Disjoint-Set Forests

Outline for Today

- Iterated Functions
- Making an implicit idea explicit.
- Incremental Connectivity
- Finding connected nodes as a graph changes.
- Disjoint-Set Forests
- A surprisingly simple and subtle data structure.
- Analyzing Disjoint-Set Forests
- A clever, nuanced analysis with a surprising result.

Iterated Functions

Iterated Functions

- Recursive functions work by converting a problem of size n into one or more subproblems of a smaller size.
- How much smaller those subproblems are indicates how many levels of recursion we'll have.
- $n \rightarrow n-1: \Theta(n)$ levels.
- $n \rightarrow n / 2$: $\Theta(\log n)$ levels

Iterated Functions

- Let f be a function. The iterated function of \boldsymbol{f}, denoted \boldsymbol{f}^{\star} is a function defined as follows:

$$
f^{*}(n)=\left\{\begin{array}{cl}
0 & \text { if } f(n) \leq 1 \\
1+f^{*}(f(n)) & \text { otherwise }
\end{array}\right.
$$

- Intuitively, $f^{*}(n)$ is (roughly) the number of times you need to apply f to n to reduce it to a sufficiently small constant.
- If $f(n) \leq 1$, no steps are needed.
- Otherwise, you need one step to turn n into $f(n)$, then $f \star(f(n))$ more steps from there.

Iterated Functions

	$f^{*}(n)$	As seen in...
$f(n)=n-1$	$\Theta(n)$	Linear search
$f(n)=n / 2$	$\Theta(\log n)$	Binary search
$f(n)=n^{1 / 2}$	$\Theta(\log \log n)$	Rabin's closest pair of points algorithm
$f(n)=\log n$	$\Theta\left(\log ^{*} n\right)$	Succinct binary rank

Iterated Logarithms

- Intuition: The log function is incredibly effective at shrinking down large quantities.
- Number of protons in the known universe: $\approx 2^{240}$.
- $\log ^{(0)} 2^{240}=1,766,847,[. . .57$ digits ...],292,619,776
- $\log ^{(1)} 2^{240}=240$
- $\log ^{(2)} 2^{240} \approx 7.91$
- $\log ^{(3)} 2^{240} \approx 2.98$
- $\log ^{(4)} 2^{240} \approx 1.58$
- $\log ^{(5)} 2^{240} \approx 0.66$
- So log* $2^{240}=4$.
- The iterated logarithm of n, denoted $\log ^{*} \boldsymbol{n}$, grows much more slowly than $\log n$.

Intuiting log* n

- What is $\log ^{*} n$ for the value of n shown below?

$$
n=2^{2^{2^{2^{2^{2^{2^{2^{2}}}}}}}}
$$

- Answer: $\log ^{*} n=16$.
- The value of n is inconceivably large, and yet $l^{*}{ }^{*} n$ is small enough to hold in your hand. The log* function grows very, very slowly!

Iterated Iterates

- What is the value of this expression?

- After taking one log*, we're left with $16=2^{2^{2}}$.
- After taking another log*, we're left with 2.
- After taking another log*, we're left with 0 .
- So the above expression evaluates to 2.
- How big of an input do we need to get $\log ^{* *} n$ to be 3 ?

Just how slowly can a function grow?

Incremental Dynamic Connectivity

Kruskal's Algorithm

- Kruskal's Algorithm finds an MST of a graph. It works as follows:
- Remove all edges from the graph and sort them from lowest to highest.
- Repeatedly insert edges back into the graph, as long as their endpoints aren't already reachable from each other.

Kruskal's Algorithm

- Kruskal's Algorithm finds an MST of a graph. It works as follows:
- Remove all edges from the graph and sort them from lowest to highest.
- Repeatedly insert edges back into the graph, as long as their endpoints aren't already reachable from each other.

Incremental Connectivity

- Kruskal's algorithm needs a data structure that solves incremental connectivity.
- We begin with an empty graph.
- We need to be able to add new edges to the graph and check whether arbitrary pairs of nodes are connected.
- Question: How efficiently can we do this?

