
  

Hashing and Sketching
Part Two



  

Outline for Today
● Recap from Last Time

● Where are we, again?
● Count Sketches

● A frequency estimator that shows off several 
key mathematical techniques.

● Cardinality Estimators
● How many different items have you seen?



  

Recap from Last Time



  

Distribution Property: 
Each element should have 

an equal probability of 
being placed in each slot.

Independence Property: 
Where one element is 

placed shouldn’t impact 
where a second goes.

For any x ∈ 𝒰 and random
h ∈ , the value of ℋ h(x) is 

uniform over [m].

For any distinct x, y ∈ 𝒰
and random h ∈ ,ℋ

h(x) and h(y) are independent 
random variables.

A family of hash functions  is called ℋ 2-independent (or 
pairwise independent) if it satisfies the distribution

and independence properties.



  

How to Build an Estimator

Step One:
Build a Simple

Estimator

Step Two:
Compute Expected
Value of Estimator

Step Three:
Apply Concentration

Inequality

Step Four:
Replicate to Boost

Confidence

Hash items to counters;
add +1 when item seen.

Sum of indicators;
2-independent hashes
have low collision rate.

One-sided error; use
expected value and
Markov’s inequality.

Take min; only fails if all
estimates are bad.

Count-Min Sketch



  

New Stuff!



  

The Count Sketch



  

Frequency Estimation
● Recall: A frequency estimator is a data structure 

that supports
● increment(x), which increments the number of times 

that we’ve seen x, and
● estimate(x), which returns an estimate of how many 

times we’ve seen x.
● Notation: Assume that the elements we’re 

processing are x₁, …, xₙ, and that the true frequency 
of element xᵢ is aᵢ.

● Remember that the frequencies are not random 
variables – we’re assuming that they’re not under 
our control. Any randomness comes from hash 
functions.



  

How to Build an Estimator

Step One:
Build a Simple

Estimator

Step Two:
Compute Expected
Value of Estimator

Step Three:
Apply Concentration

Inequality

Step Four:
Replicate to Boost

Confidence

Hash items to counters;
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How to Build an Estimator

Step Two:
Compute Expected
Value of Estimator

Step Three:
Apply Concentration

Inequality

Step Four:
Replicate to Boost

Confidence

Sum of indicators;
2-independent hashes
have low collision rate.

One-sided error; use
expected value and
Markov’s inequality.

Take min; only fails if all
estimates are bad.

Count-Min Sketch Count Sketch

Step One:
Build a Simple

Estimator
Hash items to counters;
add +1 when item seen.



  

Revisiting Count-Min

5 9 11 12
We have a good 
estimate for    , 
since nothing 

collides with it.

Our estimate for   
  is way off 

because of lots of 
small collisions.

No matter what we do, 
we’re not going to get a 

good estimate for    
because it collides with a 
very frequent item (   ).

We have a reasonable 
estimate for    , since it 

collides with an 
uncommon item.



  

Revisiting Count-Min

5 9 11
We have a good 
estimate for    , 
since nothing 

collides with it.

No matter what we do, 
we’re not going to get a 

good estimate for    
because it collides with a 
very frequent item (   ).

We have a reasonable 
estimate for    , since it 

collides with an 
uncommon item.

Question: Can we 
mitigate the impact 

of collisions with 
lots of infrequent 

elements?
Our estimate for   

  is way off 
because of lots of 
small collisions.

12



  

The Setup
● As before, create an array of counters and assign each item 

a counter.
● Key New Step: For each item x, assign x either +1 or -1.

● To increment(x), go to count[h(x)] and add ±1 as appropriate.
● To estimate(x), return count[h(x)], multiplied by ±1 as 

appropriate.

5 9 11 12
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The Setup
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a counter.
● Key New Step: For each item x, assign x either +1 or -1.

