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Outline for Today
● Cuckoo Hashing

● A simple, fast hashing system with worst-
case efficient lookups.

● The Erdős–Rényi Model
● Randomly-generated graphs and their 

properties.
● Variants on Cuckoo Hashing

● Making a good idea even better.



  

Preliminaries: Hash Tables



  

Collision Resolution
● All hash tables have to deal with 

hash collisions in some way.
● There are three general ways to 

do this:
● Closed addressing: Store all 

colliding elements in an auxiliary 
data structure like a linked list or 
BST. (For example, standard 
chained hashing.)

● Open addressing: Allow elements 
to overflow out of their target 
bucket and into other spaces. (For 
example, linear probing hashing.)

● Perfect hashing: Do something 
clever with multiple hash functions 
to eliminate collisions.

● We have not spoken on this last 
topic yet.
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Collision Resolution
● All hash tables have to deal with 

hash collisions in some way.
● There are three general ways to 

do this:
● Closed addressing: Store all 

colliding elements in an auxiliary 
data structure like a linked list or 
BST. (For example, standard 
chained hashing.)

● Open addressing: Allow elements 
to overflow out of their target 
bucket and into other spaces. (For 
example, linear probing hashing.)

● Perfect hashing: Do something 
clever with multiple hash functions 
to eliminate collisions.

● What does that last option look 
like?



  

Cuckoo Hashing



  

● Suppose we have a hash table 
with m slots.

● Unlike a normal hash table, 
we’ll use two hash functions. 
We’ll call them h₁ and h₂.

● Each hash function outputs a 
slot number in the set
{ 0, 1, 2, …, m – 1 }.

● We’ll assume that these hash 
functions are truly random, 
with one constraint:
h₁(x) ≠ h₂(x) for any key x.

● The constraint on the hashes 
being different is pretty easy to 
achieve both in theory and in
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● The Rule: Any item x 
must either be at 
position h₁(x) or 
position h₂(x) in the 
table.

● Lookups take worst-
case O(1) time, since 
only two locations need 
to be checked.

● Deletions take worst-
case O(1) time, since 
only two locations need 
to be checked.
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● To insert x into the 
table, first try placing it 
at slot h₁(x).

● If that slot is full, kick 
out the element y that 
used to be in that slot 
and try placing it the 
other slot it can belong 
to (either h₁(y) or 
h₂(y)).

● Repeat this process 
until all elements 
stabilize.
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Cuckoo Hashing
● An insertion fails if the 

displacements form an 
infinite cycle.

● If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
table.

● Multiple rehashes 
might be necessary 
before this succeeds – 
do you see why?
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How efficient is cuckoo hashing?



  

Pro tip: When analyzing a data structure, 
it never hurts to get some empirical 

performance data first.
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Suppose we have m slots and store n total elements.
What is the probability that all the insertions succeed,

as a function of the load factor α = ⁿ/ₘ?

If α < ½, then
the probability that
everything succeeds

is close to 1.

If α > ½, then
the probability that
everything succeeds

is close to 0.

Going forward,
assume α < ½.

α = ⁿ/ₘ
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Suppose we store n total elements in a table with m slots,
where n < ½m.

 

How many total displacements occur across all insertions?
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Wow! That’s 
surprisingly 

linear!

Goal: Show each 
insertion takes 

expected time O(1).
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Goal: Show that insertions take expected 
time O(1), under the assumption that

n = αm for some α < ½.



  

Analyzing Cuckoo Hashing
● The analysis of cuckoo 

hashing is more difficult than 
it might at first seem.

● Challenge 1: We may have 
to consider hash collisions 
across multiple hash 
functions.

● Challenge 2: We need to 
reason about chains of 
displacement, not just how 
many elements land 
somewhere.

● To resolve these challenges, 
we’ll need to bring in some 
new techniques.
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The Cuckoo Graph
● The cuckoo graph is a 

(multi)graph derived 
from a cuckoo hash 
table.

