

Cuckoo Hashing

Outline for Today
● Cuckoo Hashing

● A simple, fast hashing system with worst-
case efficient lookups.

● The Erdős–Rényi Model
● Randomly-generated graphs and their

properties.
● Variants on Cuckoo Hashing

● Making a good idea even better.

Preliminaries: Hash Tables

Collision Resolution
● All hash tables have to deal with

hash collisions in some way.
● There are three general ways to

do this:
● Closed addressing: Store all

colliding elements in an auxiliary
data structure like a linked list or
BST. (For example, standard
chained hashing.)

● Open addressing: Allow elements
to overflow out of their target
bucket and into other spaces. (For
example, linear probing hashing.)

● Perfect hashing: Do something
clever with multiple hash functions
to eliminate collisions.

● We have not spoken on this last
topic yet.

Collision Resolution
● All hash tables have to deal with

hash collisions in some way.
● There are three general ways to

do this:
● Closed addressing: Store all

colliding elements in an auxiliary
data structure like a linked list or
BST. (For example, standard
chained hashing.)

● Open addressing: Allow elements
to overflow out of their target
bucket and into other spaces. (For
example, linear probing hashing.)

● Perfect hashing: Do something
clever with multiple hash functions
to eliminate collisions.

● We have not spoken on this last
topic yet.

Collision Resolution
● All hash tables have to deal with

hash collisions in some way.
● There are three general ways to

do this:
● Closed addressing: Store all

colliding elements in an auxiliary
data structure like a linked list or
BST. (For example, standard
chained hashing.)

● Open addressing: Allow elements
to overflow out of their target
bucket and into other spaces. (For
example, linear probing hashing.)

● Perfect hashing: Do something
clever with multiple hash functions
to eliminate collisions.

● We have not spoken on this last
topic yet.

[0] [1] [2] [3] [4] [5]

3

1 3

4 51

3

Collision Resolution
● All hash tables have to deal with

hash collisions in some way.
● There are three general ways to

do this:
● Closed addressing: Store all

colliding elements in an auxiliary
data structure like a linked list or
BST. (For example, standard
chained hashing.)

● Open addressing: Allow elements
to overflow out of their target
bucket and into other spaces. (For
example, linear probing hashing.)

● Perfect hashing: Do something
clever with multiple hash functions
to eliminate collisions.

● We have not spoken on this last
topic yet.

Collision Resolution
● All hash tables have to deal with

hash collisions in some way.
● There are three general ways to

do this:
● Closed addressing: Store all

colliding elements in an auxiliary
data structure like a linked list or
BST. (For example, standard
chained hashing.)

● Open addressing: Allow elements
to overflow out of their target
bucket and into other spaces. (For
example, linear probing hashing.)

● Perfect hashing: Do something
clever with multiple hash functions
to eliminate collisions.

● We have not spoken on this last
topic yet.

14

7

14

15

2

8 7

0 1
2

3

4

5
6

789
10

11

12

13
14

15

Collision Resolution
● All hash tables have to deal with

hash collisions in some way.
● There are three general ways to

do this:
● Closed addressing: Store all

colliding elements in an auxiliary
data structure like a linked list or
BST. (For example, standard
chained hashing.)

● Open addressing: Allow elements
to overflow out of their target
bucket and into other spaces. (For
example, linear probing hashing.)

● Perfect hashing: Do something
clever with multiple hash functions
to eliminate collisions.

● What does that last option look
like?

Cuckoo Hashing

● Suppose we have a hash table
with m slots.

● Unlike a normal hash table,
we’ll use two hash functions.
We’ll call them h₁ and h₂.

● Each hash function outputs a
slot number in the set
{ 0, 1, 2, …, m – 1 }.

● We’ll assume that these hash
functions are truly random,
with one constraint:
h₁(x) ≠ h₂(x) for any key x.

● The constraint on the hashes
being different is pretty easy to
achieve both in theory and in

Cuckoo Hashing

≈

☜ ☆

+

● The Rule: Any item x
must either be at
position h₁(x) or
position h₂(x) in the
table.

● Lookups take worst-
case O(1) time, since
only two locations need
to be checked.

● Deletions take worst-
case O(1) time, since
only two locations need
to be checked.

Cuckoo Hashing

≈

☜ ☆

+

● To insert x into the
table, first try placing it
at slot h₁(x).

● If that slot is full, kick
out the element y that
used to be in that slot
and try placing it the
other slot it can belong
to (either h₁(y) or
h₂(y)).

● Repeat this process
until all elements
stabilize.

Cuckoo Hashing

≈

☜ ☆

+

● To insert x into the
table, first try placing it
at slot h₁(x).

● If that slot is full, kick
out the element y that
used to be in that slot
and try placing it the
other slot it can belong
to (either h₁(y) or
h₂(y)).

● Repeat this process
until all elements
stabilize.

Cuckoo Hashing

≈

☜ ☆

+

△

● To insert x into the
table, first try placing it
at slot h₁(x).

● If that slot is full, kick
out the element y that
used to be in that slot
and try placing it the
other slot it can belong
to (either h₁(y) or
h₂(y)).

● Repeat this process
until all elements
stabilize.

Cuckoo Hashing

≈

☜ ☆

+

△

● To insert x into the
table, first try placing it
at slot h₁(x).

● If that slot is full, kick
out the element y that
used to be in that slot
and try placing it the
other slot it can belong
to (either h₁(y) or
h₂(y)).

● Repeat this process
until all elements
stabilize.

Cuckoo Hashing

△

≈

☜ ☆

+

● To insert x into the
table, first try placing it
at slot h₁(x).

● If that slot is full, kick
out the element y that
used to be in that slot
and try placing it the
other slot it can belong
to (either h₁(y) or
h₂(y)).

● Repeat this process
until all elements
stabilize.

Cuckoo Hashing

△

≈

☜ ☆

+

□

● To insert x into the
table, first try placing it
at slot h₁(x).

● If that slot is full, kick
out the element y that
used to be in that slot
and try placing it the
other slot it can belong
to (either h₁(y) or
h₂(y)).

● Repeat this process
until all elements
stabilize.

Cuckoo Hashing

△

≈

☜ ☆

+

□

● To insert x into the
table, first try placing it
at slot h₁(x).

● If that slot is full, kick
out the element y that
used to be in that slot
and try placing it the
other slot it can belong
to (either h₁(y) or
h₂(y)).

● Repeat this process
until all elements
stabilize.

Cuckoo Hashing

△

≈

☜ ☆

+

□

● To insert x into the
table, first try placing it
at slot h₁(x).

● If that slot is full, kick
out the element y that
used to be in that slot
and try placing it the
other slot it can belong
to (either h₁(y) or
h₂(y)).

● Repeat this process
until all elements
stabilize.

Cuckoo Hashing

□

≈

☜ ☆

+

△

● To insert x into the
table, first try placing it
at slot h₁(x).

● If that slot is full, kick
out the element y that
used to be in that slot
and try placing it the
other slot it can belong
to (either h₁(y) or
h₂(y)).

● Repeat this process
until all elements
stabilize.

Cuckoo Hashing

□

≈

☜ ☆

+

△

● To insert x into the
table, first try placing it
at slot h₁(x).

● If that slot is full, kick
out the element y that
used to be in that slot
and try placing it the
other slot it can belong
to (either h₁(y) or
h₂(y)).

● Repeat this process
until all elements
stabilize.

Cuckoo Hashing

□

△ ≈

☜ ☆

+

● To insert x into the
table, first try placing it
at slot h₁(x).

● If that slot is full, kick
out the element y that
used to be in that slot
and try placing it the
other slot it can belong
to (either h₁(y) or
h₂(y)).