Representatives

- Idea: Assign a representative to each CC in the graph.
- To see if two nodes are in the same CC, check if they have the same representative.
- To link together two different CCs, change the representative of all the nodes in one CC to be the representative of the other CC.

Representatives

- Idea: Assign a representative to each CC in the graph.
- To see if two nodes are in the same CC, check if they have the same representative.
- To link together two different CCs, change the representative of all the nodes in one CC to be the representative of the other CC.

Representatives

- Here's how we'll implement this idea.
- Each node has a parent pointer.
- Representatives' parent pointers are null.
- Other nodes' parent pointers form chains leading to the representative.
- Although the original graph is undirected, parent pointers are directed.
- This data structure is called a disjoint-set forest.

Representatives

- We'll support two operations.
- find(x) returns x's representative. It works by following parent pointers until we hit the representative.
- union(x, y) merges the clusters containing x and y. It works by finding x and y 's representatives. If they aren't equal, it assigns one of those representatives the other as a parent.

Representatives

- We'll support two operations.
- find(x) returns x^{\prime} s representative. It works by following parent pointers until we hit the representative.
- union (x, y) merges the clusters containing x and y. It works by finding x and y^{\prime} 's representatives. If they aren't equal, it assigns one of those representatives the other as a parent.

Representatives

- We'll support two operations.
- find(x) returns x's representative. It works by following parent pointers until we hit the representative.
- union(x, y) merges the clusters containing x and y. It works by finding x and y^{\prime} 's representatives. If they aren't equal, it assigns one of those representatives the other as a parent.

Representatives

- We'll support two operations.
- find(x) returns x^{\prime} s representative. It works by following parent pointers until we hit the representative.
- union(x, y) merges the clusters containing x and y. It works by finding x and y^{\prime} 's representatives. If they aren't equal, it assigns one of those representatives the other as a parent.

Representatives

- We'll support two operations.
- find(x) returns x 's representative. It works by following parent pointers until we hit the representative.
- union(x, y) merges the clusters containing x and y. It works by finding x and y^{\prime} 's representatives. If they aren't equal, it assigns one of those representatives the other as a parent.

Representatives

- Unfortunately, this system can be very slow.
- If we aren't careful with how we link trees, the cost of a find or union can grow to $\Theta(n)$, where n is the number of nodes in the graph.
- Can we do better?

Union-By-Rank

- Assign each node a rank, initially 0.
- When linking two representatives x and y :
- If one representative has a lower rank than the other, set its parent to the other.
- Otherwise, arbitrarily set x 's parent to y, then increment y's rank.
- This keeps the lengths of parent chains low.

Union-By-Rank

- Lemma: A node of rank r has children of ranks $0,1,2, \ldots$, and $r-1$.

Union-By-Rank

- Lemma: A node of rank r has children of ranks $0,1,2, \ldots$, and $r-1$.
- Proof: Induction!
- A node of rank 0 has no children.
- A node v of rank $r+1$, at the time its rank was increased, was a tree of rank r that got another tree of rank r as a child.
- By the IH v already had children of ranks $0,1,2, \ldots, r-1$. Now it also has a child of rank r.

Union-By-Rank

- Our lemma tells us, indirectly, that the "simplest" tree whose root has rank r is a binomial tree of order r.
- A nice consequence of this is that all trees in a forest of n nodes have height $\mathrm{O}(\log n)$, so each union and find takes time $\mathrm{O}(\log n)$.
- Can we do better?

An Observation

- Suppose we call find(x) multiple times.
- Each time we do that, we may have to traverse a chain of $\mathrm{O}(\log n)$ nodes to find its representative.
- Do we really need to scan things so many times?

Path Compression

- Path compression is an optimization on the find operation.
- After figuring out χ^{\prime} s representative, change the parent pointers of all of x 's ancestors to point directly to x's $^{\prime}$ representative.
- This makes it a lot faster to find
 representatives across multiple operations.