● Each table slot is a node.
● Each element is an edge 

linking the slots where it 
can be placed.

● An item’s position in the 
table is denoted with a 
dot at the end of the line.

● Each node has at most 
one dot touching it.
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table is denoted with a 
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The Cuckoo Graph
● Claim 1: If x is inserted into a cuckoo hash 

table, the insertion succeeds if the connected 
component containing x contains either no 
cycles or only one cycle. 
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The Cuckoo Graph
● Claim 1: If x is inserted into a cuckoo hash 

table, the insertion succeeds if the connected 
component containing x contains either no 
cycles or only one cycle.
We’re moving 

through a tree, 
which eventually 

ends at a leaf.
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The Cuckoo Graph
● Claim 1: If x is inserted into a cuckoo hash 

table, the insertion succeeds if the connected 
component containing x contains either no 
cycles or only one cycle.

We either avoid the cycle, or 
loop through the cycle and get 

kicked out away from it.



  

The Cuckoo Graph
● Claim 2: If x is inserted into a cuckoo hash 

table, the insertion fails if the connected 
component containing x contains more than 
one cycle.

Why?
Answer at

https://pollev.com/cs166spr23

https://pollev.com/cs166spr23


  

The Cuckoo Graph
● Claim 2: If x is inserted into a cuckoo hash 

table, the insertion fails if the connected 
component containing x contains more than 
one cycle.

No cycles: The CC 
containing our edge 
is a tree. A tree with 

k nodes has k – 1 
edges.



  

The Cuckoo Graph
● Claim 2: If x is inserted into a cuckoo hash 

table, the insertion fails if the connected 
component containing x contains more than 
one cycle.

One cycle: We’ve 
added an edge, 

giving k nodes and k 
edges.



  

The Cuckoo Graph
● Claim 2: If x is inserted into a cuckoo hash 

table, the insertion fails if the connected 
component containing x contains more than 
one cycle.

Two cycles: There 
are k nodes and k+1 
edges. There are too 
many edges to place 

at most one item 
per node.



  

The Cuckoo Graph
● A connected 

component of a graph 
is called complex if it 
contains two or more 
cycles.

● Theorem: Insertion 
into a cuckoo hash 
table succeeds if and 
only if the resulting 
cuckoo graph has no 
complex connected 
components.

    



  

How big are the connected 
components in the cuckoo graph?

(This tells us how much work we
do on a successful insertion.)

What is the probability that
a connected component in the

cuckoo graph is complex?
(This lets us see how much time we should

expect to spend rehashing.)



  

How big are the connected 
components in the cuckoo graph?

(This tells us how much work we
do on a successful insertion.)

What is the probability that
a connected component in the

cuckoo graph is complex?
(This lets us see how much time we should

expect to spend rehashing.)



  

The Erdős–Rényi model



  

Random Graph Evolution
● Consider a graph with 

V nodes and no edges.
● Incrementally add E 

edges to the graph, 
each chosen uniformly 
at random, possibly 
with repetition.

● Question: What 
properties will this 
graph (probably) 
have?



  

Random Graph Evolution
● Claim: The phenomena 

we’re observing with 
cuckoo hashing are, in 
large part, due to 
properties of random 
graphs.

● Good News: This is a well-
studied field! All the results 
we need were first proved 
by Erdős and Rényi in 
1960.

● This model of incrementally 
constructing a graph is 
therefore called the Erdős–
Rényi model. 
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Consider a random (multi)graph G with V nodes and E edges.
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Consider a random (multi)graph G with V nodes and E edges.
What fraction of the nodes are in the largest connected

component of G, as a function of E / V?

If E / V < ½, with high
probability, the largest

CC size is o(V).

If E / V > ½, with high
probability, the largest CC

has size Θ(V).

If E < αV for α < ½,
the expected size of a
randomly-chosen CC

is O(1).
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Consider a random (multi)graph G with V nodes and E edges.
What fraction of the nodes are in the largest connected

component of G, as a function of E / V?