● Repeat this process
until all elements
stabilize.

Cuckoo Hashing

□

△ ≈

☜ ☆

+

☺

● To insert x into the
table, first try placing it
at slot h₁(x).

● If that slot is full, kick
out the element y that
used to be in that slot
and try placing it the
other slot it can belong
to (either h₁(y) or
h₂(y)).

● Repeat this process
until all elements
stabilize.

Cuckoo Hashing

□

△ ≈

☜ ☆

+

☺

● To insert x into the
table, first try placing it
at slot h₁(x).

● If that slot is full, kick
out the element y that
used to be in that slot
and try placing it the
other slot it can belong
to (either h₁(y) or
h₂(y)).

● Repeat this process
until all elements
stabilize.

Cuckoo Hashing

□

☺ ≈

☜ ☆

+

△

● To insert x into the
table, first try placing it
at slot h₁(x).

● If that slot is full, kick
out the element y that
used to be in that slot
and try placing it the
other slot it can belong
to (either h₁(y) or
h₂(y)).

● Repeat this process
until all elements
stabilize.

Cuckoo Hashing

□

☺ ≈

☜ ☆

+

△

● To insert x into the
table, first try placing it
at slot h₁(x).

● If that slot is full, kick
out the element y that
used to be in that slot
and try placing it the
other slot it can belong
to (either h₁(y) or
h₂(y)).

● Repeat this process
until all elements
stabilize.

Cuckoo Hashing

□

☺ ≈

☜ ☆

+

△

● To insert x into the
table, first try placing it
at slot h₁(x).

● If that slot is full, kick
out the element y that
used to be in that slot
and try placing it the
other slot it can belong
to (either h₁(y) or
h₂(y)).

● Repeat this process
until all elements
stabilize.

Cuckoo Hashing

△

☺ ≈

☜ ☆

+

□

● To insert x into the
table, first try placing it
at slot h₁(x).

● If that slot is full, kick
out the element y that
used to be in that slot
and try placing it the
other slot it can belong
to (either h₁(y) or
h₂(y)).

● Repeat this process
until all elements
stabilize.

Cuckoo Hashing

△

☺ ≈

☜ ☆

+
□

● To insert x into the
table, first try placing it
at slot h₁(x).

● If that slot is full, kick
out the element y that
used to be in that slot
and try placing it the
other slot it can belong
to (either h₁(y) or
h₂(y)).

● Repeat this process
until all elements
stabilize.

Cuckoo Hashing

△

☺

□

≈

☜ ☆

+

● To insert x into the
table, first try placing it
at slot h₁(x).

● If that slot is full, kick
out the element y that
used to be in that slot
and try placing it the
other slot it can belong
to (either h₁(y) or
h₂(y)).

● Repeat this process
until all elements
stabilize.

Cuckoo Hashing

△

☺

□

≈

☜ ☆

+

•

● To insert x into the
table, first try placing it
at slot h₁(x).

● If that slot is full, kick
out the element y that
used to be in that slot
and try placing it the
other slot it can belong
to (either h₁(y) or
h₂(y)).

● Repeat this process
until all elements
stabilize.

Cuckoo Hashing

△

☺

□

≈

☜ ☆

+

•

● To insert x into the
table, first try placing it
at slot h₁(x).

● If that slot is full, kick
out the element y that
used to be in that slot
and try placing it the
other slot it can belong
to (either h₁(y) or
h₂(y)).

● Repeat this process
until all elements
stabilize.

Cuckoo Hashing

△

☺

□

•

☜ ☆

+

≈

● To insert x into the
table, first try placing it
at slot h₁(x).

● If that slot is full, kick
out the element y that
used to be in that slot
and try placing it the
other slot it can belong
to (either h₁(y) or
h₂(y)).

● Repeat this process
until all elements
stabilize.

Cuckoo Hashing

△

☺

□

•

☜ ☆

+

≈

● To insert x into the
table, first try placing it
at slot h₁(x).

● If that slot is full, kick
out the element y that
used to be in that slot
and try placing it the
other slot it can belong
to (either h₁(y) or
h₂(y)).

● Repeat this process
until all elements
stabilize.

Cuckoo Hashing

△

☺

□

•

☜ ≈

+

☆

● To insert x into the
table, first try placing it
at slot h₁(x).

● If that slot is full, kick
out the element y that
used to be in that slot
and try placing it the
other slot it can belong
to (either h₁(y) or
h₂(y)).

● Repeat this process
until all elements
stabilize.

Cuckoo Hashing

△

☺

□

•

☜ ≈

+
☆

● To insert x into the
table, first try placing it
at slot h₁(x).

● If that slot is full, kick
out the element y that
used to be in that slot
and try placing it the
other slot it can belong
to (either h₁(y) or
h₂(y)).

● Repeat this process
until all elements
stabilize.

Cuckoo Hashing

△

☺

□

•

☜ ≈

☆
+

● To insert x into the
table, first try placing it
at slot h₁(x).

● If that slot is full, kick
out the element y that
used to be in that slot
and try placing it the
other slot it can belong
to (either h₁(y) or
h₂(y)).

● Repeat this process
until all elements
stabilize.

Cuckoo Hashing

△

☺

□

•

☜ ≈

☆

+

● To insert x into the
table, first try placing it
at slot h₁(x).

● If that slot is full, kick
out the element y that
used to be in that slot
and try placing it the
other slot it can belong
to (either h₁(y) or
h₂(y)).

● Repeat this process
until all elements
stabilize.

Cuckoo Hashing

△

☺

□

•

+

☜ ≈

☆

● To insert x into the
table, first try placing it
at slot h₁(x).

● If that slot is full, kick
out the element y that
used to be in that slot
and try placing it the
other slot it can belong
to (either h₁(y) or
h₂(y)).

● Repeat this process
until all elements
stabilize.

Cuckoo Hashing

△

☺

□

•

+

☜ ≈

☆

⬠

● To insert x into the
table, first try placing it
at slot h₁(x).

● If that slot is full, kick
out the element y that
used to be in that slot
and try placing it the
other slot it can belong
to (either h₁(y) or
h₂(y)).

● Repeat this process
until all elements
stabilize.

Cuckoo Hashing

△

☺

□

•

+

☜ ≈

☆

⬠

● To insert x into the
table, first try placing it
at slot h₁(x).

● If that slot is full, kick
out the element y that
used to be in that slot
and try placing it the
other slot it can belong
to (either h₁(y) or
h₂(y)).

● Repeat this process
until all elements
stabilize.

Cuckoo Hashing

△

⬠

□

•

+

☜ ≈

☆

☺

● To insert x into the
table, first try placing it
at slot h₁(x).

● If that slot is full, kick
out the element y that
used to be in that slot
and try placing it the
other slot it can belong
to (either h₁(y) or
h₂(y)).

● Repeat this process
until all elements
stabilize.

Cuckoo Hashing

△

⬠

□

•

+

☜ ≈

☆
☺

● To insert x into the
table, first try placing it
at slot h₁(x).

● If that slot is full, kick
out the element y that
used to be in that slot
and try placing it the
other slot it can belong
to (either h₁(y) or
h₂(y)).

● Repeat this process
until all elements
stabilize.

Cuckoo Hashing

△

⬠

☺

•

+

☜ ≈

☆
□

● To insert x into the
table, first try placing it
at slot h₁(x).

● If that slot is full, kick
out the element y that
used to be in that slot
and try placing it the
other slot it can belong
to (either h₁(y) or
h₂(y)).

● Repeat this process
until all elements
stabilize.

Cuckoo Hashing

△

⬠

☺

•

+

☜ ≈

☆

□

● To insert x into the
table, first try placing it
at slot h₁(x).