● To increment(x), go to count[h(x)] and add ±1 as appropriate.
● To estimate(x), return count[h(x)], multiplied by ±1 as 

appropriate.
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The Setup

We have a good 
estimate for    , 
since nothing 

collides with it.

We have a 
reasonable estimate 
for     because the 

other collisions 
mostly offset.

No matter what we do, 
we’re not going to get a 

good estimate for    
because it collides with a 
very frequent item (   ).

We have a reasonable 
estimate for    , since it 

collides with an 
uncommon item.
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● Maintain an array of counters of length w.
● Pick h ∈  chosen uniformly at random from aℋ

2-independent family of hash functions from . to 𝒰 w.
● Pick s ∈  uniformly randomly and independently of 𝒰

h from a 2-independent family from  to {-1, +1}.𝒰
● increment(x): count[h(x)] += s(x).
● estimate(x): return s(x) · count[h(x)].

Formalizing This

31 41 -59 -26 58h

w counters

…s

Which 
counter? ±1?



  

How to Build an Estimator

Step One:
Build a Simple

Estimator

Step Two:
Compute Expected
Value of Estimator

Step Three:
Apply Concentration

Inequality

Step Four:
Replicate to Boost

Confidence

Hash items to counters;
add +1 when item seen.

Sum of indicators;
2-independent hashes
have low collision rate.

One-sided error; use
expected value and
Markov’s inequality.

Take min; only fails if all
estimates are bad.

Count-Min Sketch Count Sketch

Hash items to counters;
add ±1 when item seen.



  

Step One:
Build a Simple

Estimator
Hash items to counters;
add +1 when item seen.

Hash items to counters;
add ±1 when item seen.

How to Build an Estimator

Step Three:
Apply Concentration

Inequality

Step Four:
Replicate to Boost

Confidence

One-sided error; use
expected value and
Markov’s inequality.

Take min; only fails if all
estimates are bad.

Count-Min Sketch Count Sketch

Step Two:
Compute Expected
Value of Estimator

Sum of indicators;
2-independent hashes
have low collision rate.



  

The Expectation, Intuitively
● Focus on any element xᵢ 

whose frequency we’re 
estimating.

● Think about any element 
that collides with us.

● With 50% probability, it 
increases our estimate.

● With 50% probability, it 
decreases our estimate.

● Intuition: The expected 
value weights both options 
equally, so our estimator 
will be unbiased.

++

+ +



  

Formalizing the Intuition
● As before, define âᵢ to be our estimate of aᵢ.
● As before, âᵢ will depend on how the other 

elements are distributed. Unlike before, it now 
also depends on signs given to the elements by s.

● Specifically, for each other xⱼ that collides with xᵢ, 
the estimate âᵢ includes an error term of

s(xᵢ) · s(xⱼ) · aⱼ
● Why?

The counter for xᵢ will have s(xⱼ) aⱼ added in.
We multiply the counter by s(xᵢ) before returning it.

Answer at
https://pollev.com/cs166spr23

https://pollev.com/cs166spr23


  

Formalizing the Intuition
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Formalizing the Intuition
● As before, define âᵢ to be our estimate of aᵢ.
● As before, âᵢ will depend on how the other 

elements are distributed. Unlike before, it now 
also depends on signs given to the elements by s.

● Specifically, for each other xⱼ that collides with xᵢ, 
the estimate âᵢ includes an error term of

s(xᵢ) · s(xⱼ) · aⱼ
● Why?

● If s(xᵢ) and s(xⱼ) point in the same direction, the 
terms add to the total.

● If s(xᵢ) and s(xⱼ) point in different directions, the 
terms subtract from the total.



