

Hashing and Sketching
Part Two

Outline for Today
● Recap from Last Time

● Where are we, again?
● Count Sketches

● A frequency estimator that shows off several
key mathematical techniques.

● Cardinality Estimators
● How many different items have you seen?

Recap from Last Time

Distribution Property:
Each element should have

an equal probability of
being placed in each slot.

Independence Property:
Where one element is

placed shouldn’t impact
where a second goes.

For any x ∈ 𝒰 and random
h ∈ , the value of ℋ h(x) is

uniform over [m].

For any distinct x, y ∈ 𝒰
and random h ∈ ,ℋ

h(x) and h(y) are independent
random variables.

A family of hash functions is called ℋ 2-independent (or
pairwise independent) if it satisfies the distribution

and independence properties.

How to Build an Estimator

Step One:
Build a Simple

Estimator

Step Two:
Compute Expected
Value of Estimator

Step Three:
Apply Concentration

Inequality

Step Four:
Replicate to Boost

Confidence

Hash items to counters;
add +1 when item seen.

Sum of indicators;
2-independent hashes
have low collision rate.

One-sided error; use
expected value and
Markov’s inequality.

Take min; only fails if all
estimates are bad.

Count-Min Sketch

New Stuff!

The Count Sketch

Frequency Estimation
● Recall: A frequency estimator is a data structure

that supports
● increment(x), which increments the number of times

that we’ve seen x, and
● estimate(x), which returns an estimate of how many

times we’ve seen x.
● Notation: Assume that the elements we’re

processing are x₁, …, xₙ, and that the true frequency
of element xᵢ is aᵢ.

● Remember that the frequencies are not random
variables – we’re assuming that they’re not under
our control. Any randomness comes from hash
functions.

How to Build an Estimator

Step One:
Build a Simple

Estimator

Step Two:
Compute Expected
Value of Estimator

Step Three:
Apply Concentration

Inequality

Step Four:
Replicate to Boost

Confidence

Hash items to counters;
add +1 when item seen.

Sum of indicators;
2-independent hashes
have low collision rate.

One-sided error; use
expected value and
Markov’s inequality.

Take min; only fails if all
estimates are bad.

Count-Min Sketch Count Sketch

How to Build an Estimator

Step Two:
Compute Expected
Value of Estimator

Step Three:
Apply Concentration

Inequality

Step Four:
Replicate to Boost

Confidence

Sum of indicators;
2-independent hashes
have low collision rate.

One-sided error; use
expected value and
Markov’s inequality.

Take min; only fails if all
estimates are bad.

Count-Min Sketch Count Sketch

Step One:
Build a Simple

Estimator
Hash items to counters;
add +1 when item seen.

Revisiting Count-Min

5 9 11 12
We have a good
estimate for ,
since nothing

collides with it.

Our estimate for
 is way off

because of lots of
small collisions.

No matter what we do,
we’re not going to get a

good estimate for
because it collides with a
very frequent item ().

We have a reasonable
estimate for , since it

collides with an
uncommon item.

Revisiting Count-Min

5 9 11
We have a good
estimate for ,
since nothing

collides with it.

No matter what we do,
we’re not going to get a

good estimate for
because it collides with a
very frequent item ().

We have a reasonable
estimate for , since it

collides with an
uncommon item.

Question: Can we
mitigate the impact

of collisions with
lots of infrequent

elements?
Our estimate for

 is way off
because of lots of
small collisions.

12

The Setup
● As before, create an array of counters and assign each item

a counter.
● Key New Step: For each item x, assign x either +1 or -1.

● To increment(x), go to count[h(x)] and add ±1 as appropriate.
● To estimate(x), return count[h(x)], multiplied by ±1 as

appropriate.

5 9 11 12

The Setup
● As before, create an array of counters and assign each item

a counter.
● Key New Step: For each item x, assign x either +1 or -1.