● If that slot is full, kick
out the element y that
used to be in that slot
and try placing it the
other slot it can belong
to (either h₁(y) or
h₂(y)).

● Repeat this process
until all elements
stabilize.

Cuckoo Hashing

□

⬠

☺

•

+

☜ ≈

☆

△

● To insert x into the
table, first try placing it
at slot h₁(x).

● If that slot is full, kick
out the element y that
used to be in that slot
and try placing it the
other slot it can belong
to (either h₁(y) or
h₂(y)).

● Repeat this process
until all elements
stabilize.

Cuckoo Hashing

□

⬠

☺

•

+

☜ ≈

☆

△

● To insert x into the
table, first try placing it
at slot h₁(x).

● If that slot is full, kick
out the element y that
used to be in that slot
and try placing it the
other slot it can belong
to (either h₁(y) or
h₂(y)).

● Repeat this process
until all elements
stabilize.

Cuckoo Hashing

□

△

☺

•

+

☜ ≈

☆

⬠

● To insert x into the
table, first try placing it
at slot h₁(x).

● If that slot is full, kick
out the element y that
used to be in that slot
and try placing it the
other slot it can belong
to (either h₁(y) or
h₂(y)).

● Repeat this process
until all elements
stabilize.

Cuckoo Hashing

□

△

☺

•

+

☜ ≈

☆

⬠

● To insert x into the
table, first try placing it
at slot h₁(x).

● If that slot is full, kick
out the element y that
used to be in that slot
and try placing it the
other slot it can belong
to (either h₁(y) or
h₂(y)).

● Repeat this process
until all elements
stabilize.

Cuckoo Hashing

□

△

☺

•

+

⬠ ≈

☆

☜

● To insert x into the
table, first try placing it
at slot h₁(x).

● If that slot is full, kick
out the element y that
used to be in that slot
and try placing it the
other slot it can belong
to (either h₁(y) or
h₂(y)).

● Repeat this process
until all elements
stabilize.

Cuckoo Hashing

□

△

☺

•

+

⬠ ≈

☆

☜

● To insert x into the
table, first try placing it
at slot h₁(x).

● If that slot is full, kick
out the element y that
used to be in that slot
and try placing it the
other slot it can belong
to (either h₁(y) or
h₂(y)).

● Repeat this process
until all elements
stabilize.

Cuckoo Hashing

□

△

☺

•

+ ☜
⬠ ≈

☆

● To insert x into the
table, first try placing it
at slot h₁(x).

● If that slot is full, kick
out the element y that
used to be in that slot
and try placing it the
other slot it can belong
to (either h₁(y) or
h₂(y)).

● Repeat this process
until all elements
stabilize.

Cuckoo Hashing

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
table.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

□

△

☺

•

+ ☜
⬠ ≈

☆

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
table.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

□

△

☺

•

+ ☜
⬠ ≈

☆

꩜

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

□

△

☺

•

+ ☜
⬠ ≈

☆

꩜

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

□

△

☺

•

+ ☜
꩜ ≈

☆

⬠

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

□

△

☺

•

+ ☜
꩜ ≈

☆

⬠

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

□

⬠

☺

•

+ ☜
꩜ ≈

☆

△

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

□

⬠

☺

•

+ ☜
꩜ ≈

☆

△

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

△

⬠

☺

•

+ ☜
꩜ ≈

☆

□

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

△

⬠

☺

•

+ ☜
꩜ ≈

☆
□

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

△

⬠

□

•

+ ☜
꩜ ≈

☆
☺

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

△

⬠

□

•

+ ☜
꩜ ≈

☆

☺

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

△

☺

□

•

+ ☜
꩜ ≈

☆

⬠

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

△

☺

□

•

+ ☜
꩜ ≈

☆

⬠

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

△

☺

□

•

+ ☜
⬠ ≈

☆

꩜

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

△

☺

□

•

+ ☜
⬠ ≈

☆
꩜

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

△

☺

꩜

•

+ ☜
⬠ ≈

☆
□

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

△

☺

꩜

•

+ ☜
⬠ ≈

☆

□

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

□

☺

꩜

•

+ ☜
⬠ ≈

☆

△

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

□

☺

꩜

•

+ ☜
⬠ ≈

☆

△

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

□

△

꩜

•

+ ☜
⬠ ≈

☆

☺

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

□

△

꩜

•

+ ☜
⬠ ≈

☆
☺

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

□

△

☺

•

+ ☜
⬠ ≈

☆
꩜

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

□

△

☺

•

+ ☜
⬠ ≈

☆

꩜

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
table.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

□

△

☺

•

+ ☜
⬠ ≈

☆

꩜

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
table.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why? ꩜ ⬠ + △ ☆ ☺ • □ ☜ ≈

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
table.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

꩜

⬠ + △ ☆ ☺ • □ ☜ ≈

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
table.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

꩜

⬠ + △ ☆ ☺ • □ ☜ ≈

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
table.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

꩜

⬠

+ △ ☆ ☺ • □ ☜ ≈

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
table.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

⬠

꩜

+ △ ☆ ☺ • □ ☜ ≈

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
table.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

⬠

꩜

+

△ ☆ ☺ • □ ☜ ≈

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
table.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

⬠

꩜

+

△ ☆ ☺ • □ ☜ ≈

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
table.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

⬠

꩜

+
△

☆ ☺ • □ ☜ ≈

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
table.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

⬠

꩜

+ △

☆ ☺ • □ ☜ ≈

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
table.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

⬠

꩜

+ △
☆

☺ • □ ☜ ≈

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
table.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

⬠

꩜

☆ △
+

☺ • □ ☜ ≈

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
table.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

⬠

꩜

☆ △

+

☺ • □ ☜ ≈

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
table.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

⬠

꩜

+

☆ △

☺ • □ ☜ ≈

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
table.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

⬠

꩜

+

☆ △

☺

• □ ☜ ≈

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
table.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

⬠

꩜

+

☺

☆ △

• □ ☜ ≈

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
table.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

⬠

꩜

+

☺

☆ △

•

□ ☜ ≈

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
table.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

⬠

•

+

☺

☆ △

꩜

□ ☜ ≈

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
table.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

⬠

•

+

☺

☆ △꩜

□ ☜ ≈

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
table.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

꩜

•

+

☺

☆ △⬠

□ ☜ ≈

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
table.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

꩜

•

+

☺

☆ △

⬠

□ ☜ ≈

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
table.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

꩜

•

+
⬠

☺

☆ △

□ ☜ ≈

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
table.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

꩜

•

+
⬠

☺

☆ △

□

☜ ≈

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
table.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

꩜

•

+
⬠

□

☺

☆ △

☜ ≈

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
table.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

꩜

•

+
⬠

□

☺

☆ △
☜

≈

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
table.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

꩜

•

+
⬠

□

☺

☆ ☜△

≈

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
table.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

꩜

•

+
⬠

□

☺

☆ ☜△

≈

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
table.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

꩜

•

+
⬠

□

☺

☆ ☜
△

≈

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
table.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

꩜

•

+
⬠

□

☺

☆ ☜
△

≈

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
table.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

꩜

•

+
⬠

□

☺

☆ ☜
△

≈

Cuckoo Hashing
● An insertion fails if the

displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
table.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

꩜

•

+
⬠

□

☺

☆ ☜
△

≈

How efficient is cuckoo hashing?

Pro tip: When analyzing a data structure,
it never hurts to get some empirical

performance data first.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Suppose we have m slots and store n total elements.
What is the probability that all the insertions succeed,

as a function of the load factor α = ⁿ/ₘ?