If E / V < ½, with high
probability, the largest

CC size is o(V).
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has size Θ(V).

E / V

Fr
ac

tio
n 

of
 N

od
es

 in
 L

ar
ge

st
 C

C

If E < αV for α < ½,
the expected size of a
randomly-chosen CC

is O(1).



  

Sizing a Connected Component
● Goal: Show that if 

E < αV for some α < ½, 
then the expected size of 
a CC in a randomly-built 
graph is O(1).

● This seems hard, so let’s 
step away from random 
graphs for a moment.

● Suppose you have a 
graph G and a node v in 
the graph.

● What algorithms might 
you use to determine the 
size of the connected 
component containing v?



  

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge



  

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge



  

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge
A



  

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A



  

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A



  

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

B E



  

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

B E



  

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

E

B



  

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

E

B



  

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

E

B

C F



  

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

E

B

C F



  

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

E

B

C F



  

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

E

B

C F



  

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

E

B

C F



  

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

E

B C

F



  

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

E

B C

F



  

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

E

B C

F D G



  

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

E

B C

F D G



  

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

E

B C

F

D G



  

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

E

B C

F

D G



  

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

E

B C

F

D G H



  

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

E

B C

F

D G H



  

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

E

B C

F

G H

D



  

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

E

B C

F

G H

D



  

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

E

B C

F

G H

D



  

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

E

B C

F G

H

D



  

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

E

B C

F G

H

D



  

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

E

B C

F G

H

D



  

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

E

B C

F G

H

D



  

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

E

B C

F G

H

D



  

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H
Unvisited Edge

BFS Tree Edge

Unused Edge

A

E

B C

F G

H

D



  

Refresher: BFS and BFS Trees

A

E

B

F

C D

G

H

A

E

B C

F G

H

D



  

Refresher: BFS and BFS Trees

A

E B

CF

GH D

● Original Problem: Figure out 
the size of the CC containing 
some initial node v.

● Equivalent Problem: Figure 
out the number of nodes in the 
BFS tree rooted at v.

● Framing this as a tree problem 
turns out to make it easier:
● We can think about, for each level 

in the tree, how many nodes are in 
that level.

● We can then sum that up across 
levels to get the number of nodes 
in the CC.

● “All” we need to do now is apply 
this to a randomly-built graph.



  

Sizing a Connected Component
● Pick a starting node 

for our BFS.
● We want to model how 

many children it has 
in the BFS tree.
● There are E total 

edges.
● Each edge has a ²/V 

chance of touching our 
node.

● So this node’s number 
of children is a 
Binom(E, ²/V) random 
variable.

★



  

Sizing a Connected Component
● Each new node kinda 

sorta ish also touches a 
number of new nodes that 
can be modeled as a 
Binom(E, ²/V) variable.
● This ignores double-

counting nodes.
● This ignores existing 

edges.
● This ignores correlations 

between edge counts.
● However, this 

conservatively bounds the 
number of new nodes 
visited in the next BFS 
step.

★



  

Modeling the BFS
● Idea: Count nodes in a 

connected component by 
simulating a BFS tree, 
where the number of 
children of each node is a 
Binom(E, ²/V) variable.
● Begin with a root node.
● Each node has children 

distributed as a
Binom(E, ²/V) variable.

● Question: How many 
total nodes will this 
simulated BFS discover 
before terminating?



  

● Denote by Xₖ the number 
of nodes at level k. This 
gives a series of random 
variables X₀, X₁, X₂, … .

● These variables are 
defined by the following 
randomized recurrence 
relation:

● Here, each ξᵢ,ₖ is an i.i.d. 
Binom(E, ²/V) variable.

Xk+1=∑
i=1

Xk

ξi ,kX0=1

X₀ = 1

X₁ = 3

X₂ = 4

X₃ = 1

Modeling the BFS



  

● Denote by Xₖ the number 
of nodes at level k. This 
gives a series of random 
variables X₀, X₁, X₂, … .