  

Formalizing the Intuition
● In our quest to learn more about âᵢ, let’s have Xⱼ be 

a random variable indicating whether xᵢ and xⱼ 
collided with one another:

● We can then express âᵢ in terms of the signed 
contributions from the items it collides with:

X j = {  1 if h(xi)  = h(x j)
  0 if h(xi)  ≠ h(x j)
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E[âi] = E[ai + ∑
j≠i

a j s(xi)s(x j)X j ]

= E[ai] + E[∑
j≠i

a j s(xi)s(x j)X j ]

= ai + ∑
j≠i

E[a j s (xi)s(x j)X j ]              

= ai + ∑
j≠i

E[s (xi)s (x j)]E[a j X j ]         

= ai + ∑
j≠i

E[s(xi)]E[s (x j)]E[a j X j ]    

= ai + ∑
j≠i

0                                      

= ai                                                 
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Hey, it’s 
linearity of 

expectation!
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Remember that 
aᵢ and the like 
aren’t random 

variables.
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We chose the 
hash functions 

h and s 
independently 
of one another.
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Sum of indicators;
2-independent hashes
have low collision rate.

One-sided error; use
expected value and
Markov’s inequality.

Take min; only fails if all
estimates are bad.

2-independence breaks
up products; ±1 variables
have zero expected value.

Count-Min Sketch Count Sketch
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A Hitch
● In the count-min sketch, we used Markov's 

inequality to bound the probability that we get a 
bad estimate.

● This worked because we had a one-sided error: 
the distance âᵢ – aᵢ from the true answer was 
nonnegative.

● With the count sketch, we have a two-sided error: 
âᵢ – aᵢ can be negative in the count sketch because 
collisions can decrease the estimate âᵢ below the 
true value aᵢ.

● We'll need to use a different technique to bound the 
error.



  

Chebyshev to the Rescue
● Chebyshev's inequality states that for any 

random variable X with finite variance, given 
any c > 0, we have

 
● If we can get the variance of âᵢ, we can bound 

the probability that we get a bad estimate with 
our data structure.

Pr [ |X−E[ X ]| ≥ c ] ≤ Var [ X ]
c2 .
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are pairwise uncorrelated, then 
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Lemma: The terms in this sum 
are pairwise uncorrelated.

(Prove this!)
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I know this might look 
really dense, but many of 

these substeps end up 
being really useful 

techniques. These ideas 
generalize, I promise. 
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What does the following quantity represent?
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2

Great exercise: Prove 
that the L₂ norm of a 

vector is never greater 
than the L₁ norm.



  

Where We Stand
● We know that

● With the count-min sketch, we bounded the 
probability that we overestimated by more than 
ε||a||₁.

● Since the variance is related to ||a||₂, for the 
count sketch we’ll bound the probability that 
we are more than ε||a||₂ from our estimate:

Var [âi] ≤
‖a‖2

2

w .

Pr [|âi−ai| > ε‖a‖2]



  

Pr [|âi−ai| > ε‖a‖2]

≤
Var [âi]

(ε‖a‖2)
2

≤
‖a‖2

2

w ⋅ 1
(ε‖a‖2)

2

= 1
wε2



  

Pr [|âi−ai| > ε‖a‖2]

≤
Var [âi]

(ε‖a‖2)
2

≤
‖a‖2

2

w ⋅ 1
(ε‖a‖2)

2

= 1
wε2

Chebyshev’s inequality says that

Pr [ |X−E[ X ]| ≥ c ] ≤ Var [ X ]
c2 .
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Taking Stock
● We’ve just shown that

● This means that we w = Θ(ε-2) in order to get a 
strong bound.
● Compare with the count sketch, where we related w 

to ε-1.
● Idea: Set w = 4 · ε-2.

● Why 4? Because I peeked ahead. 😃

Pr [|âi−ai| > ε‖a‖2] ≤
1

wε2¼



  

How to Build an Estimator

Step One:
Build a Simple

Estimator

Step Two:
Compute Expected
Value of Estimator

Step Three:
Apply Concentration

Inequality

Step Four:
Replicate to Boost

Confidence

Hash items to counters;
add +1 when item seen.

Hash items to counters;
add ±1 when item seen.