● To increment(x), go to count[h(x)] and add ±1 as appropriate.
● To estimate(x), return count[h(x)], multiplied by ±1 as

appropriate.

5 9 11 12

The Setup
● As before, create an array of counters and assign each item

a counter.
● Key New Step: For each item x, assign x either +1 or -1.

● To increment(x), go to count[h(x)] and add ±1 as appropriate.
● To estimate(x), return count[h(x)], multiplied by ±1 as

appropriate.

-5 +5 +9 +4

+

+

+ ++

+

+ + +

-

-

- - -

+ + + +

+

-

+

-

+

+

+ + + +

+ +
+ +

--

The Setup
● As before, create an array of counters and assign each item

a counter.
● Key New Step: For each item x, assign x either +1 or -1.

● To increment(x), go to count[h(x)] and add ±1 as appropriate.
● To estimate(x), return count[h(x)], multiplied by ±1 as

appropriate.

-5 +6 +9 +4

+

+

+ ++

+

+ + +

-

-

- - -

+ + + +

+

-

+

-

+

+

+ + + +

+ +
+ +

--

+

The Setup
● As before, create an array of counters and assign each item

a counter.
● Key New Step: For each item x, assign x either +1 or -1.

● To increment(x), go to count[h(x)] and add ±1 as appropriate.
● To estimate(x), return count[h(x)], multiplied by ±1 as

appropriate.

-6 +6 +9 +4

+

+

+ ++

+

+ + +

-

-

- - -

+ + + +

+

-

+

-

+

+

+ + + +

+ +
+ +

--

+

-

The Setup
● As before, create an array of counters and assign each item

a counter.
● Key New Step: For each item x, assign x either +1 or -1.

● To increment(x), go to count[h(x)] and add ±1 as appropriate.
● To estimate(x), return count[h(x)], multiplied by ±1 as

appropriate.

-6 +6 +8 +4

+

+

+ ++

+

+ + +

-

-

- - -

+ + + +

+

-

+

-

+

+

+ + + +

+ +
+ +

--

+

-

-

+

+

+ ++

+

+ + +

-

-

- - -

+ + + +

+

-

+

-

+

+

+ + + +

+ +
+ +

--

The Setup

We have a good
estimate for ,
since nothing

collides with it.

We have a
reasonable estimate
for because the

other collisions
mostly offset.

No matter what we do,
we’re not going to get a

good estimate for
because it collides with a
very frequent item ().

We have a reasonable
estimate for , since it

collides with an
uncommon item.

-

-

+

● Maintain an array of counters of length w.
● Pick h ∈ chosen uniformly at random from aℋ

2-independent family of hash functions from . to 𝒰 w.
● Pick s ∈ uniformly randomly and independently of 𝒰

h from a 2-independent family from to {-1, +1}.𝒰
● increment(x): count[h(x)] += s(x).
● estimate(x): return s(x) · count[h(x)].

Formalizing This

31 41 -59 -26 58h

w counters

…s

Which
counter? ±1?

How to Build an Estimator

Step One:
Build a Simple

Estimator

Step Two:
Compute Expected
Value of Estimator

Step Three:
Apply Concentration

Inequality

Step Four:
Replicate to Boost

Confidence

Hash items to counters;
add +1 when item seen.

Sum of indicators;
2-independent hashes
have low collision rate.

One-sided error; use
expected value and
Markov’s inequality.

Take min; only fails if all
estimates are bad.

Count-Min Sketch Count Sketch

Hash items to counters;
add ±1 when item seen.

Step One:
Build a Simple

Estimator
Hash items to counters;
add +1 when item seen.

Hash items to counters;
add ±1 when item seen.

How to Build an Estimator

Step Three:
Apply Concentration

Inequality

Step Four:
Replicate to Boost

Confidence

One-sided error; use
expected value and
Markov’s inequality.

Take min; only fails if all
estimates are bad.