α = ⁿ/ₘ

Su
cc

es
s

Pr
ob

ab
ili

ty

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Suppose we have m slots and store n total elements.
What is the probability that all the insertions succeed,

as a function of the load factor α = ⁿ/ₘ?

If α < ½, then
the probability that
everything succeeds

is close to 1.

If α > ½, then
the probability that
everything succeeds

is close to 0.

Going forward,
assume α < ½.

α = ⁿ/ₘ

Su
cc

es
s

Pr
ob

ab
ili

ty

10
00

0
60

00
0

11
00

00

16
00

00

21
00

00

26
00

00

31
00

00

36
00

00

41
00

00

46
00

00

51
00

00

56
00

00

61
00

00

66
00

00

71
00

00

76
00

00

81
00

00

86
00

00

91
00

00

96
00

00
0

100000

200000

300000

400000

500000

600000

Suppose we store n total elements in a table with m slots,
where n < ½m.

How many total displacements occur across all insertions?

10
00

0
60

00
0

11
00

00

16
00

00

21
00

00

26
00

00

31
00

00

36
00

00

41
00

00

46
00

00

51
00

00

56
00

00

61
00

00

66
00

00

71
00

00

76
00

00

81
00

00

86
00

00

91
00

00

96
00

00
0

100000

200000

300000

400000

500000

600000

Wow! That’s
surprisingly

linear!

Goal: Show each
insertion takes

expected time O(1).

Number of insertions

To
ta

l D
is

pl
ac

em
en

ts

Goal: Show that insertions take expected
time O(1), under the assumption that

n = αm for some α < ½.

Analyzing Cuckoo Hashing
● The analysis of cuckoo

hashing is more difficult than
it might at first seem.

● Challenge 1: We may have
to consider hash collisions
across multiple hash
functions.

● Challenge 2: We need to
reason about chains of
displacement, not just how
many elements land
somewhere.

● To resolve these challenges,
we’ll need to bring in some
new techniques.

+

△

☺≈

The Cuckoo Graph
● The cuckoo graph is a

(multi)graph derived
from a cuckoo hash
table.

● Each table slot is a node.
● Each element is an edge

linking the slots where it
can be placed.

● An item’s position in the
table is denoted with a
dot at the end of the line.

● Each node has at most
one dot touching it.

+

△

☺≈

The Cuckoo Graph
● The cuckoo graph is a

(multi)graph derived
from a cuckoo hash
table.

● Each table slot is a node.
● Each element is an edge

linking the slots where it
can be placed.

● An item’s position in the
table is denoted with a
dot at the end of the line.

● Each node has at most
one dot touching it.

+

△

☺≈

The Cuckoo Graph
● The cuckoo graph is a

(multi)graph derived
from a cuckoo hash
table.

● Each table slot is a node.
● Each element is an edge

linking the slots where it
can be placed.

● An item’s position in the
table is denoted with a
dot at the end of the line.

● Each node has at most
one dot touching it.

+

△

☺≈

The Cuckoo Graph
● The cuckoo graph is a

(multi)graph derived
from a cuckoo hash
table.

● Each table slot is a node.
● Each element is an edge

linking the slots where it
can be placed.

● An item’s position in the
table is denoted with a
dot at the end of the line.

● Each node has at most
one dot touching it.

△

+

△

☺≈

☺

+

 ≈

The Cuckoo Graph
● The cuckoo graph is a

(multi)graph derived
from a cuckoo hash
table.

● Each table slot is a node.
● Each element is an edge

linking the slots where it
can be placed.

● An item’s position in the
table is denoted with a
dot at the end of the line.

● Each node has at most
one dot touching it.

△

+

△

☺≈

☺

+

 ≈

The Cuckoo Graph
● The cuckoo graph is a

(multi)graph derived
from a cuckoo hash
table.

● Each table slot is a node.
● Each element is an edge

linking the slots where it
can be placed.

● An item’s position in the
table is denoted with a
dot at the end of the line.

● Each node has at most
one dot touching it.

△

+

△

☺≈

☺

+

 ≈

The Cuckoo Graph
● The cuckoo graph is a

(multi)graph derived
from a cuckoo hash
table.

● Each table slot is a node.
● Each element is an edge

linking the slots where it
can be placed.

● An item’s position in the
table is denoted with a
dot at the end of the line.

● Each node has at most
one dot touching it.

△

+

△

☺≈

☺

+

 ≈

The Cuckoo Graph
● Inserting an element into

a cuckoo hash table adds
a new edge to the graph
linking two nodes (slots).

● The chain of
displacements
corresponds to flipping
edges.

△

+

△

☺≈

☺

+

 ≈

The Cuckoo Graph
● Inserting an element into

a cuckoo hash table adds
a new edge to the graph
linking two nodes (slots).

● The chain of
displacements
corresponds to flipping
edges.

△

+

△

☺≈

☺

+

 ≈

꩜

The Cuckoo Graph
● Inserting an element into

a cuckoo hash table adds
a new edge to the graph
linking two nodes (slots).

● The chain of
displacements
corresponds to flipping
edges.

△

+

△

☺≈

☺

+

 ≈

꩜

The Cuckoo Graph
● Inserting an element into

a cuckoo hash table adds
a new edge to the graph
linking two nodes (slots).

● The chain of
displacements
corresponds to flipping
edges.

△

+

△

☺≈

☺

+

 ≈

꩜

The Cuckoo Graph
● Inserting an element into

a cuckoo hash table adds
a new edge to the graph
linking two nodes (slots).

● The chain of
displacements
corresponds to flipping
edges.

△

+꩜

△

☺≈

☺

+

 ≈

꩜

The Cuckoo Graph
● Inserting an element into

a cuckoo hash table adds
a new edge to the graph
linking two nodes (slots).

● The chain of
displacements
corresponds to flipping
edges.

△

꩜

△+

☺≈

☺

+

 ≈

꩜

The Cuckoo Graph
● Inserting an element into

a cuckoo hash table adds
a new edge to the graph
linking two nodes (slots).

● The chain of
displacements
corresponds to flipping
edges.

△

꩜

+

△☺≈

☺

+

 ≈

꩜

The Cuckoo Graph
● Inserting an element into

a cuckoo hash table adds
a new edge to the graph
linking two nodes (slots).

● The chain of
displacements
corresponds to flipping
edges.

△

☺꩜

+

△≈

☺

+

 ≈

꩜

The Cuckoo Graph
● Inserting an element into

a cuckoo hash table adds
a new edge to the graph
linking two nodes (slots).

● The chain of
displacements
corresponds to flipping
edges.

△

☺

+

꩜

△≈

☺

+

 ≈

꩜

The Cuckoo Graph
● Claim 1: If x is inserted into a cuckoo hash

table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph
● Claim 1: If x is inserted into a cuckoo hash

table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph
● Claim 1: If x is inserted into a cuckoo hash

table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph
● Claim 1: If x is inserted into a cuckoo hash

table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph
● Claim 1: If x is inserted into a cuckoo hash

table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph
● Claim 1: If x is inserted into a cuckoo hash

table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph
● Claim 1: If x is inserted into a cuckoo hash

table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph
● Claim 1: If x is inserted into a cuckoo hash

table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph
● Claim 1: If x is inserted into a cuckoo hash

table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph
● Claim 1: If x is inserted into a cuckoo hash

table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph
● Claim 1: If x is inserted into a cuckoo hash

table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.
We’re moving

through a tree,
which eventually

ends at a leaf.