Path Compression

- Path compression is an optimization on the find operation.
- After figuring out χ^{\prime} s representative, change the parent pointers of all of x 's ancestors to point directly to $\mathrm{x}^{\prime} \mathrm{s}$ representative.
- This makes it a lot faster to find
 representatives across multiple operations.

Path Compression

- The resulting code for our data structure is surprisingly simple:

```
Node* find(Node* source) {
        if (source->parent == nullptr) return source;
        /* Path compression: update parent before returning. */
        source->parent = find(source->parent);
        return source->parent;
}
void doUnion(Node* one, Node* two) {
        /* Find the representatives. */
        one = find(one);
        two = find(two);
    if (one->rank > two->rank) swap(one, two);
    /* Link and update ranks if needed. */
    one->parent = two;
    if (one->rank == two->rank) two->rank++;
}
```

- Now, all we have to do is analyze the runtime.

Analyzing Disjoint-Set Forests

History

- The analysis of union-by-rank plus path compression has a long history.
- For a while, its actual efficiency was an open problem!
- In 1979 Tarjan proved a tight upper bound on the runtime using a clever and nuanced analysis, and provided a matching lower bound.
- In 2003 Seidel and Sharir arrived at the same upper bound using a totally different technique.
- Both analyses require a careful analysis of the costs of the operations and result in a very surprising result.
- The analysis I'll share comes from Seidel and Sharir and is based on this set of lecture slides from an algorithms course at Harvard.

Our Analysis

- We're going to analyze a slightly simplified version of this problem.
- We'll be given a forest \mathscr{F} formed purely from union-byrank, then do a series of path compressions on it.
- These don't have to go all the way from a node to its representative.
- Our goal will be to bound the total amount of work done.
- Great Exercise: Show that this analysis carries over to the case of interleaved unions and finds.

Our Analysis

- Some notation we'll use throughout this analysis:
- Let \boldsymbol{n} be the number of nodes in the disjoint-set forest.
- Let \boldsymbol{m} be the number of operations performed.
- Let \boldsymbol{r} be the maximum rank of any node in the forest. (We know $r=\mathrm{O}(\log n)$, but could be lower.)
- In practice, we'll have $\boldsymbol{m}=\boldsymbol{\Omega}(\boldsymbol{n})$, and we'll assume this in our analysis.

Our Analysis

- We will specifically focus on the number of times a node's parent changes.
- Why?
- Each operation does O(1) work, plus work proportional to the number of parents changed.
- The total work done is then $\Theta(m+$ \#changes $)$.

A Starting Analysis

- Lemma: The number of pointer changes is at most $m+n \cdot r / 2$.
- Proof Sketch: Consider nodes of zero and nonzero rank.
- Nodes of rank 0: A node of rank 0 only has its parent change if it is the start node of a compress. There are m compresses, so these pointers change at most m times.
- Nodes of nonzero rank: When a parent changes, the new parent's rank is bigger than the old parent's rank, so a node's rank can increase at most r times. There are at most $n / 2$ nodes of nonzero rank. This gives a bound of $n \cdot r / 2$.

A Starting Analysis

- Our starting analysis is weak.
- Compressing a path impacts other nodes not on that path.
- Nodes with high starting rank have can't have their parents change too many times.
- These effects work differently in different parts of the tree.
- The first effect is more pronounced at the bottom of the forest.
- The second effect is more pronounced at the top.

- Idea: Split the forest into a "top forest" and "bottom forest," and analyze the costs in each forest separately.

Forest Slicing

- As before, let r be the maximum rank in \mathscr{F}.
- Suppose that, somehow, we pick a rank $s(r)$ as a separating rank.
- Then, split our forest \mathscr{F} into two forests:
- \mathscr{F} - consists of all nodes of rank $s(r)$ or below.
- $\mathscr{Y}+$ consists of all nodes of rank above $s(r)$.
- Goal: Split the cost of compressions across \mathscr{F}_{-}

rank r and $\mathscr{F}+$.