Count-Min Sketch Count Sketch

Step Two:
Compute Expected
Value of Estimator

Sum of indicators;
2-independent hashes
have low collision rate.

The Expectation, Intuitively
● Focus on any element xᵢ

whose frequency we’re
estimating.

● Think about any element
that collides with us.

● With 50% probability, it
increases our estimate.

● With 50% probability, it
decreases our estimate.

● Intuition: The expected
value weights both options
equally, so our estimator
will be unbiased.

++

+ +

Formalizing the Intuition
● As before, define âᵢ to be our estimate of aᵢ.
● As before, âᵢ will depend on how the other

elements are distributed. Unlike before, it now
also depends on signs given to the elements by s.

● Specifically, for each other xⱼ that collides with xᵢ,
the estimate âᵢ includes an error term of

s(xᵢ) · s(xⱼ) · aⱼ
● Why?

The counter for xᵢ will have s(xⱼ) aⱼ added in.
We multiply the counter by s(xᵢ) before returning it.

Answer at
https://pollev.com/cs166spr23

https://pollev.com/cs166spr23

Formalizing the Intuition
● As before, define âᵢ to be our estimate of aᵢ.
● As before, âᵢ will depend on how the other

elements are distributed. Unlike before, it now
also depends on signs given to the elements by s.

● Specifically, for each other xⱼ that collides with xᵢ,
the estimate âᵢ includes an error term of

s(xᵢ) · s(xⱼ) · aⱼ
● Why?

● The counter for xᵢ will have s(xⱼ) aⱼ added in.
● We multiply the counter by s(xᵢ) before returning it.

Formalizing the Intuition
● As before, define âᵢ to be our estimate of aᵢ.
● As before, âᵢ will depend on how the other

elements are distributed. Unlike before, it now
also depends on signs given to the elements by s.

● Specifically, for each other xⱼ that collides with xᵢ,
the estimate âᵢ includes an error term of

s(xᵢ) · s(xⱼ) · aⱼ
● Why?

● If s(xᵢ) and s(xⱼ) point in the same direction, the
terms add to the total.

● If s(xᵢ) and s(xⱼ) point in different directions, the
terms subtract from the total.

Formalizing the Intuition
● In our quest to learn more about âᵢ, let’s have Xⱼ be

a random variable indicating whether xᵢ and xⱼ
collided with one another:

● We can then express âᵢ in terms of the signed
contributions from the items it collides with:

X j = { 1 if h(xi) = h(x j)
 0 if h(xi) ≠ h(x j)

Formalizing the Intuition
● In our quest to learn more about âᵢ, let’s have Xⱼ be

a random variable indicating whether xᵢ and xⱼ
collided with one another:

● We can then express âᵢ in terms of the signed
contributions from the items xᵢ collides with:

X j = { 1 if h(xi) = h(x j)
 0 if h(xi) ≠ h(x j)

âi = ∑
j

a j s(xi)s(x j) X j = ai + ∑
j≠i

a j s(xi)s (x j) X j

Formalizing the Intuition
● In our quest to learn more about âᵢ, let’s have Xⱼ be

a random variable indicating whether xᵢ and xⱼ
collided with one another:

● We can then express âᵢ in terms of the signed
contributions from the items xᵢ collides with:

X j = { 1 if h(xi) = h(x j)
 0 if h(xi) ≠ h(x j)

âi = ∑
j

a j s(xi)s(x j) X j = ai + ∑
j≠i

a j s(xi)s (x j) X j

This is how much the collision
impacts our estimate.

Formalizing the Intuition
● In our quest to learn more about âᵢ, let’s have Xⱼ be

a random variable indicating whether xᵢ and xⱼ
collided with one another:

● We can then express âᵢ in terms of the signed
contributions from the items xᵢ collides with:

X j = { 1 if h(xi) = h(x j)
 0 if h(xi) ≠ h(x j)

âi = ∑
j

a j s(xi)s(x j) X j = ai + ∑
j≠i

a j s(xi)s (x j) X j

We only care about
items we collided with.