Sum of indicators;
2-independent hashes
have low collision rate.

One-sided error; use
expected value and
Markov’s inequality.

Take min; only fails if all
estimates are bad.

2-independence breaks
up products; ±1 variables
have zero expected value.

Two-sided error; compute
variance and use

Chebyshev’s inequality.

Count-Min Sketch Count Sketch



  

Step Two:
Compute Expected
Value of Estimator

Sum of indicators;
2-independent hashes
have low collision rate.

Step One:
Build a Simple

Estimator
Hash items to counters;
add +1 when item seen.

Step Three:
Apply Concentration

Inequality

One-sided error; use
expected value and
Markov’s inequality.

Two-sided error; compute
variance and use

Chebyshev’s inequality.

2-independence breaks
up products; ±1 variables
have zero expected value.

Hash items to counters;
add ±1 when item seen.

How to Build an Estimator

Count-Min Sketch Count Sketch

Step Four:
Replicate to Boost

Confidence
Take min; only fails if all

estimates are bad.



  

Running in Parallel
● Imagine we run d copies of this estimator and call estimate(x) 

on each of our estimators and get back these estimates.
● We need to give back a single number.
● Question: How should we aggregate these numbers into a 

single estimate?

Estimator 1:

137
Estimator 2:

271
Estimator 3:

166
Estimator 4:

103
Estimator 5:

261

Answer at
https://pollev.com/cs166spr23

https://pollev.com/cs166spr23
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Running in Parallel

Estimator 1:

137
Estimator 2:

271
Estimator 3:

166
Estimator 4:

103
Estimator 5:

261

● Unlike last time, we have a two-sided error, so 
taking the minimum would be a Very Bad Thing.

● Two reasonable options come to mind:
● Take the mean of the estimates.
● Take the median of the estimates.

● Question: Which should we pick?



  

Working With Means
● Claim: Taking the mean of multiple estimators does increase 

our probability of being close to the expected value, but not 
very quickly.

● Intuition: Not all outliers are created equal, and outliers far 
from the target range skew the estimate.

● The Math: Averaging d copies of an estimator decreases the 
variance by a factor of d. (Prove this!) By Chebyshev, that 
decreases the probability of getting a bad answer by a factor 
of d. We’d like something that decays exponentially in d.



  

Working With Medians
● Claim: If we output the median estimate given by 

the data structures, we have high probability of 
giving an acceptably close answer.

● Intuition: The only way that the median isn’t in 
the “good” area is if at least half the estimates 
are in the “bad” area.

● Each individual data structure has a “reasonable” 
chance to be good, so this is very unlikely.
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Working With Medians
● Claim: If we output the median estimate given by 

the data structures, we have high probability of 
giving an acceptably close answer.

● Intuition: The only way that the median isn’t in 
the “good” area is if at least half the estimates 
are in the “bad” area.

● Each individual data structure has a “reasonable” 
chance to be good, so this is very unlikely.



  

Working With Medians
● Let D denote a random variable equal to the 

number of data structures that produce an 
answer not within ε||a||₂ of the true answer.

● Since each independent data structure has 
failure probability at most ¼, we can upper-
bound D with a Binom(d, ¼) variable.

● We want to know Pr[D > d / 2].
● How can we determine this?



  

Chernoff Bounds
● The Chernoff bound says that if X ~ Binom(n, p) 

and p < ½, then

 
where z(p) = (½ – p)2 / 2p.

● In our case, D ~ Binom(d, ¼), so we know that   
  

● Therefore, choosing d = 8 log δ-1 ensures that

Pr [D ≥ d
2 ] ≤ e−n⋅z (1/4) = e−d/8

Pr [ X ≥
n
2 ] < e−n⋅z (p)

Pr [|âi−ai| > ε‖a‖2] ≤ Pr [D ≥
d
2 ] ≤ δ



  

Chernoff Bounds
● The Chernoff bound says that if X ~ Binom(n, p) 

and p < ½, then

 
where z(p) = (½ – p)2 / 2p.

