

Disjoint-Set Forests

Outline for Today
● Iterated Functions

● Making an implicit idea explicit.
● Incremental Connectivity

● Finding connected nodes as a graph changes.
● Disjoint-Set Forests

● A surprisingly simple and subtle data structure.
● Analyzing Disjoint-Set Forests

● A clever, nuanced analysis with a surprising result.

Iterated Functions

Iterated Functions
● Recursive functions work by converting a

problem of size n into one or more
subproblems of a smaller size.

● How much smaller those subproblems
are indicates how many levels of
recursion we’ll have.
● n → n – 1: Θ(n) levels.
● n → ⁿ/₂: Θ(log n) levels

Iterated Functions
● Let f be a function. The iterated function of

f, denoted f★ is a function defined as follows:

● Intuitively, f*(n) is (roughly) the number of
times you need to apply f to n to reduce it to
a sufficiently small constant.
● If f(n) ≤ 1, no steps are needed.
● Otherwise, you need one step to turn n into f(n),

then f★(f(n)) more steps from there.

f * (n)={ 0 if f (n)≤1
1+ f * (f (n)) otherwise

Iterated Functions

f(n) = n – 1

f(n) = ⁿ/₂

f(n) = n1/2

f(n) = log n

f(n) = n1/2

f*(n)

Θ(??)

Θ(??)

Θ(??)

Θ(??)

Θ(n)

Θ(log n)

Θ(log log n)

Θ(log* n)

As seen in…

Linear search

Binary search

Rabin’s closest pair
of points algorithm

Succinct binary rank

Iterated Logarithms
● Intuition: The log function is incredibly effective at

shrinking down large quantities.
● Number of protons in the known universe: ≈2240.
● log(0) 2240 = 1,766,847,[… 57 digits …],292,619,776
● log(1) 2240 = 240
● log(2) 2240 ≈ 7.91
● log(3) 2240 ≈ 2.98
● log(4) 2240 ≈ 1.58
● log(5) 2240 ≈ 0.66

● So log* 2240 = 4.
● The iterated logarithm of n, denoted log* n,

grows much more slowly than log n.

Intuiting log* n
● What is log* n for the value of n shown

below?

● Answer: log* n = 16.
● The value of n is inconceivably large, and yet

log* n is small enough to hold in your hand.
The log* function grows very, very slowly!

n = 2222222222222222

Iterated Iterates
● What is the value of this expression?

● After taking one log*, we’re left with 16 = 2²².
● After taking another log*, we’re left with 2.
● After taking another log*, we’re left with 0.
● So the above expression evaluates to 2.
● How big of an input do we need to get log** n to

be 3?

log** (222222222222222

)

Just how slowly can a function grow?

Incremental Dynamic Connectivity

Kruskal’s Algorithm

7

 43

6

 1

 5

10

2

4

 9

8

 9

● Kruskal’s Algorithm finds an MST of a graph. It
works as follows:
● Remove all edges from the graph and sort them from

lowest to highest.
● Repeatedly insert edges back into the graph, as long as

their endpoints aren’t already reachable from each other.

Kruskal’s Algorithm

 43

 1

 5 2

4

8

 9

● Kruskal’s Algorithm finds an MST of a graph. It
works as follows:
● Remove all edges from the graph and sort them from

lowest to highest.
● Repeatedly insert edges back into the graph, as long as

their endpoints aren’t already reachable from each other.

Incremental Connectivity
● Kruskal’s algorithm needs a data structure that

solves incremental connectivity.
● We begin with an empty graph.
● We need to be able to add new edges to the graph and

check whether arbitrary pairs of nodes are connected.
● Question: How efficiently can we do this?

 43

 1

 5 2

4

8

 9

Representatives
● Idea: Assign a

representative to each
CC in the graph.

● To see if two nodes are
in the same CC, check if
they have the same
representative.

● To link together two
different CCs, change
the representative of all
the nodes in one CC to
be the representative of
the other CC.

Representatives
● Idea: Assign a

representative to each
CC in the graph.

● To see if two nodes are
in the same CC, check if
they have the same
representative.

● To link together two
different CCs, change
the representative of all
the nodes in one CC to
be the representative of
the other CC.

Representatives
● Here’s how we’ll implement

this idea.
● Each node has a parent

pointer.
● Representatives’ parent

pointers are null.
● Other nodes’ parent pointers

form chains leading to the
representative.

● Although the original graph
is undirected, parent
pointers are directed.

● This data structure is called
a disjoint-set forest.