● These variables are 
defined by the following 
randomized recurrence 
relation:

● Here, each ξᵢ,ₖ is an i.i.d. 
Binom(E, ²/V) variable.

Xk+1=∑
i=1

Xk

ξi ,k

X₁ = 3

X₂ = 4

X₃ = 1

Modeling the BFS

X0=1

X₀ = 1

There’s always 
exactly one 

root node in the 
BFS tree.



  

X₀ = 1

● Denote by Xₖ the number 
of nodes at level k. This 
gives a series of random 
variables X₀, X₁, X₂, … .

● These variables are 
defined by the following 
randomized recurrence 
relation:

● Here, each ξᵢ,ₖ is an i.i.d. 
Binom(E, ²/V) variable.

X₃ = 1

Modeling the BFS

X0=1

… has a binomially-
distributed number 

of children.

Each of the 
Xₖ nodes in 
layer k…

Xk+1=∑
i=1

Xk

ξi ,k

X₁ = 3

X₂ = 4



  

● Observation: On 
expectation, each 
node has 2E/V children.

● The “expected 
branching factor” of 
the tree is 2E/V, which 
is less than 1.

● How many nodes are 
there in the tree, 
assuming each layer 
has the expected 
number of nodes?

X₀ = 1

X₁ = 3

X₂ = 4

X₃ = 1

Modeling the BFS



  

X₀ = 1

X₁ = 3

X₂ = 4

X₃ = 1

Modeling the BFS

There is always 
one node here.

On expectation, 
we’d find 2E/V 
nodes here.

On expectation, 
we’d find (2E/V)2 

nodes here.

On expectation, 
we’d find (2E/V)3 

nodes here.



  

X₀ = 1

X₁ = 3

X₂ = 4

X₃ = 1

Modeling the BFS

Lemma: E[Xₖ] = (2E/V)ᵏ.
 

Proof Idea: Show that
 

E[Xₖ₊₁] = (2E/V) E[Xₖ]
 

and apply induction.



  

X0 = 1

ξi ,k~Binom (E , 2
V

)

Xk+1 = ∑
i=1

Xk

ξi ,k



  

E [ X k+1] = E [∑
i=1

X k

ξi , k]

= ∑
j=0

∞ (E [∑
i=1

X k

ξi , k  | Xk= j ]⋅Pr [ Xk= j])
= ∑

j=0

∞ (E [∑
i=1

j

ξi , k  | Xk= j ]⋅Pr [ Xk= j])
= ∑

j=0

∞

∑
i=1

j

(E [ξi , k  | Xk= j ]⋅Pr [X k= j ])

= ∑
j=0

∞

∑
i=1

j

(E [ξi , k ]⋅Pr [ X k= j ])

= ∑
j=0

∞

∑
i=1

j

( n
m⋅Pr [Xk= j ])

= n
m⋅∑

j =0

∞

( j⋅Pr [ Xk= j])

= n
m⋅E [ Xk ]

X0 = 1

Xk+1 = ∑
i=1

Xk

ξi ,k

ξi ,k~Binom (E , 2
V

)
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This sum ranges over a 
fixed number of terms, so 
we can apply linearity of 
(conditional) expectation.
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These random variables 
are independent – one 

represents the number of 
nodes in a particular layer. 

One represents the 
number of children that a 
specific node might have.
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The Finishing Touches
● On expectation, there are (2E/V)k nodes in layer k of 

the BFS tree.
● Summing across all layers, on expectation there are 

(1 – 2E/V)-1 total nodes in the BFS tree.
● Assuming E = αV, for a fixed constant α < ½, this is 

O(1) nodes per CC.
● Therefore, in cuckoo hashing, assuming we set 

n = αm for some α < ½, each insertion touches a CC 
with expected size O(1), so each insertion does only 
expected O(1) displacements.

● This explains why the total number of displacements 
was such a strongly linear plot!



  

How big are the connected 
components in the cuckoo graph?

(This tells us how much work we
do on a successful insertion.)