● In our case, D ~ Binom(d, ¼), so we know that   
  

● Therefore, choosing d = 8 log δ-1 ensures that

Pr [D ≥ d
2 ] ≤ e−n⋅z (1/4) = e−d/8

Pr [ X ≥
n
2 ] < e−n⋅z (p)

Pr [|âi−ai| > ε‖a‖2] ≤ Pr [D ≥
d
2 ] ≤ δ

Intuition: For any fixed value of p, 
this quantity decays exponentially 

quickly as a function of n. It’s 
extremely unlikely that more than 

half our estimates will be bad.



  

Chernoff Bounds
● The Chernoff bound says that if X ~ Binom(n, p) 

and p < ½, then

 
where z(p) = (½ – p)2 / 2p.

● In our case, D ~ Binom(d, ¼), so we know that   
  

● Therefore, choosing d = 8 ln δ-1 ensures that

Pr [D ≥ d
2 ] ≤ e−d⋅z (1/4) = e−d/8

Pr [ X ≥
n
2 ] < e−n⋅z (p)

Pr [|âi−ai| > ε‖a‖2] ≤ Pr [D ≥
d
2 ] ≤ δ



  

How to Build an Estimator

Step One:
Build a Simple

Estimator

Step Two:
Compute Expected
Value of Estimator

Step Three:
Apply Concentration

Inequality

Step Four:
Replicate to Boost

Confidence

Hash items to counters;
add +1 when item seen.

Hash items to counters;
add ±1 when item seen.

Sum of indicators;
2-independent hashes
have low collision rate.

One-sided error; use
expected value and
Markov’s inequality.

Take min; only fails if all
estimates are bad.

2-independence breaks
up products; ±1 variables
have zero expected value.

Two-sided error; compute
variance and use

Chebyshev’s inequality.

Take median; only can fail
if half of estimates are
wrong; use Chernoff.

Count-Min Sketch Count Sketch



  

The Count Sketch

31 41 -59 -26 58h₁
27 -18 28 -18 … -45h₂
16 -18 -3 39 … -75h₃

69 -31 47 -18 … 59hd

...…

w = ⌈4 · ε-2⌉
d =

 ⌈8 ln δ
-1⌉

…

Sampled uniformly and 
independently from

2-independent families 
of hash functions

s₁
s₂
s₃

sd

…
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The Count Sketch
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The Count Sketch
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increment(x):
   for i = 1 … d:
      count[i][h (x)] += s (ᵢ ᵢ x)
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   options = []
   for i = 1 … d:
      options += count[i][h (x)] * s (x)ᵢ ᵢ
   return medianOf(options)

31 40 -59 -26 58

27 -18 28 -19 … -45

16 -18 -3 40 … -75

69 -31 47 -18 … 58

...

…



  

The Count Sketch

h₁
h₂
h₃

hd

…

w = ⌈4 · ε-2⌉
d =

 ⌈8 ln δ
-1⌉

s₁
s₂
s₃

sd

…

increment(x):
   for i = 1 … d:
      count[i][h (x)] += s (ᵢ ᵢ x)

estimate(x):
   options = []
   for i = 1 … d:
      options += count[i][h (x)] * s (x)ᵢ ᵢ
   return medianOf(options)

31 40 -59 -26 58

27 -18 28 -19 … -45

16 -18 -3 40 … -75

69 -31 47 -18 … 58

...

…



  

The Final Analysis
● Here’s a 

comparison of these 
two structures.

● Question to 
ponder: When is a 
count-min sketch 
better than a count 
sketch, and vice-
versa?

Count-Min Sketch
Space: Θ(ε-1 · log δ-1)
increment: Θ(log δ-1)
estimate: Θ(log δ-1)
Accuracy: within ε||a||₁.