Representatives
● We’ll support two

operations.
● find(x) returns x’s

representative. It works by
following parent pointers
until we hit the
representative.

● union(x, y) merges the
clusters containing x and y.
It works by finding x and
y’s representatives. If they
aren’t equal, it assigns one
of those representatives
the other as a parent.

Representatives
● We’ll support two

operations.
● find(x) returns x’s

representative. It works by
following parent pointers
until we hit the
representative.

● union(x, y) merges the
clusters containing x and y.
It works by finding x and
y’s representatives. If they
aren’t equal, it assigns one
of those representatives
the other as a parent.

Representatives
● We’ll support two

operations.
● find(x) returns x’s

representative. It works by
following parent pointers
until we hit the
representative.

● union(x, y) merges the
clusters containing x and y.
It works by finding x and
y’s representatives. If they
aren’t equal, it assigns one
of those representatives
the other as a parent.

Representatives
● We’ll support two

operations.
● find(x) returns x’s

representative. It works by
following parent pointers
until we hit the
representative.

● union(x, y) merges the
clusters containing x and y.
It works by finding x and
y’s representatives. If they
aren’t equal, it assigns one
of those representatives
the other as a parent.

Representatives
● We’ll support two

operations.
● find(x) returns x’s

representative. It works by
following parent pointers
until we hit the
representative.

● union(x, y) merges the
clusters containing x and y.
It works by finding x and
y’s representatives. If they
aren’t equal, it assigns one
of those representatives
the other as a parent.

Representatives
● Unfortunately, this

system can be very
slow.

● If we aren’t careful
with how we link
trees, the cost of a
find or union can
grow to Θ(n), where
n is the number of
nodes in the graph.

● Can we do better?

Union-By-Rank
● Assign each node a

rank, initially 0.
● When linking two

representatives x and y:
● If one representative has

a lower rank than the
other, set its parent to the
other.

● Otherwise, arbitrarily set
x’s parent to y, then
increment y’s rank.

● This keeps the lengths of
parent chains low.

0 0 0

1 0 00

0 2 01

3 0 00

0 0 00

0

Union-By-Rank
● Lemma: A node of rank r

has children of ranks
0, 1, 2, …, and r – 1.

● Proof: Induction!
● A node of rank 0 has no

children.
● A node v of rank r + 1, at

the time its rank was
increased, was a tree of
rank r that got another tree
of rank r as a child.

● By the IH v already had
children of ranks
0, 1, 2, …, r – 1. Now it also
has a child of rank r. ■

0 0 0

1 0 00

0 2 01

3 0 00

0 0 00

0

Why?

Answer at
https://pollev.com/cs166spr23

https://pollev.com/cs166spr23

Union-By-Rank
● Lemma: A node of rank r

has children of ranks
0, 1, 2, …, and r – 1.

● Proof: Induction!
● A node of rank 0 has no

children.
● A node v of rank r + 1, at

the time its rank was
increased, was a tree of
rank r that got another tree
of rank r as a child.

● By the IH v already had
children of ranks
0, 1, 2, …, r – 1. Now it also
has a child of rank r. ■

0 0 0

1 0 00

0 2 01

3 0 00

0 0 00

0

Union-By-Rank
● Our lemma tells us,

indirectly, that the
“simplest” tree whose
root has rank r is a
binomial tree of order r.

● A nice consequence of
this is that all trees in a
forest of n nodes have
height O(log n), so each
union and find takes
time O(log n).

● Can we do better?

0 0 0

1 0 00

0 2 01

3 0 00

0 0 00

0

An Observation
● Suppose we call

find(x) multiple
times.

● Each time we do
that, we may have to
traverse a chain of
O(log n) nodes to find
its representative.

● Do we really need to
scan things so many
times?

0 0 0

1 0 00

0 2 01

3 0 00

0 0 00

0

Path Compression
● Path compression is

an optimization on the
find operation.

● After figuring out x’s
representative, change
the parent pointers of
all of x’s ancestors to
point directly to x’s
representative.

● This makes it a lot
faster to find
representatives across
multiple operations.

0

1

2

3

Path Compression
● Path compression is

an optimization on the
find operation.

● After figuring out x’s
representative, change
the parent pointers of
all of x’s ancestors to
point directly to x’s
representative.

● This makes it a lot
faster to find
representatives across
multiple operations.