Some Terminology

- Let $\boldsymbol{C}(\boldsymbol{m}, \boldsymbol{n}, \boldsymbol{r})$ be the maximum number of pointer changes that can be made if there are m compresses, n nodes, and the maximum rank is r.
- Using this notation, our earlier result is that

$$
C(m, n, r) \leq m+n \cdot r / 2 .
$$

- Question: What is $C(m, n, 0)$? What's $C(m, n, 1)$?
- Goal: Split \mathscr{F} into $\mathscr{\mathscr { F }}+$ and $\mathscr{\mathscr { F }}$-, find a way to write a recurrence relation for $C(m, n, r)$, then solve the recurrence to get a tight bound on the cost of any series of unions and finds.

Forest Slicing

- Focus on any one compression from x to y. Let's see how it interacts with \mathscr{F} - and $\mathscr{F}+$.
- Case 1: x and y are both in $\mathscr{F}+$.

Forest Slicing

- Focus on any one compression from x to y. Let's see how it interacts with \mathscr{F} - and $\mathscr{F}+$.
- Case 1: x and y are both in $\mathscr{F}+$.
- We can recursively handle this compression when bounding the work done purely in $\mathscr{F}+$.

Forest Slicing

-Case 2: x and y are both in \mathscr{F} -

Forest Slicing

- Case 2: x and y are both in \mathscr{Y}-.
- We can recursively handle this compression when bounding the work done purely in $\mathscr{\mathscr { F }}$ -

Forest Slicing

- Case 3: x is in \mathscr{F} - and y is in $\mathscr{F}+$.

Forest Slicing

- Case 3: x is in \mathscr{F} - and y is in $\mathscr{F}+$.

Forest Slicing

- Case 3: x is in \mathscr{F} - and y is in $\mathscr{F}+$.
- We compress from b to y, purely in $\mathscr{F}+$.
- a, whose parent was already in $\mathscr{F}+$, gets a new parent in $\mathscr{Y}+$.
- Every node from x (inclusive) and a (exclusive), whose parents were in \mathscr{F}_{-}, now has a parent in $\mathscr{F}+$.

Forest Slicing

Case 3: x is in \mathscr{F} - and y is in $\mathscr{F}+$.

- We compress from b to y, purely in $\mathscr{F}+$.
- a, whose parent was already in $\mathscr{F}+$, gets a new parent in $\mathscr{Y}+$ 。
- Every node from x (inclusive) and a (exclusive), whose parents were in \mathscr{F}-, now has a parent in $\mathscr{F}+$.

Recursively handle this when processing $\mathscr{\mathscr { Y }}+$.

Happens once per compression from \mathscr{Y} - to $\mathscr{Y}+$.

Happens once per non-root node in $\mathscr{Y}-$, counting
across all
compressions

Forest Slicing

- Claim: The cost of compressions crossing from \mathscr{F} - to $\mathscr{F}+$ can be bounded by
- the cost of some compressions done purely in $\mathscr{F}+$ (the top parts of the compressions),
- the total number of compressions from \mathscr{F} - to $\mathscr{Y}+$ (changing the parents of nodes in \mathscr{F} - whose parents are already in \mathscr{F}_{+}), and
- the number of nodes in \mathscr{F} - whose parents are in \mathscr{Y} - (each of which may get a parent in $\mathscr{F}+$ for the first time at most once).

Recursively handle this when processing $\mathscr{Y}+$.