 
Count Sketch

Space: Θ(ε-2 · log δ-1)
increment: Θ(log δ-1)
estimate: Θ(log δ-1)
Accuracy: within ε||a||₂



  

Major Ideas Here
● Concentration inequalities are useful tools for showing the 

right thing probably happens.
● For one-sided errors, try Markov’s inequality.
● For two-sided errors, try Chebyshev’s inequality.
● To bound the probability that lots of things all go wrong, use 

Chernoff bounds.
● For more on different mathematical tools like these, check out 

this blog post by Scott Aaronson.
● Modest success probability can be amplified by running 

things in parallel.
● For one-sided errors, try using the min or max.
● For two-sided errors, try using the median.

● We can estimate quantities using significantly less space 
than storing those quantities exactly if we’re okay with 
approximate answers.

https://www.scottaaronson.com/blog/?p=3712


  

Cardinality Estimation



  

Cardinality Estimation
● A cardinality estimator is a data structure supporting the 

following operations:
● see(x), which records that x has been seen, and
● estimate(), which returns an estimate of the number of distinct 

values we’ve seen.
● In other words, they estimate the cardinality of the set of all 

items that have been seen.
● These data structures are widely deployed in practice.

● Databases use them to select which of many different algorithms 
to run, based on the number of items to process.

● Websites use them to estimate how many different people have 
visited the site in a given time window.

≈ ꩜ + ☜☆ ☆ ꩜ ≈ ≈



  

Cardinality Estimation
● As with frequency estimation, we can solve the 

cardinality estimation problem exactly using hash 
tables or binary search trees using Ω(n) space.

● To be useful in large-scale data applications, 
cardinality estimators need to use significantly 
less space than this.

● Question: How low can we go?

≈ ꩜ + ☜☆ ☆ ꩜ ≈ ≈



  

Flipping Coins



  

Score: 4

Score: 0

Score: 2

Flipping Coins
● Here’s a game: I’m 

going to flip a coin 
until I get tails. My 
score is the number 
of heads that I flip.

● The probability of 
flipping k or more 
consecutive heads is 
2-k, so it’s pretty 
unlikely that I’m 
going to flip lots of 
heads in a row.

H H H H T

T

H H T



  

Flipping Coins
● Suppose I show you the 

following clip of me 
playing this game.

● Which is more likely?
● I played the game once and 

got really lucky.
● I played the game 256 times 

and showed you my best 
run.

● Probability you see this 
after one game: ¹/₅₁₂.

● Probability this is the best 
you see after 256 games: 
approximately 23.3%.

H H H
H H H
H H T



  

Flipping Coins
● Intuition: Play this 

game multiple times 
and track the 
maximum number of 
heads you get in a 
row.

● If the maximum 
number of heads we 
see is H, estimate that 
we played 2H times.

● Question: How good 
of an estimate is this?

H H H
H H H
H H T



  

Flipping Coins
● Suppose we play this game n times. What’s 

the probability we see at least k 
consecutive heads at least once?
 = Pr[see at least k heads in n games]
 = 1 – Pr[never see k heads in n games]
 = 1 – Pr[never see k heads in one game]ⁿ
 = 1 – (1 – 2⁻ᵏ)ⁿ

● What does this function look like?



  
Play this game n times. What is the probability

that our maximum score is k or more?

At 210 elements,
63% chance of
getting 10 or

more in a row.

At 210 elements,
6% chance of
getting 14 or
more in a row

Intuition: We’re
well-concentrated
around k = log₂ n.

Fact:
E[H] ≈ log₂ n + 0.333,
which requires some

nontrivial math to
prove. 😃



  

From Coins to Cardinality
● Ultimately, we’re interested in building a cardinality estimator. 

How does this help us?
● Idea: Hash each item in the data stream, and use each hash as the 

random source for the coin-flipping game.
● Duplicate items give duplicate hashes, which provide duplicate 

games, which function as if they never happened.
● If we track the highest score across all these games, we can use 

that to estimate how many games we played, which is equal to the 
number of distinct elements we saw.