What is the probability that
a connected component in the

cuckoo graph is complex?
(This lets us see how much time we should

expect to spend rehashing.)
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Consider a random (multi)graph G with V nodes and E edges.
What is the the probability that every connected component in
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Consider a random (multi)graph G with V nodes and E edges.
What is the the probability that every connected component in

G is simple, as a function of the ratio E / V?

If E / V < ½, then
complex components
almost never happen.

If E / V > ½, then
complex components

almost always happen.

Intuition: Each node
has, on expectation,
fewer than one edge
touching it. Cycles

require multiple nodes
to get two edges.

E / V
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Random Graph Theory
● Theorem: Let E = αV for 

some α < ½. Then the 
probability that any 
connected component is 
complex is O(¹/V).

● Corollary: Using cuckoo 
hashing with m slots and 
n = αm items, the 
probability that a series 
of n insertions fails is 
O(¹/ₙ), and the expected 
number of times a rehash 
is required before it 
succeeds is O(1).



  

Random Graph Theory
● Every proof I’ve seen of 

this result boils down 
to a (messy) counting 
argument of 
enumerating possible 
complex CC shapes 
and evaluating their 
probabilities.

● (Possibly?) Open 
Problem: Find a short, 
simple proof of the 
result about complex 
CCs.



  

The Overall Analysis
● Cuckoo hashing gives 

worst-case lookups and 
deletions.

● Insertions are expected 
O(1).
● This assumes you 

periodically double the 
size of the table and 
rehash when things get 
too full.

● The hidden constants are 
small, and this is a 
practical technique for 
building hash tables.

Cuckoo Hashing:
● lookup: O(1)
● insert: O(1)*

● delete: O(1)

* expected, amortized



  

Improving Our Space Usage



  

Improving Space Usage
● A cuckoo hash table with n elements 

requires a table of size n / α, with α < ½.
● This means at least 50% of the table slots 

will be empty.
● The root cause is a fundamental property 

of random graphs; exceeding this 
threshold makes failure almost certain.

● Question: How can we push past this to 
improve cuckoo hashing space usage?



  

Improving Space Usage
● Our cuckoo graph – and the 

associated limitations on 
cuckoo hashing – result from 
these two assumptions:
● Each table slot can hold at 

most one item.
● Each item can be placed into 

one of two positions.
● We need to relax these 

constraints.

Which of these constraints could 
we relax, and what might it look 

like if we did?
  

Answer at
https://pollev.com/cs166spr23

△    

+

△

☺≈

☺    

+  

      ≈

꩜                        

https://pollev.com/cs166spr23


  

Idea 1: Allow each table slot
to store multiple items.



  

Blocked Cuckoo Hashing
● In blocked cuckoo 

hashing, each slot can hold 
b ≥ 1 items.

● When inserting an item, 
place it in one of the two 
slots it hashes to if there’s 
free space in either.

● If there’s no room left, 
displace a randomly-chosen 
other element in the slot.

● Increasing b decreases the 
likelihood that insertions fail, 
but increases the cost of 
lookups and deletions.

● b is often chosen so each slot 
fits cleanly in a cache line, 
improving performance.

a b

l
g

c
i

b p
h k

n
j o

f

d
e

m c



  

0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Suppose we insert n = αm elements into a
cuckoo hash table with ᵐ/b slots, each of
which can hold b elements. What is the
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Blocked Cuckoo Hashing
● Suppose we have a table with m/b slots, each of 

which hold b items. Assume n = mα and we use 
two hash functions.

● The thresholds given below show the maximum 
value of α a blocked cuckoo hash table can use.

● As you can see, modest increases to b dramatically 
increase the space utilization of the table!

b = 2 b = 3 b = 4

Theoretical
max α 0.897 0.959 0.980

b = 5

0.989

b = 1

0.500



  

Blocked Cuckoo Hashing
● These bounds are derived from the k-orientability 

threshold for random graphs.
● A k-orientation of a graph is a way of placing dots on 

one endpoint of each edge such that each node has at 
most k dots touching it.