0

1

2

3

Path Compression
● The resulting code for our data structure is surprisingly simple:

Node* find(Node* source) {
 if (source->parent == nullptr) return source;

 /* Path compression: update parent before returning. */
 source->parent = find(source parent);→
 return source->parent;
}

void doUnion(Node* one, Node* two) {
 /* Find the representatives. */
 one = find(one);
 two = find(two);
 if (one->rank > two->rank) swap(one, two);

 /* Link and update ranks if needed. */
 one->parent = two;
 if (one->rank == two->rank) two->rank++;
}

● Now, all we have to do is analyze the runtime.

Analyzing Disjoint-Set Forests

History
● The analysis of union-by-rank plus path compression

has a long history.
● For a while, its actual efficiency was an open problem!
● In 1979 Tarjan proved a tight upper bound on the

runtime using a clever and nuanced analysis, and
provided a matching lower bound.

● In 2003 Seidel and Sharir arrived at the same upper
bound using a totally different technique.

● Both analyses require a careful analysis of the costs of
the operations and result in a very surprising result.

● The analysis I’ll share comes from Seidel and Sharir
and is based on this set of lecture slides from an
algorithms course at Harvard.

https://www.cs.princeton.edu/courses/archive/spr09/cos423/Lectures/path-compression.pdf

Our Analysis
● We’re going to analyze a

slightly simplified version of
this problem.

● We’ll be given a forest ℱ
formed purely from union-by-
rank, then do a series of path
compressions on it.
● These don’t have to go all the

way from a node to its
representative.

● Our goal will be to bound the
total amount of work done.

● Great Exercise: Show that
this analysis carries over to
the case of interleaved
unions and finds.

0 1 0

1 0 00

0 2 01

3 0 10

0 0 20

0

Our Analysis
● Some notation we’ll use throughout this analysis:

● Let n be the number of nodes in the disjoint-set forest.
● Let m be the number of operations performed.
● Let r be the maximum rank of any node in the forest. (We know

r = O(log n), but could be lower.)
● In practice, we’ll have m = Ω(n), and we’ll assume this in our

analysis.

1

000 0

1

0

2

0

3

2

1

00

1

0 0 000

Our Analysis
● We will specifically focus on the number of times a node’s

parent changes.
● Why?

● Each operation does O(1) work, plus work proportional to the
number of parents changed.

● The total work done is then Θ(m + #changes).

1

000 0

1

0

2

0

3

2

1

00

1

0 0 000

A Starting Analysis
● Lemma: The number of pointer changes is at most m + n · r / 2.
● Proof Sketch: Consider nodes of zero and nonzero rank.

● Nodes of rank 0: A node of rank 0 only has its parent change if it is the start
node of a compress. There are m compresses, so these pointers change at most
m times.

● Nodes of nonzero rank: When a parent changes, the new parent’s rank is
bigger than the old parent’s rank, so a node’s rank can increase at most r times.
There are at most n / 2 nodes of nonzero rank. This gives a bound of n · r / 2.

1

000 0

1

0

2

0

3

2

1

00

1

0 0 000

A Starting Analysis
● Our starting analysis is weak.

● Compressing a path impacts
other nodes not on that path.

● Nodes with high starting rank
have can’t have their parents
change too many times.

● These effects work differently
in different parts of the tree.
● The first effect is more

pronounced at the bottom of the
forest.

● The second effect is more
pronounced at the top.

● Idea: Split the forest into a
“top forest” and “bottom
forest,” and analyze the costs
in each forest separately.

Forest Slicing
● As before, let r be the

maximum rank in .ℱ
● Suppose that, somehow,

we pick a rank s(r) as a
separating rank.

● Then, split our forest ℱ
into two forests:
● ₋ ℱ consists of all nodes of

rank s(r) or below.
● ₊ ℱ consists of all nodes of

rank above s(r).
● Goal: Split the cost of

compressions across ₋ ℱ
and ₊.ℱ

rank r

rank s(r)

₊ℱ

₋ℱ

Some Terminology
● Let C(m, n, r) be the maximum number of pointer

changes that can be made if there are m
compresses, n nodes, and the maximum rank is r.

● Using this notation, our earlier result is that
C(m, n, r) ≤ m + n · r / 2.

● Question: What is C(m, n, 0)? What’s C(m, n, 1)?
● Goal: Split into ₊ and ₋, find a way to write a ℱ ℱ ℱ

recurrence relation for C(m, n, r), then solve the
recurrence to get a tight bound on the cost of any
series of unions and finds.

