ k ∈  | log*ℕ (k) z ≤ 1 }

● Intuitively, this counts how many times you have 
to put stars on log***...*** z before it drops to 1.

● This function grows more slowly than anything in 
the iterated logarithm family – and that should 
give you a sense of just how slowly this function 
grows!

● Worthwhile Activity: find the smallest natural 
numbers where α produces 0, 1, 2, 3, 4, 5, 6, 7, 8, 
9, and 10.



  

The Ackermann Inverse
● We have a bound of

(k + 2)m + n log*(k) r.
● Picking k = α(r) = α(log n), and the bound on 

the cost of any series of m operations is.
O(mα(log n) + n).

● This is essentially “O(m + n),” because that α 
term is a constant for any input that could 
ever be fed in with the resources we know 
about in the universe. But technically 
speaking it’s superlinear. 😃



  

A Tighter Analysis
● By being a bit more clever with the analysis, we 

can tighten the bound as follows.
● Define α(m, n) as

α(m, n) = min{ k ∈  | log*ℕ (k) (m / n) ≤ log n }.
● Then the cost of m operations on an n-element 

forest can be shown to be
O(mα(m, n)), a slight improvement over what we 
just did here.



  

Major Ideas for Today
● Iterated functions generalize the idea of “how 

many times can you divide by two before you run 
out of things?”

● Iterated logarithms are a family of very slowly-
growing functions, each of which grows more 
slowly than the previous one.

● The Ackermann inverse function grows slower 
than any number of iterated logarithms and 
essentially count what level of iteration is 
needed to clear a number.



  

Next Time
● Euler Tour Trees

● Fully dynamic connectivity in forests.
● Augmented Dynamic Trees

● Figuring out information about connected 
components in sublinear time.
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