The Cuckoo Graph
● Claim 1: If x is inserted into a cuckoo hash

table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph
● Claim 1: If x is inserted into a cuckoo hash

table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph
● Claim 1: If x is inserted into a cuckoo hash

table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph
● Claim 1: If x is inserted into a cuckoo hash

table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph
● Claim 1: If x is inserted into a cuckoo hash

table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph
● Claim 1: If x is inserted into a cuckoo hash

table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph
● Claim 1: If x is inserted into a cuckoo hash

table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph
● Claim 1: If x is inserted into a cuckoo hash

table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph
● Claim 1: If x is inserted into a cuckoo hash

table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph
● Claim 1: If x is inserted into a cuckoo hash

table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph
● Claim 1: If x is inserted into a cuckoo hash

table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph
● Claim 1: If x is inserted into a cuckoo hash

table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph
● Claim 1: If x is inserted into a cuckoo hash

table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph
● Claim 1: If x is inserted into a cuckoo hash

table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph
● Claim 1: If x is inserted into a cuckoo hash

table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph
● Claim 1: If x is inserted into a cuckoo hash

table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

We either avoid the cycle, or
loop through the cycle and get

kicked out away from it.

The Cuckoo Graph
● Claim 2: If x is inserted into a cuckoo hash

table, the insertion fails if the connected
component containing x contains more than
one cycle.

Why?
Answer at

https://pollev.com/cs166spr23

https://pollev.com/cs166spr23

The Cuckoo Graph
● Claim 2: If x is inserted into a cuckoo hash

table, the insertion fails if the connected
component containing x contains more than
one cycle.

No cycles: The CC
containing our edge
is a tree. A tree with

k nodes has k – 1
edges.

The Cuckoo Graph
● Claim 2: If x is inserted into a cuckoo hash

table, the insertion fails if the connected
component containing x contains more than
one cycle.

One cycle: We’ve
added an edge,

giving k nodes and k
edges.

The Cuckoo Graph
● Claim 2: If x is inserted into a cuckoo hash

table, the insertion fails if the connected
component containing x contains more than
one cycle.

Two cycles: There
are k nodes and k+1
edges. There are too
many edges to place

at most one item
per node.

The Cuckoo Graph
● A connected

component of a graph
is called complex if it
contains two or more
cycles.

● Theorem: Insertion
into a cuckoo hash
table succeeds if and
only if the resulting
cuckoo graph has no
complex connected
components.

How big are the connected
components in the cuckoo graph?

(This tells us how much work we
do on a successful insertion.)

What is the probability that
a connected component in the

cuckoo graph is complex?
(This lets us see how much time we should

expect to spend rehashing.)

How big are the connected
components in the cuckoo graph?

(This tells us how much work we
do on a successful insertion.)

What is the probability that
a connected component in the

cuckoo graph is complex?
(This lets us see how much time we should

expect to spend rehashing.)

The Erdős–Rényi model

Random Graph Evolution
● Consider a graph with

V nodes and no edges.
● Incrementally add E

edges to the graph,
each chosen uniformly
at random, possibly
with repetition.

● Question: What
properties will this
graph (probably)
have?

Random Graph Evolution
● Claim: The phenomena

we’re observing with
cuckoo hashing are, in
large part, due to
properties of random
graphs.

● Good News: This is a well-
studied field! All the results
we need were first proved
by Erdős and Rényi in
1960.

● This model of incrementally
constructing a graph is
therefore called the Erdős–
Rényi model.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Consider a random (multi)graph G with V nodes and E edges.
What fraction of the nodes are in the largest connected

component of G, as a function of E / V?

E / V

Fr
ac

tio
n

of
 N

od
es

 in
 L

ar
ge

st
 C

C

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Consider a random (multi)graph G with V nodes and E edges.
What fraction of the nodes are in the largest connected

component of G, as a function of E / V?

If E / V < ½, with high
probability, the largest

CC size is o(V).

If E / V > ½, with high
probability, the largest CC

has size Θ(V).

If E < αV for α < ½,
the expected size of a
randomly-chosen CC

is O(1).

E / V

Fr
ac

tio
n

of
 N

od
es

 in
 L

ar
ge

st
 C

C

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Consider a random (multi)graph G with V nodes and E edges.
What fraction of the nodes are in the largest connected

component of G, as a function of E / V?

If E / V < ½, with high
probability, the largest

CC size is o(V).

If E / V > ½, with high
probability, the largest CC

has size Θ(V).

E / V

Fr
ac

tio
n

of
 N

od
es

 in
 L

ar
ge

st
 C

C

If E < αV for α < ½,
the expected size of a
randomly-chosen CC

is O(1).

Sizing a Connected Component
● Goal: Show that if

E < αV for some α < ½,
then the expected size of
a CC in a randomly-built
graph is O(1).

● This seems hard, so let’s
step away from random
graphs for a moment.

● Suppose you have a
graph G and a node v in
the graph.

● What algorithms might
you use to determine the
size of the connected
component containing v?

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge
A

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

B E

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

B E

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

E

B

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

E

B

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

E

B

C F

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

E

B

C F

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

E

B

C F

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

E

B

C F

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

E

B

C F

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

E

B C

F

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

E

B C

F

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

E

B C

F D G

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

E

B C

F D G

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

E

B C

F

D G

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

E

B C

F

D G

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

E

B C

F

D G H

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

E

B C

F

D G H

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

E

B C

F

G H

D

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

E

B C

F

G H

D

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

E

B C

F

G H

D

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

E

B C

F G

H

D

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

E

B C

F G

H

D

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

E

B C

F G

H

D

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

E

B C

F G

H

D

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

E

B C

F G

H

D

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

E

B C

F G

H

D

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H

A

E

B C

F G

H

D

Refresher: BFS and BFS Trees

A

E B

CF

GH D

● Original Problem: Figure out
the size of the CC containing
some initial node v.

● Equivalent Problem: Figure
out the number of nodes in the
BFS tree rooted at v.

● Framing this as a tree problem
turns out to make it easier:
● We can think about, for each level

in the tree, how many nodes are in
that level.

● We can then sum that up across
levels to get the number of nodes
in the CC.

● “All” we need to do now is apply
this to a randomly-built graph.

Sizing a Connected Component
● Pick a starting node

for our BFS.
● We want to model how

many children it has
in the BFS tree.
● There are E total

edges.
● Each edge has a ²/V

chance of touching our
node.

● So this node’s number
of children is a
Binom(E, ²/V) random
variable.

★

Sizing a Connected Component
● Each new node kinda

sorta ish also touches a
number of new nodes that
can be modeled as a
Binom(E, ²/V) variable.
● This ignores double-

counting nodes.
● This ignores existing

edges.
● This ignores correlations

between edge counts.
● However, this

conservatively bounds the
number of new nodes
visited in the next BFS
step.

★

Modeling the BFS
● Idea: Count nodes in a

connected component by
simulating a BFS tree,
where the number of
children of each node is a
Binom(E, ²/V) variable.
● Begin with a root node.
● Each node has children

distributed as a
Binom(E, ²/V) variable.

● Question: How many
total nodes will this
simulated BFS discover
before terminating?

● Denote by Xₖ the number
of nodes at level k. This
gives a series of random
variables X₀, X₁, X₂, … .

● These variables are
defined by the following
randomized recurrence
relation:

● Here, each ξᵢ,ₖ is an i.i.d.
Binom(E, ²/V) variable.

Xk+1=∑
i=1

Xk

ξi ,kX0=1

X₀ = 1

X₁ = 3

X₂ = 4

X₃ = 1

Modeling the BFS

● Denote by Xₖ the number
of nodes at level k. This
gives a series of random
variables X₀, X₁, X₂, … .