Forest Slicing
● Focus on any one compression

from x to y. Let’s see how it
interacts with ₋ and ₊.ℱ ℱ

● Case 1: x and y are both in ₊.ℱ
● We can recursively handle this

compression when bounding the
work done purely in ₊.ℱ

x

y

Forest Slicing
● Focus on any one compression

from x to y. Let’s see how it
interacts with ₋ and ₊.ℱ ℱ

● Case 1: x and y are both in ₊.ℱ
● We can recursively handle this

compression when bounding the
work done purely in ₊.ℱ

x

y

Forest Slicing
● Case 2: x and y are both

in ₋.ℱ
● We can recursively

handle this compression
when bounding the work
done purely in ₋.ℱ y

x

Forest Slicing
● Case 2: x and y are both

in ₋.ℱ
● We can recursively

handle this compression
when bounding the work
done purely in ₋.ℱ y

x

Forest Slicing

x

y
● Case 3: x is in ₋ and ℱ y is

in ₊.ℱ
● We compress from b to y,

purely in ₊.ℱ
● a, whose parent was already

in ₊, gets a new parent in ℱ
₊.ℱ

● Every node from x
(inclusive) and a (exclusive),
whose parents were in ₋, ℱ
now has a parent in ₊.ℱ

Forest Slicing

b

a

x

y
● Case 3: x is in ₋ and ℱ y is

in ₊.ℱ
● We compress from b to y,

purely in ₊.ℱ
● a, whose parent was already

in ₊, gets a new parent in ℱ
₊.ℱ

● Every node from x
(inclusive) and a (exclusive),
whose parents were in ₋, ℱ
now has a parent in ₊.ℱ

Forest Slicing
● Case 3: x is in ₋ and ℱ y is

in ₊.ℱ
● We compress from b to y,

purely in ₊.ℱ
● a, whose parent was already

in ₊, gets a new parent in ℱ
₊.ℱ

● Every node from x
(inclusive) and a (exclusive),
whose parents were in ₋, ℱ
now has a parent in ₊.ℱ

a x

b

y

Forest Slicing
Case 3: x is in ₋ and ℱ y is
in ₊.ℱ

● We compress from b to y,
purely in ₊.ℱ

● a, whose parent was already
in ₊, gets a new parent in ℱ

₊.ℱ
● Every node from x

(inclusive) and a (exclusive),
whose parents were in ₋, ℱ
now has a parent in ₊.ℱ

Recursively
handle this when
processing ₊.ℱ

Happens once
per compression
from ₋ to ₊.ℱ ℱ

Happens once
per non-root node

in ₋, countingℱ
across all

compressions

Forest Slicing
● Claim: The cost of

compressions crossing from
₋ to ₊ can be bounded byℱ ℱ

● the cost of some compressions
done purely in ₊ (the top parts ℱ
of the compressions),

● the total number of compressions
from ₋ to ₊ (changing the ℱ ℱ
parents of nodes in ₋ whose ℱ
parents are already in ₊), andℱ

● the number of nodes in ₋ whose ℱ
parents are in ₋ (each of which ℱ
may get a parent in ₊ for the ℱ
first time at most once).

Recursively
handle this when
processing ₊.ℱ

Happens once
per compression
from ₋ to ₊.ℱ ℱ

Happens once
per non-root node

in ₋, countingℱ
across all

compressions

Putting It All Together
● Claim: The cost of all the compressions

performed in is bounded by the following:ℱ
● The cost of some compressions purely in ₋.ℱ
● The cost of some compressions purely in ₊.ℱ

– This includes compressions originally in ₊, plus the ℱ
“tops” of compressions from ₋ to ₊.ℱ ℱ

● The number of compresses from ₋ to ₊.ℱ ℱ
– This accounts for changing the parents of nodes in

₋ whose parents are already in ₊.ℱ ℱ
● The number of nodes in ₋ with parents in ₋.ℱ ℱ

– Each of these nodes may get a parent in ₊ for the ℱ
first time once.

C(m, n, r) ≤ …

Cost of compressions
purely in ₋.ℱ

The number of
compresses from

₋ ℱ to ₊ℱ

Number of nodes in
₋ ℱ with parents in ₋.ℱ

Cost of compressions
purely in ₊.ℱ C(?? , n₊, r)

 rank s(r)

 rank r

C(m, n, r) ≤ …

Cost of compressions
purely in ₋.ℱ

The number of
compresses from

₋ ℱ to ₊ℱ

Number of nodes in
₋ ℱ with parents in ₋.ℱ

Cost of compressions
purely in ₊.ℱ C(m₊, n₊, r)

The “tops” of all compressions
running from ₋ to ₊ areℱ ℱ

handled in this bunch.