Happens once

 per compression from \mathscr{Y} - to $\mathscr{Y}+$.Happens once per non-root node in \mathscr{F}-, counting
across all
compressions

Putting It All Together

- Claim: The cost of all the compressions performed in \mathscr{F} is bounded by the following:
- The cost of some compressions purely in $\mathscr{\mathscr { F } _ { - } \text { . }}$
- The cost of some compressions purely in $\mathscr{\mathscr { Y }}+$.
- This includes compressions originally in $\mathscr{F}+$, plus the "tops" of compressions from \mathscr{Y} - to $\mathscr{Y}+$.
- The number of compresses from \mathscr{F} - to $\mathscr{F}+$.
- This accounts for changing the parents of nodes in \mathscr{Y} - whose parents are already in $\mathscr{Y}+$.
- The number of nodes in \mathscr{Y} - with parents in \mathscr{F}-.
- Each of these nodes may get a parent in $\mathscr{F}+$ for the first time once.

$C(m, n, r) \leq \ldots$

$C(m, n, r) \leq \ldots$

Cost of compressions purely in $\mathscr{F}+$.	$C\left(m_{+}, n_{+}, r\right)$
Cost of compressions purely in $\mathscr{\mathscr { F }}$-.	The "tops" of all compressions running from \mathscr{Y} - to \mathscr{Y} + are handled in this bunch. Let \boldsymbol{m}_{+}be the number of compressions charged to $\mathscr{Y}+$, including both compressions purely within \mathscr{Y} + and the "tops" of compressions crossing from \mathscr{Y} - to $\mathscr{Y}+$.
The number of compresses from \mathscr{Y} - to $\mathscr{Y}+$	
Number of nodes in \mathscr{Y} - with parents in $\mathscr{\mathscr { Y }}$ -	

$C(m, n, r) \leq \ldots$

Cost of compressions purely in $\mathscr{H}+$	$C\left(m_{+}, n_{+}, r\right)$
Cost of compressions purely in \mathscr{F} -	$C\left(\boldsymbol{m}-\boldsymbol{m}_{+}, \boldsymbol{n}, \boldsymbol{s}(\boldsymbol{r})\right.$)
The number of compresses from $\mathscr{\mathscr { F }}-$ to $\mathscr{Y}+$	
Number of nodes in \mathscr{F} - with parents in \mathscr{F}.	$\square^{\text {rank }(r)}$

$C(m, n, r) \leq \ldots$

Cost of compressions	$C\left(m_{+}, n_{+}, r\right)$
Cost of compression purely in \mathscr{F} -	$C\left(m-m_{+}, n, s(r)\right)$
	m_{+}
Number of nodes in \mathscr{Y} - with parents in \mathscr{F}	$\begin{aligned} & \text { (Since this includes } \\ & \text { all compresses } \\ & \text { from } \mathscr{F}_{-} \text {to } \mathscr{F}_{+} \text {). } \end{aligned}$

Every node in $\mathscr{Y}+$ has rank $s(r)+1$ or greater.
Each rank-k node has children of ranks $0,1,2, \ldots, k-1$.

So every node in $\mathscr{F}+$ has at least $s(r)+1$ children, and they're all in in \mathscr{F}-.

There are n total nodes, and
$\operatorname{rank} s(r)$ n_{+}of them are in $\mathscr{\mathscr { Y }}+$.

Nodes in $\mathscr{F}-: \boldsymbol{n}-\boldsymbol{n}_{+}$.
Nodes in \mathscr{F} - whose parents are in $\mathscr{F}+: \boldsymbol{n}_{+} \cdot(\boldsymbol{s}(\boldsymbol{r})+\mathbf{1})$)

Nodes in \mathscr{F} - with parents in $\mathscr{F}-$:

$$
n-n_{+} \cdot(s(r)+2)
$$

Number of nodes in $\mathscr{\mathscr { F }}$ - with parents in \mathscr{F}_{-}.

$$
n-n_{+} \cdot(s(r)+2)
$$

$C(m, n, r) \leq \ldots$

Cost of compressions purely in $\mathscr{H}+$	$C\left(m_{+}, n_{+}, r\right)$
Cost of compressions purely in \mathscr{F} -	$C\left(m-m_{+}, n, s(r)\right)$
The number of compresses from $\mathscr{\mathscr { Y }}-$ to $\mathscr{\mathscr { Y }}+$	m_{+}
Number of nodes in \mathscr{F} - with parents in \mathscr{F}	$n-n_{+} \cdot s(r)$

The Recurrence

- Putting it all together:

$$
\begin{aligned}
C(m, n, r) \leq & C\left(m_{-} m_{+}, n, s(r)\right)+ \\
& C\left(m_{+}, n_{+}, r\right)+ \\
& m_{+}+n-n_{+} \cdot s(r) .
\end{aligned}
$$

- Now, "all" we need to do is solve this.
- Don't panic! This is indeed tricky, but it's not as bad as it looks.