● These variables are
defined by the following
randomized recurrence
relation:

● Here, each ξᵢ,ₖ is an i.i.d.
Binom(E, ²/V) variable.

Xk+1=∑
i=1

Xk

ξi ,k

X₁ = 3

X₂ = 4

X₃ = 1

Modeling the BFS

X0=1

X₀ = 1

There’s always
exactly one

root node in the
BFS tree.

X₀ = 1

● Denote by Xₖ the number
of nodes at level k. This
gives a series of random
variables X₀, X₁, X₂, … .

● These variables are
defined by the following
randomized recurrence
relation:

● Here, each ξᵢ,ₖ is an i.i.d.
Binom(E, ²/V) variable.

X₃ = 1

Modeling the BFS

X0=1

… has a binomially-
distributed number

of children.

Each of the
Xₖ nodes in
layer k…

Xk+1=∑
i=1

Xk

ξi ,k

X₁ = 3

X₂ = 4

● Observation: On
expectation, each
node has 2E/V children.

● The “expected
branching factor” of
the tree is 2E/V, which
is less than 1.

● How many nodes are
there in the tree,
assuming each layer
has the expected
number of nodes?

X₀ = 1

X₁ = 3

X₂ = 4

X₃ = 1

Modeling the BFS

X₀ = 1

X₁ = 3

X₂ = 4

X₃ = 1

Modeling the BFS

There is always
one node here.

On expectation,
we’d find 2E/V
nodes here.

On expectation,
we’d find (2E/V)2

nodes here.

On expectation,
we’d find (2E/V)3

nodes here.

X₀ = 1

X₁ = 3

X₂ = 4

X₃ = 1

Modeling the BFS

Lemma: E[Xₖ] = (2E/V)ᵏ.

Proof Idea: Show that

E[Xₖ₊₁] = (2E/V) E[Xₖ]

and apply induction.

X0 = 1

ξi ,k~Binom (E , 2
V

)

Xk+1 = ∑
i=1

Xk

ξi ,k

E [X k+1] = E [∑
i=1

X k

ξi , k]

= ∑
j=0

∞ (E [∑
i=1

X k

ξi , k | Xk= j]⋅Pr [Xk= j])
= ∑

j=0

∞ (E [∑
i=1

j

ξi , k | Xk= j]⋅Pr [Xk= j])
= ∑

j=0

∞

∑
i=1

j

(E [ξi , k | Xk= j]⋅Pr [X k= j])

= ∑
j=0

∞

∑
i=1

j

(E [ξi , k]⋅Pr [X k= j])

= ∑
j=0

∞

∑
i=1

j

(n
m⋅Pr [Xk= j])

= n
m⋅∑

j =0

∞

(j⋅Pr [Xk= j])

= n
m⋅E [Xk]

X0 = 1

Xk+1 = ∑
i=1

Xk

ξi ,k

ξi ,k~Binom (E , 2
V

)

This is a sum of a random number
of terms, so we can’t use linearity

of expectation.

However, we can use the
law of total expectation:

E[X]=∑
j

E [X | Y= j] ⋅ Pr [Y= j]

E [X k+1] = E [∑
i=1

X k

ξi , k]

= ∑
j=0

∞

E [∑
i=1

X k

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞

E [∑
i=1

j

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞ (∑i=1

j

E [ξi , k | Xk= j])⋅Pr [Xk= j]

= ∑
j=0

∞ (∑i=1

j

E [ξi , k])⋅Pr [Xk= j]

= ∑
j=0

∞ (∑i=1

j n
m)⋅Pr [X k= j]

= n
m⋅∑

j =0

∞

(j⋅Pr [Xk= j])

= n
m⋅E [Xk]

X0 = 1

Xk+1 = ∑
i=1

Xk

ξi ,k

ξi ,k~Binom (E , 2
V

)

This is a sum of a random number
of terms, so we can’t use linearity

of expectation.

However, we can use the
law of total expectation:

E[X]=∑
j

E [X | Y= j] ⋅ Pr [Y= j]

E [X k+1] = E [∑
i=1

X k

ξi , k]

= ∑
j=0

∞

E [∑
i=1

X k

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞

E [∑
i=1

j

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞ (∑i=1

j

E [ξi , k | Xk= j])⋅Pr [Xk= j]

= ∑
j=0

∞ (∑i=1

j

E [ξi , k])⋅Pr [Xk= j]

= ∑
j=0

∞ (∑i=1

j n
m)⋅Pr [X k= j]

= n
m⋅∑

j =0

∞

(j⋅Pr [Xk= j])

= n
m⋅E [Xk]

X0 = 1

Xk+1 = ∑
i=1

Xk

ξi ,k

ξi ,k~Binom (E , 2
V

)

Well, that
makes things

easier!

E [X k+1] = E [∑
i=1

X k

ξi , k]

= ∑
j=0

∞

E [∑
i=1

X k

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞

E [∑
i=1

j

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞ (∑i=1

j

E [ξi , k | Xk= j])⋅Pr [Xk= j]

= ∑
j=0

∞ (∑i=1

j

E [ξi , k])⋅Pr [Xk= j]

= ∑
j=0

∞ (∑i=1

j n
m)⋅Pr [X k= j]

= n
m⋅∑

j =0

∞

(j⋅Pr [Xk= j])

= n
m⋅E [Xk]

X0 = 1

Xk+1 = ∑
i=1

Xk

ξi ,k

ξi ,k~Binom (E , 2
V

)

Well, that
makes things

easier!

E [X k+1] = E [∑
i=1

X k

ξi , k]

= ∑
j=0

∞

E [∑
i=1

X k

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞

E [∑
i=1

j

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞ (∑i=1

j

E [ξi , k | Xk= j])⋅Pr [Xk= j]

= ∑
j=0

∞ (∑i=1

j

E [ξi , k])⋅Pr [Xk= j]

= ∑
j=0

∞ (∑i=1

j n
m)⋅Pr [X k= j]

= n
m⋅∑

j =0

∞

(j⋅Pr [Xk= j])

= n
m⋅E [Xk]

X0 = 1

Xk+1 = ∑
i=1

Xk

ξi ,k

ξi ,k~Binom (E , 2
V

)

This sum ranges over a
fixed number of terms, so
we can apply linearity of
(conditional) expectation.

E [X k+1] = E [∑
i=1

X k

ξi , k]

= ∑
j=0

∞

E [∑
i=1

X k

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞

E [∑
i=1

j

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞ (∑i=1

j

E [ξi , k | Xk= j])⋅Pr [Xk= j]

= ∑
j=0

∞ (∑i=1

j

E [ξi , k])⋅Pr [Xk= j]

= ∑
j=0

∞ (∑i=1

j n
m)⋅Pr [X k= j]

= n
m⋅∑

j =0

∞

(j⋅Pr [Xk= j])

= n
m⋅E [Xk]

X0 = 1

Xk+1 = ∑
i=1

Xk

ξi ,k

ξi ,k~Binom (E , 2
V

)

This sum ranges over a
fixed number of terms, so
we can apply linearity of
(conditional) expectation.

E [X k+1] = E [∑
i=1

X k

ξi , k]

= ∑
j=0

∞

E [∑
i=1

X k

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞

E [∑
i=1

j

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞ (∑i=1

j

E [ξi , k | Xk= j])⋅Pr [Xk= j]

= ∑
j=0

∞ (∑i=1

j

E [ξi , k])⋅Pr [Xk= j]

= ∑
j=0

∞ (∑i=1

j n
m)⋅Pr [X k= j]

= n
m⋅∑

j =0

∞

(j⋅Pr [Xk= j])

= n
m⋅E [Xk]

X0 = 1

Xk+1 = ∑
i=1

Xk

ξi ,k

ξi ,k~Binom (E , 2
V

)

These random variables
are independent – one

represents the number of
nodes in a particular layer.