Let m₊ be the number of
compressions charged to ₊,ℱ
including both compressions

purely within ₊ and the “tops”ℱ
of compressions crossing

from ₋ to ₊.ℱ ℱ

C(m, n, r) ≤ …

The number of
compresses from

₋ ℱ to ₊ℱ

Number of nodes in
₋ ℱ with parents in ₋.ℱ

Cost of compressions
purely in ₋.ℱ C(m – m₊, n , s(r))

Cost of compressions
purely in ₊.ℱ C(m₊, n₊, r)

 rank s(r)

 rank r

C(m, n, r) ≤ …

Number of nodes in
₋ ℱ with parents in ₋.ℱ

Cost of compressions
purely in ₋.ℱ C(m – m₊, n , s(r))

Cost of compressions
purely in ₊.ℱ C(m₊, n₊, r)

The number of
compresses from

₋ ℱ to ₊ℱ
m₊

(Since this includes
all compresses
from ₋ to ₊).ℱ ℱ

Number of nodes in
₋ ℱ with parents in ₋.ℱ n – n₊ · (s(r) + 2)

 rank s(r)

Every node in ₊ has rankℱ
s(r) + 1 or greater.

Each rank-k node has children
of ranks 0, 1, 2, …, k – 1.

So every node in ₊ hasℱ
at least s(r) + 1 children, and

they’re all in in ₋.ℱ

There are n total nodes, and
n₊ of them are in ₊.ℱ

Nodes in ₋: ℱ n – n₊.

Nodes in ₋ whose parentsℱ
are in ₊: ℱ n₊ · (s(r) + 1))

Nodes in ₋ with parents in ₋:ℱ ℱ
n – n₊ · (s(r) + 2).

C(m, n, r) ≤ …

Cost of compressions
purely in ₋.ℱ C(m – m₊, n , s(r))

Cost of compressions
purely in ₊.ℱ C(m₊, n₊, r)

The number of
compresses from

₋ ℱ to ₊ℱ
m₊

Number of nodes in
₋ ℱ with parents in ₋.ℱ n – n₊ · s(r)

The Recurrence
● Putting it all together:

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 C(m₊, n₊, r) +
 m₊ + n – n₊ · s(r).

● Now, “all” we need to do is solve this.
● Don’t panic! This is indeed tricky, but it’s

not as bad as it looks.

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 C(m₊, n₊, r) +
 m₊ + n – n₊ · s(r).

● Recall: C(m, n, r) ≤ m + n · r / 2.

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 m₊ + n₊ · r / 2 +
 m₊ + n – n₊ · s(r).

● Recall: C(m, n, r) ≤ m + n · r / 2.

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 2m₊ + n +
 n₊ · (r / 2 – s(r)).

● Recall: C(m, n, r) ≤ m + n · r / 2.

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 2m₊ + n +
 n₊ · (r / 2 – s(r)).

● Clever Decision: Set s(r) = r / 2.

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, r / 2) +
 2m₊ + n.

● Clever Decision: Set s(r) = r / 2.

2() + ______

C(m, n, r) ≤ C(m – m₊, n, r / 2) + 2m₊ + n

Starting with m… …take some
of m away…

… and add it
into the total.

C(, n, r) 2() + n≤

2() + n

2() + n

…

2() + n

≤

How many layers
can this recursion

have?

2m + n lg r

C(m, n, r) ≤ C(m – m₊, n, r / 2) + 2m₊ + n

2() + n

2() + n

…

2() + n

≤

C(m, n, r) 2() + n≤

Where We Are
● We’ve just proven that

C(m, n, r) ≤ 2m + n lg r.
● The maximum rank in an n-node forest is

r = O(lg n).
● This gives a bound of O(m + n log log n) for any

series of operations.
● That’s a lot better than the O(m log n) we started

with – and it’s just due to better accounting,
rather than a fundamental reenvisioning of the
data structure.

● Is this a tight bound, or can we do better?

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 C(m₊, n₊, r) +
 m₊ + n – n₊ · s(r).

● Recall: C(m, n, r) ≤ m + n · r / 2.
● Recall: C(m, n, r) ≤ 2m + n lg r.

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 2m₊ + n₊ · lg r +
 m₊ + n – n₊ · s(r).

● Recall: C(m, n, r) ≤ m + n · r / 2.
● Recall: C(m, n, r) ≤ 2m + n lg r.