≈ ꩜ + ☜☆ ☆ ꩜ ≈ ≈

46 35 1 22 1746 1 35 35

THT… THH… HHH… HTH… HTH…THT… HHH… THH… THH…



  

From Coins to Cardinality
● We need some way of going from hash codes to 

sequences of coin tosses.
● Idea: Treat the hash as a sequence of bits. 0 

means heads, 1 means tails.

☜
2682174240



  

From Coins to Cardinality
● We need some way of going from hash codes to 

sequences of coin tosses.
● Idea: Treat the hash as a sequence of bits. 0 

means heads, 1 means tails.
● Then, count how many 0 bits appear 

consecutively at the end of the number.

☜
10011111110111101011101100100000

THHTTTTTTTHTTTTHTHTTTHTTHHTHHHHH



  

A Simple Estimator
● Keep track of a value H, 

initially zero, that records the 
maximum number of zero bits 
seen at the end of a number.

● To see an item:
● Compute a hash code for that 

item.
● Compute the number of trailing 

zeros.
● Update H if this is a new 

record.
● To estimate the number of 

distinct elements:
● Return 2H.

꩜

1101111010111011

TTHTTTTHTHTTTHTT



  

A Simple Estimator
● How much space does this 

single estimator need?
● Assume we have an upper 

bound U on the maximum 
cardinality. Our hashes 
never need more than 
Θ(log U) bits.

● Bits required to write down 
the position of a bit in that 
hash: Θ(log log U).

● That is an absolutely tiny 
amount of space compared 
to storing the elements!

꩜

1101111010111011

TTHTTTTHTHTTTHTT



  

Improving the Estimator
● The current estimator has a few weaknesses.

● It always outputs a size that’s a power of two, so we’re 
likely to be off by a full binary order of magnitude.

● It tends to skew high, since a single unexpected run of 
heads pushes the whole total up.

● But we have already seen some techniques for 
improving estimators:
● Run lots of copies in parallel to reduce the likelihood of 

any one of them being bad.
● Use some creative strategy to combine those individual 

estimates into one really good one.
● And in fact, folks have done just that. 😃



  

HyperLogLog
● The HyperLogLog estimator uses many independent 

copies of this estimator to produce a very high-quality 
estimate.
● Run m copies of the estimator, using a hash function to distribute 

items to estimators, so that each copy gets roughly a ¹/ₘ fraction 
of the items.

● Compute the harmonic mean of the estimates to mitigate outliers 
while smoothing between powers of two.

● Multiply in a debiasing term to mitigate the skew from both the 
original estimates and the harmonic mean.

● This estimator is used extensively in practice; with about 
768 bytes of memory, it can estimate cardinalities for any 
real-world data stream to about 3% accuracy.

● It’s widely used in database systems, and many open-
source implementations are available.



  

HyperLogLog
● The analysis of HyperLogLog from the 

original paper is exceedingly difficult, and I 
haven’t been able to follow along with all the 
details.

● Hopefully, this intuitive explanation of how it 
works is enough for you. 😃

● (Probably?) Open problem: Find a 
significantly simpler and cleaner rigorous 
analysis of HyperLogLog than the original.



  

Major Ideas We’ve Seen
● You can build a great estimator by running lots 

of weak estimators in parallel and aggregating 
the results.

● Indicator variables and linearity of expectation 
are powerful tools when analyzing sketches.

● Markov’s and Chebyshev’s inequalities are 
useful for bounding probabilities involving 
hashing.

● The Chernoff bound is a great tool for showing 
it’s unlikely for lots of things to go wrong.



  

Next Time
● Cuckoo Hashing

● Hashing with worst-case efficient lookups.
● The Erdős–Rényi Model

● Random graph theory revisited.
● Hypergraph Orientation

● A beautiful and surprising theory.
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