The Recurrence

$$
\begin{aligned}
C(m, n, r) \leq & C\left(m-m_{+}, n, s(r)\right)+ \\
& C\left(m_{+}, n_{+}, r\right)+ \\
& m_{+}+n-n_{+} \cdot s(r) .
\end{aligned}
$$

- Recall: $C(m, n, r) \leq m+n \cdot r / 2$.

The Recurrence

$$
\begin{aligned}
C(m, n, r) \leq & C\left(m-m_{+}, n, s(r)\right)+ \\
& m_{+}+n_{+} \cdot r / 2+ \\
& m_{+}+n-n_{+} \cdot s(r) .
\end{aligned}
$$

- Recall: $C(m, n, r) \leq m+n \cdot r / 2$.

The Recurrence

$$
\begin{aligned}
C(m, n, r) \leq & C\left(m-m_{+}, n, s(r)\right)+ \\
& 2 m_{+}+n+ \\
& n_{+} \cdot(r / 2-s(r)) .
\end{aligned}
$$

- Recall: $C(m, n, r) \leq m+n \cdot r / 2$.

The Recurrence

$$
\begin{aligned}
C(m, n, r) \leq & C\left(m-m_{+}, n, s(r)\right)+ \\
& 2 m_{+}+n+ \\
& n_{+} \cdot(r / 2-s(r)) .
\end{aligned}
$$

- Clever Decision: Set $s(r)=r / 2$.

The Recurrence

$$
\begin{aligned}
C(m, n, r) \leq & C\left(m-m_{+}, n, r / 2\right)+ \\
& 2 m_{+}+n .
\end{aligned}
$$

- Clever Decision: Set $s(r)=r / 2$.

$$
\begin{aligned}
& C(\mathrm{OOOO}, n, r) \leq 2(\mathrm{O})+n \\
& 2(\mathrm{OOO})+n \\
& 2(\mathrm{O})+n \\
& 2(\mathrm{o})+n \\
& \ldots \\
& \leq 2(\mathrm{OOOBO})+
\end{aligned}
$$

$\begin{array}{r}C(m, n, r) \leq C\left(m-m_{+}, n, r / 2\right)+2 m_{+}+n \\ \begin{array}{c}\text { How many layers } \\ \text { can this recursion } \\ \text { have? }\end{array} \\ \hline\end{array}$
$C(m, n, r) \leq 2(\&)+n$
$2(000)+n$
$2(\varnothing)+n$
$2(\circ)+n$

$$
\leq 2 m+n \lg r
$$

Where We Are

- We've just proven that

$$
C(m, n, r) \leq 2 m+n \lg r .
$$

- The maximum rank in an n-node forest is $r=\mathrm{O}(\lg n)$.
- This gives a bound of $\mathbf{O}(\boldsymbol{m}+\boldsymbol{n} \log \log \boldsymbol{n})$ for any series of operations.
- That's a lot better than the $\mathrm{O}(m \log n)$ we started with - and it's just due to better accounting, rather than a fundamental reenvisioning of the data structure.
- Is this a tight bound, or can we do better?

The Recurrence

$$
\begin{aligned}
C(m, n, r) \leq & C\left(m-m_{+}, n, s(r)\right)+ \\
& C\left(m_{+}, n_{+}, r\right)+ \\
& m_{+}+n-n_{+} \cdot s(r) .
\end{aligned}
$$

- Recall: $C(m, n, r) \leq m+n \cdot r / 2$.
- Recall: $C(m, n, r) \leq 2 m+n \lg r$.