One represents the
number of children that a
specific node might have.

E [X k+1] = E [∑
i=1

X k

ξi , k]

= ∑
j=0

∞

E [∑
i=1

X k

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞

E [∑
i=1

j

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞ (∑i=1

j

E [ξi , k | Xk= j])⋅Pr [Xk= j]

= ∑
j=0

∞ (∑i=1

j

E [ξi , k])⋅Pr [Xk= j]

= ∑
j=0

∞ (∑i=1

j n
m)⋅Pr [X k= j]

= n
m⋅∑

j =0

∞

(j⋅Pr [Xk= j])

= n
m⋅E [Xk]

X0 = 1

Xk+1 = ∑
i=1

Xk

ξi ,k

ξi ,k~Binom (E , 2
V

)

These random variables
are independent – one

represents the number of
nodes in a particular layer.

One represents the
number of children that a
specific node might have.

E [X k+1] = E [∑
i=1

X k

ξi , k]

= ∑
j=0

∞

E [∑
i=1

X k

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞

E [∑
i=1

j

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞ (∑i=1

j

E [ξi , k | Xk= j])⋅Pr [Xk= j]

= ∑
j=0

∞ (∑i=1

j

E [ξi , k])⋅Pr [Xk= j]

= ∑
j=0

∞ (∑i=1

j n
m)⋅Pr [X k= j]

= n
m⋅∑

j =0

∞

(j⋅Pr [Xk= j])

= n
m⋅E [Xk]

X0 = 1

ξi ,k~Binom (E , 2
V

)

Xk+1 = ∑
i=1

Xk

ξi ,k

E [X k+1] = E [∑
i=1

X k

ξi , k]

= ∑
j=0

∞

E [∑
i=1

X k

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞

E [∑
i=1

j

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞ (∑i=1

j

E [ξi , k | Xk= j])⋅Pr [Xk= j]

= ∑
j=0

∞ (∑i=1

j

E [ξi , k])⋅Pr [Xk= j]

= ∑
j=0

∞ (∑i=1

j 2 E
V)⋅Pr [Xk= j]

= 2 E
V ⋅∑

j=0

∞

(j⋅Pr [Xk= j])

= 2 E
V ⋅E [X k]

X0 = 1

Xk+1 = ∑
i=1

Xk

ξi ,k

ξi ,k~Binom (E , 2
V

)

E [X k+1] = E [∑
i=1

X k

ξi , k]

= ∑
j=0

∞

E [∑
i=1

X k

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞

E [∑
i=1

j

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞ (∑i=1

j

E [ξi , k | Xk= j])⋅Pr [Xk= j]

= ∑
j=0

∞ (∑i=1

j

E [ξi , k])⋅Pr [Xk= j]

= ∑
j=0

∞ (∑i=1

j 2 E
V)⋅Pr [Xk= j]

= 2 E
V ⋅∑

j=0

∞

(j⋅Pr [Xk= j])

= 2 E
V ⋅E [X k]

X0 = 1

Xk+1 = ∑
i=1

Xk

ξi ,k

ξi ,k~Binom (E , 2
V

)

E [X k+1] = E [∑
i=1

X k

ξi , k]

= ∑
j=0

∞

E [∑
i=1

X k

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞

E [∑
i=1

j

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞ (∑i=1

j

E [ξi , k | Xk= j])⋅Pr [Xk= j]

= ∑
j=0

∞ (∑i=1

j

E [ξi , k])⋅Pr [Xk= j]

= ∑
j=0

∞ (∑i=1

j 2 E
V)⋅Pr [Xk= j]

= 2 E
V ⋅∑

j=0

∞

(j⋅Pr [Xk= j])

= 2 E
V ⋅E [X k]

X0 = 1

Xk+1 = ∑
i=1

Xk

ξi ,k

ξi ,k~Binom (E , 2
V

)

E [X k+1] = E [∑
i=1

X k

ξi , k]

= ∑
j=0

∞

E [∑
i=1

X k

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞

E [∑
i=1

j

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞ (∑i=1

j

E [ξi , k | Xk= j])⋅Pr [Xk= j]

= ∑
j=0

∞ (∑i=1

j

E [ξi , k])⋅Pr [Xk= j]

= ∑
j=0

∞ (∑i=1

j 2 E
V)⋅Pr [Xk= j]

= 2 E
V ⋅∑

j=0

∞

(j⋅Pr [Xk= j])

= 2 E
V ⋅E [X k]

X0 = 1

Xk+1 = ∑
i=1

Xk

ξi ,k

ξi ,k~Binom (E , 2
V

)

E [X k+1] = E [∑
i=1

X k

ξi , k]

= ∑
j=0

∞

E [∑
i=1

X k

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞

E [∑
i=1

j

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞ (∑i=1

j

E [ξi , k | Xk= j])⋅Pr [Xk= j]

= ∑
j=0

∞ (∑i=1

j

E [ξi , k])⋅Pr [Xk= j]

= ∑
j=0

∞ (∑i=1

j 2 E
V)⋅Pr [Xk= j]

= 2 E
V ⋅∑

j=0

∞

(j⋅Pr [Xk= j])

= 2 E
V ⋅E [X k]

X0 = 1

Xk+1 = ∑
i=1

Xk

ξi ,k

ξi ,k~Binom (E , 2
V

)

E [X k+1] = E [∑
i=1

X k

ξi , k]

= ∑
j=0

∞

E [∑
i=1

X k

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞

E [∑
i=1

j

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞ (∑i=1

j

E [ξi , k | Xk= j])⋅Pr [Xk= j]

= ∑
j=0

∞ (∑i=1

j

E [ξi , k])⋅Pr [Xk= j]

= ∑
j=0

∞ (∑i=1

j 2 E
V)⋅Pr [Xk= j]

= 2 E
V ⋅∑

j=0

∞

(j⋅Pr [Xk= j])

= 2 E
V ⋅E [X k]

X0 = 1

Xk+1 = ∑
i=1

Xk

ξi ,k

ξi ,k~Binom (E , 2
V

)

The Finishing Touches
● On expectation, there are (2E/V)k nodes in layer k of

the BFS tree.
● Summing across all layers, on expectation there are

(1 – 2E/V)-1 total nodes in the BFS tree.
● Assuming E = αV, for a fixed constant α < ½, this is

O(1) nodes per CC.
● Therefore, in cuckoo hashing, assuming we set

n = αm for some α < ½, each insertion touches a CC
with expected size O(1), so each insertion does only
expected O(1) displacements.

● This explains why the total number of displacements
was such a strongly linear plot!

How big are the connected
components in the cuckoo graph?

(This tells us how much work we
do on a successful insertion.)

What is the probability that
a connected component in the

cuckoo graph is complex?
(This lets us see how much time we should

expect to spend rehashing.)

How big are the connected
components in the cuckoo graph?

(This tells us how much work we
do on a successful insertion.)

What is the probability that
a connected component in the

cuckoo graph is complex?
(This lets us see how much time we should

expect to spend rehashing.)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Consider a random (multi)graph G with V nodes and E edges.
What is the the probability that every connected component in

G is simple, as a function of the ratio E / V?

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E / V

Pr
ob

ab
ili

ty

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Consider a random (multi)graph G with V nodes and E edges.
What is the the probability that every connected component in

G is simple, as a function of the ratio E / V?

If E / V < ½, then
complex components
almost never happen.

If E / V > ½, then
complex components

almost always happen.

Intuition: Each node
has, on expectation,
fewer than one edge
touching it. Cycles

require multiple nodes
to get two edges.