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 3m₊ + n +
 n₊ · (lg r – s(r)).

● Recall: C(m, n, r) ≤ m + n · r / 2.
● Recall: C(m, n, r) ≤ 2m + n lg r.

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 3m₊ + n +
 n₊ · (lg r – s(r)).

● Clever Decision: Set s(r) = lg r.

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, lg r) +
 3m₊ + n

● Clever Decision: Set s(r) = lg r.

How many layers
can this recursion

have?

3m + n lg* r

C(m, n, r) ≤ C(m – m₊, n, lg r) + 3m₊ + n

3() + n

3() + n

…

3() + n

≤

C(m, n, r) 3() + n≤

Where We Are
● We’ve just proven that

C(m, n, r) ≤ 3m + n lg* r.
● Since r = O(log n) this gives a bound of

O(m + n log* n) for any series of
operations.

● That’s a substantial improvement over
our previous bound – and all we did was
feed the analysis back into itself!

● Can we do better?

(k+1)m + ___

Notice Something?

m + n · r / 2 2m + n lg r

2m + n lg r 3m + n lg* r

km + n f(r)

If we start with this bound
on C(m, n, r)…

… then we get this stronger
bound on C(m, n, r):

(k+1)m + n f*(r)

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 C(m₊, n₊, r) +
 m₊ + n – n₊ · s(r).

● Assume: C(m, n, r) ≤ km + n · f(r)

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 (k+1)m₊ + n +
 n₊ · (f(r) – s(r)).

● Assume: C(m, n, r) ≤ km + n · f(r)

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 (k+1)m₊ + n +
 n₊ · (f(r) – s(r)).

● Clever Idea: Set s(r) = f(r).

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, f(r)) +
 (k+1)m₊ + n.

● Clever Idea: Set s(r) = f(r).

How many layers
can this recursion

have?

 C(m, n, r) ≤ C(m – m₊, n, f(r)) + (k+1)m₊ + n

(k+1)m + nf*(r)

C(m, n, r) (k+1)() + n≤

(k+1)() + n

(k+1)() + n

…

(k+1)() + n

≤

Interpreting This Result
● We now have a family of bounds on the cost

of operations on a disjoint-set forest:
m + n · (ʳ/₂)
2m + n lg r
3m + n lg* r
4m + n lg** r
5m + n lg*** r

…
● Which of these is the “best” bound?

Interpreting This Result
● For now, focus on these bounds:

2m + n lg r
3m + n lg* r
4m + n lg** r
5m + n lg*** r
6m + n lg**** r

● More generally, we have bounds of the form
(k + 2)m + n lg*(k) r.

● There’s some point at which making k larger makes that
first term larger without decreasing the second term.

● What is it?

The Ackermann Inverse
● The Ackermann inverse function, denoted α(z),

is defined as follows:
α(z) = min{ k ∈ | log*ℕ (k) z ≤ 1 }

● Intuitively, this counts how many times you have
to put stars on log***...*** z before it drops to 1.

● This function grows more slowly than anything in
the iterated logarithm family – and that should
give you a sense of just how slowly this function
grows!

● Worthwhile Activity: find the smallest natural
numbers where α produces 0, 1, 2, 3, 4, 5, 6, 7, 8,
9, and 10.

The Ackermann Inverse
● We have a bound of

(k + 2)m + n log*(k) r.
● Picking k = α(r) = α(log n), and the bound on

the cost of any series of m operations is.
O(mα(log n) + n).

● This is essentially “O(m + n),” because that α
term is a constant for any input that could
ever be fed in with the resources we know
about in the universe. But technically
speaking it’s superlinear. 😃

A Tighter Analysis
● By being a bit more clever with the analysis, we

can tighten the bound as follows.
● Define α(m, n) as

α(m, n) = min{ k ∈ | log*ℕ (k) (m / n) ≤ log n }.
● Then the cost of m operations on an n-element

forest can be shown to be
O(mα(m, n)), a slight improvement over what we
just did here.

Major Ideas for Today
● Iterated functions generalize the idea of “how

many times can you divide by two before you run
out of things?”

● Iterated logarithms are a family of very slowly-
growing functions, each of which grows more
slowly than the previous one.

● The Ackermann inverse function grows slower
than any number of iterated logarithms and
essentially count what level of iteration is
needed to clear a number.

Next Time
● Euler Tour Trees

● Fully dynamic connectivity in forests.
● Augmented Dynamic Trees

● Figuring out information about connected
components in sublinear time.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85