The Recurrence

$$
\begin{aligned}
C(m, n, r) \leq & C\left(m-m_{+}, n, s(r)\right)+ \\
& 2 m_{+}+n_{+} \cdot \lg r+ \\
& m_{+}+n-n_{+} \cdot s(r) .
\end{aligned}
$$

- Recall: $C(m, n, r) \leq m+n \cdot r / 2$.
- Recall: $C(m, n, r) \leq 2 m+n \lg r$.

The Recurrence

$$
\begin{aligned}
C(m, n, r) \leq & C\left(m-m_{+}, n, s(r)\right)+ \\
& 3 m_{+}+n+ \\
& n_{+} \cdot(\lg r-s(r)) .
\end{aligned}
$$

- Recall: $C(m, n, r) \leq m+n \cdot r / 2$.
- Recall: $C(m, n, r) \leq 2 m+n \lg r$.

The Recurrence

$$
\begin{aligned}
C(m, n, r) \leq & C\left(m-m_{+}, n, s(r)\right)+ \\
& 3 m_{+}+n+ \\
& n_{+} \cdot(\lg r-s(r)) .
\end{aligned}
$$

- Clever Decision: Set $s(r)=\lg r$.

The Recurrence

$$
\begin{aligned}
C(m, n, r) \leq & C\left(m-m_{+}, n, \lg r\right)+ \\
& 3 m_{+}+n
\end{aligned}
$$

- Clever Decision: Set $s(r)=\lg r$.

$$
C(m, n, r) \leq C\left(m-m_{+}, n, \lg r\right)+3 m_{+}+n
$$

$\boldsymbol{C}(\boldsymbol{m}, \boldsymbol{n}, \boldsymbol{r}) \leq 3(\&)+n$

$$
\begin{aligned}
& 3(00)+n \\
& 3(\varnothing)+n \\
& 3(\circ)+n
\end{aligned}
$$

$\leq 3 m+n \lg ^{*} r$

Where We Are

- We've just proven that

$$
C(m, n, r) \leq 3 m+n \lg ^{*} r
$$

- Since $r=O(\log n)$ this gives a bound of $\mathbf{O}\left(\boldsymbol{m}+\boldsymbol{n} \log ^{*} \boldsymbol{n}\right)$ for any series of operations.
- That's a substantial improvement over our previous bound - and all we did was feed the analysis back into itself!
- Can we do better?

Notice Something?

If we start with this bound on $C(m, n, r) \ldots$	\ldots then we get this stronger bound on $C(m, n, r):$
$m+n \cdot r / 2$	$2 m+n \lg r$
$2 m+n \lg r$	$3 m+n \lg ^{*} r$
$k m+n f(r)$	$(k+1) m+n f^{*}(r)$

The Recurrence

$$
\begin{aligned}
C(m, n, r) \leq & C\left(m-m_{+}, n, s(r)\right)+ \\
& C\left(m_{+}, n_{+}, r\right)+ \\
& m_{+}+n-n_{+} \cdot s(r) .
\end{aligned}
$$

- Assume: $C(m, n, r) \leq k m+n \cdot f(r)$

The Recurrence

$$
\begin{aligned}
C(m, n, r) \leq & C\left(m-m_{+}, n, s(r)\right)+ \\
& (k+1) m_{+}+n+ \\
& n_{+} \cdot(f(r)-s(r)) .
\end{aligned}
$$

- Assume: $C(m, n, r) \leq k m+n \cdot f(r)$

The Recurrence

$$
\begin{aligned}
C(m, n, r) \leq & C\left(m-m_{+}, n, s(r)\right)+ \\
& (k+1) m_{+}+n+ \\
& n_{+} \cdot(f(r)-s(r)) .
\end{aligned}
$$

- Clever Idea: Set $s(r)=f(r)$.