E / V

Pr
ob

ab
ili

ty

Random Graph Theory
● Theorem: Let E = αV for

some α < ½. Then the
probability that any
connected component is
complex is O(¹/V).

● Corollary: Using cuckoo
hashing with m slots and
n = αm items, the
probability that a series
of n insertions fails is
O(¹/ₙ), and the expected
number of times a rehash
is required before it
succeeds is O(1).

Random Graph Theory
● Every proof I’ve seen of

this result boils down
to a (messy) counting
argument of
enumerating possible
complex CC shapes
and evaluating their
probabilities.

● (Possibly?) Open
Problem: Find a short,
simple proof of the
result about complex
CCs.

The Overall Analysis
● Cuckoo hashing gives

worst-case lookups and
deletions.

● Insertions are expected
O(1).
● This assumes you

periodically double the
size of the table and
rehash when things get
too full.

● The hidden constants are
small, and this is a
practical technique for
building hash tables.

Cuckoo Hashing:
● lookup: O(1)
● insert: O(1)*

● delete: O(1)

* expected, amortized

Improving Our Space Usage

Improving Space Usage
● A cuckoo hash table with n elements

requires a table of size n / α, with α < ½.
● This means at least 50% of the table slots

will be empty.
● The root cause is a fundamental property

of random graphs; exceeding this
threshold makes failure almost certain.

● Question: How can we push past this to
improve cuckoo hashing space usage?

Improving Space Usage
● Our cuckoo graph – and the

associated limitations on
cuckoo hashing – result from
these two assumptions:
● Each table slot can hold at

most one item.
● Each item can be placed into

one of two positions.
● We need to relax these

constraints.

Which of these constraints could
we relax, and what might it look

like if we did?

Answer at
https://pollev.com/cs166spr23

△

+

△

☺≈

☺

+

 ≈

꩜

https://pollev.com/cs166spr23

Idea 1: Allow each table slot
to store multiple items.

Blocked Cuckoo Hashing
● In blocked cuckoo

hashing, each slot can hold
b ≥ 1 items.

● When inserting an item,
place it in one of the two
slots it hashes to if there’s
free space in either.

● If there’s no room left,
displace a randomly-chosen
other element in the slot.

● Increasing b decreases the
likelihood that insertions fail,
but increases the cost of
lookups and deletions.

● b is often chosen so each slot
fits cleanly in a cache line,
improving performance.

a b

l
g

c
i

b p
h k

n
j o

f

d
e

m c

0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Suppose we insert n = αm elements into a
cuckoo hash table with ᵐ/b slots, each of
which can hold b elements. What is the
probability that all insertions succeed?

■ b = 01
■ b = 02
■ b = 04
■ b = 08
■ b = 16

α = ⁿ/ₘ

Su
cc

es
s

Pr
ob

ab
ili

ty

Blocked Cuckoo Hashing
● Suppose we have a table with m/b slots, each of

which hold b items. Assume n = mα and we use
two hash functions.

● The thresholds given below show the maximum
value of α a blocked cuckoo hash table can use.

● As you can see, modest increases to b dramatically
increase the space utilization of the table!

b = 2 b = 3 b = 4

Theoretical
max α 0.897 0.959 0.980

b = 5

0.989

b = 1

0.500

Blocked Cuckoo Hashing
● These bounds are derived from the k-orientability

threshold for random graphs.
● A k-orientation of a graph is a way of placing dots on

one endpoint of each edge such that each node has at
most k dots touching it.

● In cuckoo hashing, this means that each node stores
at most k items.

● Deriving these bounds requires a deep dive into random
graph theory that’s above the CS166 pay grade, but
which would be great to learn more about on your own!

b = 2 b = 3 b = 4

Theoretical
max α 0.897 0.959 0.980

b = 5

0.989

b = 1

0.500

Idea 2: Use multiple hash functions.

d-ary Cuckoo Hashing
● In d-ary cuckoo hashing, we pick an integer d ≥ 2 and

choose d different hash functions.
● Each item can be stored in one up to d slots, with

choices given by the hash functions.
● You could do extra work to ensure there are d separate

locations, or be okay with duplicates if the hashes collide.
● To check if an item is in the table, hash it d times and

see if it’s in any of those slots.
● To insert an item, hash it d times and place the item in a

free slot. If none exists, evict a randomly-chosen item
from a slot, place the new item there, and repeat.

Suppose we insert n = αm elements into a
hash table with m slots. What is the

probability that all insertions succeed?

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1

■ d = 2
■ d = 3
■ d = 4
■ d = 5
■ d = 6

α = ⁿ/ₘ

Su
cc

es
s

Pr
ob

ab
ili

ty

d-ary Cuckoo Hashing
● With d = 2, each item in

the cuckoo hash table
can be in one of two
locations.

● We can model this as a
graph: nodes are slots
and edges are items.

● With d > 2, each item
can be in more than two
locations.

● How do we model this?

 ꩜

d-ary Cuckoo Hashing
● A hypergraph is a

generalization of a
graph.

● It consists of nodes and
hyperedges, where a
hyperedge can link any
number of nodes.

● A d-regular hypergraph
is one where each
hyperedge links exactly
d nodes.

● With d-ary cuckoo
hashing, we get a d-
regular cuckoo
hypergraph.

 ꩜

 ≈

 ☞

d-ary Cuckoo Hashing
● A 1-orientation of a

hypergraph is a way of
placing a dot on one
endpoint of each
hyperedge so that each
node has at most one
dot on it.

● This corresponds of an
assignments of items
to slots in a d-ary
cuckoo hash table.

 ꩜

 ≈

 ☞

d-ary Cuckoo Hashing
● Below are the 1-orientability thresholds for

d-regular hypergraphs.
● These were worked out over a series of papers in

the early 2000s.
● In d-ary cuckoo hashing, these give the theoretical

maximum α where we can store n items in a table
with m slots, where n = αm.

● Notice that adding in even a single extra hash
function dramatically increases the space efficiency
of the table.

d = 2 d = 3 d = 4

Theoretical
max α

d = 5

0.500 0.917 0.976 0.992

d = 6

0.997

In Practice
● Both blocked cuckoo hashing with b > 1 slots per node

and d-ary cuckoo hashing with d > 2 significantly
improve the space usage of cuckoo hashing.

● In practice, blocked cuckoo hashing tends to be faster
than d-ary cuckoo hashing.
● While we tend to forget this, evaluating hash functions

is costly.
● Blocked cuckoo hashing has better locality of

reference, since there are (typically) only two cache
misses.

● What happens if you combine these approaches
together? That’s something you’ll see on the next
problem set. 😃

To Summarize

Summary of Cuckoo Hashing
● Cuckoo hashing is a fast and powerful

way to build perfect hash tables.
● We can increase the number of hash

functions to increase the load factor,
though at a cost to lookup and insert
times.

● We can increase the number of items per
slot to increase the load factor, though at
a cost to lookup and insert times.

Major Ideas for Today
● Randomized data structures using multiple

hash functions can often be analyzed from
a graph-theoretic perspective.

● Many properties of random graphs and
hypergraphs exhibit sharp phase
transitions.

● Running experiments is a great way to
learn more about randomized data
structures.

Next Time
● TBD!

● Fill out the online form to list your
preferences for future topics.

● I’m excited to see what you want to learn!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240
	Slide 241
	Slide 242
	Slide 243
	Slide 244
	Slide 245
	Slide 246
	Slide 247
	Slide 248
	Slide 249
	Slide 250
	Slide 251
	Slide 252
	Slide 253
	Slide 254
	Slide 255
	Slide 256
	Slide 257
	Slide 258