● In cuckoo hashing, this means that each node stores 
at most k items.

● Deriving these bounds requires a deep dive into random 
graph theory that’s above the CS166 pay grade, but 
which would be great to learn more about on your own!

b = 2 b = 3 b = 4

Theoretical
max α 0.897 0.959 0.980

b = 5

0.989

b = 1

0.500



  

Idea 2: Use multiple hash functions.



  

d-ary Cuckoo Hashing
● In d-ary cuckoo hashing, we pick an integer d ≥ 2 and 

choose d different hash functions.
● Each item can be stored in one up to d slots, with 

choices given by the hash functions.
● You could do extra work to ensure there are d separate 

locations, or be okay with duplicates if the hashes collide.
● To check if an item is in the table, hash it d times and 

see if it’s in any of those slots.
● To insert an item, hash it d times and place the item in a 

free slot. If none exists, evict a randomly-chosen item 
from a slot, place the new item there, and repeat.



  

Suppose we insert n = αm elements into a
hash table with m slots. What is the

probability that all insertions succeed?
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d-ary Cuckoo Hashing
● With d = 2, each item in 

the cuckoo hash table 
can be in one of two 
locations.

● We can model this as a 
graph: nodes are slots 
and edges are items.

● With d > 2, each item 
can be in more than two 
locations.

● How do we model this?

       ꩜



  

d-ary Cuckoo Hashing
● A hypergraph is a 

generalization of a 
graph.

● It consists of nodes and 
hyperedges, where a 
hyperedge can link any 
number of nodes.

● A d-regular hypergraph 
is one where each 
hyperedge links exactly 
d nodes.

● With d-ary cuckoo 
hashing, we get a d-
regular cuckoo 
hypergraph.

  ꩜

      ≈

            
            ☞



  

d-ary Cuckoo Hashing
● A 1-orientation of a 

hypergraph is a way of 
placing a dot on one 
endpoint of each 
hyperedge so that each 
node has at most one 
dot on it.

● This corresponds of an 
assignments of items 
to slots in a d-ary 
cuckoo hash table.

  ꩜

      ≈

            
            ☞



  

d-ary Cuckoo Hashing
● Below are the 1-orientability thresholds for

d-regular hypergraphs.
● These were worked out over a series of papers in 

the early 2000s.
● In d-ary cuckoo hashing, these give the theoretical 

maximum α where we can store n items in a table 
with m slots, where n = αm.

● Notice that adding in even a single extra hash 
function dramatically increases the space efficiency 
of the table.

d = 2 d = 3 d = 4

Theoretical
max α

d = 5

0.500 0.917 0.976 0.992

d = 6

0.997



  

In Practice
● Both blocked cuckoo hashing with b > 1 slots per node 

and d-ary cuckoo hashing with d > 2 significantly 
improve the space usage of cuckoo hashing.

● In practice, blocked cuckoo hashing tends to be faster 
than d-ary cuckoo hashing.
● While we tend to forget this, evaluating hash functions 

is costly.
● Blocked cuckoo hashing has better locality of 

reference, since there are (typically) only two cache 
misses.

● What happens if you combine these approaches 
together? That’s something you’ll see on the next 
problem set. 😃



  

To Summarize



  

Summary of Cuckoo Hashing
● Cuckoo hashing is a fast and powerful 

way to build perfect hash tables.
● We can increase the number of hash 

functions to increase the load factor, 
though at a cost to lookup and insert 
times.

● We can increase the number of items per 
slot to increase the load factor, though at 
a cost to lookup and insert times.



  

Major Ideas for Today
● Randomized data structures using multiple 

hash functions can often be analyzed from 
a graph-theoretic perspective.

● Many properties of random graphs and 
hypergraphs exhibit sharp phase 
transitions.

● Running experiments is a great way to 
learn more about randomized data 
structures.



  

Next Time
● TBD!

● Fill out the online form to list your 
preferences for future topics.

● I’m excited to see what you want to learn!
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