The Recurrence

$$
\begin{aligned}
C(m, n, r) \leq & C\left(m-m_{+}, n, f(r)\right)+ \\
& (k+1) m_{+}+n .
\end{aligned}
$$

- Clever Idea: Set $s(r)=f(r)$.

$$
\begin{aligned}
& C(m, n, r) \leq C\left(m-m_{+}, n, f(r)\right)+(k+1) m_{+}+n \\
& \boldsymbol{C}(\boldsymbol{m}, \boldsymbol{n}, \boldsymbol{r}) \leq(k+1)(\varnothing)+n \\
&(k+1)(\infty)+n \\
& \begin{array}{c}
\text { How many layers } \\
\text { can this recursion } \\
\text { have? }
\end{array} \\
&(k+1)(\varnothing)+n \\
&(k+1)(0)+n
\end{aligned}
$$

$\leq(k+1) m+n f^{*}(r)$

Interpreting This Result

- We now have a family of bounds on the cost of operations on a disjoint-set forest:

$$
\begin{gathered}
m+n \cdot(r / 2) \\
2 m+n \lg r \\
3 m+n \lg ^{*} r \\
4 m+n \lg ^{* *} r \\
5 m+n \lg ^{* * *} r
\end{gathered}
$$

- Which of these is the "best" bound?

Interpreting This Result

- For now, focus on these bounds:

$$
\begin{gathered}
2 m+n \lg r \\
3 m+n \lg ^{*} r \\
4 m+n \lg ^{* *} r \\
5 m+n \lg ^{* * *} r \\
6 m+n \lg ^{* * * *} r
\end{gathered}
$$

- More generally, we have bounds of the form

$$
(k+2) m+n \lg ^{*(k)} r .
$$

- There's some point at which making k larger makes that first term larger without decreasing the second term.
-What is it?

The Ackermann Inverse

- The Ackermann inverse function, denoted $\boldsymbol{\alpha}(\boldsymbol{x})$, is defined as follows:

$$
\alpha(z)=\min \left\{k \in \mathbb{N} \mid \log ^{*(k)} z \leq 1\right\}
$$

- Intuitively, this counts how many times you have to put stars on $\log ^{* * * \ldots * * *} z$ before it drops to 1 .
- This function grows more slowly than anything in the iterated logarithm family - and that should give you a sense of just how slowly this function grows!
- Worthwhile Activity: find the smallest natural numbers where α produces $0,1,2,3,4,5,6,7,8$, 9 , and 10.

The Ackermann Inverse

- We have a bound of

$$
(k+2) m+n \log ^{*(k)} r
$$

- Picking $k=\alpha(r)=\alpha(\log n)$, and the bound on the cost of any series of m operations is. $\mathbf{O}(\boldsymbol{m \alpha}(\log \boldsymbol{n})+\boldsymbol{n})$.
- This is essentially " $\mathrm{O}(m+n)$," because that α term is a constant for any input that could ever be fed in with the resources we know about in the universe. But technically speaking it's superlinear.

A Tighter Analysis

- By being a bit more clever with the analysis, we can tighten the bound as follows.
- Define $\boldsymbol{\alpha}(\boldsymbol{m}, \boldsymbol{n})$ as $\alpha(m, n)=\min \left\{k \in \mathbb{N} \mid \log ^{*(k)}(m / n) \leq \log n\right\}$.
- Then the cost of m operations on an n-element forest can be shown to be $\mathrm{O}(m \alpha(m, n))$, a slight improvement over what we just did here.

Major Ideas for Today

- Iterated functions generalize the idea of "how many times can you divide by two before you run out of things?"
- Iterated logarithms are a family of very slowlygrowing functions, each of which grows more slowly than the previous one.
- The Ackermann inverse function grows slower than any number of iterated logarithms and essentially count what level of iteration is needed to clear a number.

Next Time

- Euler Tour Trees
- Fully dynamic connectivity in forests.
- Augmented Dynamic Trees
- Figuring out information about connected components in sublinear time.