This is how much the collision
impacts our estimate.

Formalizing the Intuition
● In our quest to learn more about âᵢ, let’s have Xⱼ be

a random variable indicating whether xᵢ and xⱼ
collided with one another:

● We can then express âᵢ in terms of the signed
contributions from the items xᵢ collides with:

X j = { 1 if h(xi) = h(x j)
 0 if h(xi) ≠ h(x j)

âi = ∑
j

a j s(xi)s(x j) X j = ai + ∑
j≠i

a j s(xi)s (x j) X j

We only care about
items we collided with.

This is how much the collision
impacts our estimate.

E[âi] = E[ai + ∑
j≠i

a j s(xi)s(x j)X j]

= E[ai] + E[∑
j≠i

a j s(xi)s(x j)X j]

= ai + ∑
j≠i

E[a j s (xi)s(x j)X j]

= ai + ∑
j≠i

E[s (xi)s (x j)]E[a j X j]

= ai + ∑
j≠i

E[s(xi)]E[s (x j)]E[a j X j]

= ai + ∑
j≠i

0

= ai

E[âi] = E[ai + ∑
j≠i

a j s(xi)s(x j)X j]

= E[ai] + E[∑
j≠i

a j s(xi)s(x j)X j]

= ai + ∑
j≠i

E[a j s (xi)s(x j)X j]

= ai + ∑
j≠i

E[s (xi)s (x j)]E[a j X j]

= ai + ∑
j≠i

E[s(xi)]E[s (x j)]E[a j X j]

= ai + ∑
j≠i

0

= ai

E[âi] = E[ai + ∑
j≠i

a j s(xi)s(x j)X j]

= E[ai] + E[∑
j≠i

a j s(xi)s(x j)X j]

= ai + ∑
j≠i

E[a j s (xi)s(x j)X j]

= ai + ∑
j≠i

E[s (xi)s (x j)]E[a j X j]

= ai + ∑
j≠i

E[s(xi)]E[s (x j)]E[a j X j]

= ai + ∑
j≠i

0

= ai

Hey, it’s
linearity of

expectation!

E[âi] = E[ai + ∑
j≠i

a j s(xi)s(x j)X j]

= E[ai] + E[∑
j≠i

a j s(xi)s(x j)X j]

= ai + ∑
j≠i

E[a j s (xi)s(x j)X j]

= ai + ∑
j≠i

E[s (xi)s (x j)]E[a j X j]

= ai + ∑
j≠i

E[s(xi)]E[s (x j)]E[a j X j]

= ai + ∑
j≠i

0

= ai

E[âi] = E[ai + ∑
j≠i

a j s(xi)s(x j)X j]

= E[ai] + E[∑
j≠i

a j s(xi)s(x j)X j]

= ai + ∑
j≠i

E[a j s (xi)s(x j)X j]

= ai + ∑
j≠i

E[s (xi)s (x j)]E[a j X j]

= ai + ∑
j≠i

E[s(xi)]E[s (x j)]E[a j X j]

= ai + ∑
j≠i

0

= ai

E[âi] = E[ai + ∑
j≠i

a j s(xi)s(x j)X j]

= E[ai] + E[∑
j≠i

a j s(xi)s(x j)X j]

= ai + ∑
j≠i

E[a j s (xi)s(x j)X j]

= ai + ∑
j≠i

E[s (xi)s (x j)]E[a j X j]

= ai + ∑
j≠i

E[s(xi)]E[s (x j)]E[a j X j]

= ai + ∑
j≠i

0

= ai

Remember that
aᵢ and the like
aren’t random

variables.

E[âi] = E[ai + ∑
j≠i

a j s(xi)s(x j)X j]

= E[ai] + E[∑
j≠i

a j s(xi)s(x j)X j]

= ai + ∑
j≠i

E[a j s (xi)s(x j)X j]

= ai + ∑
j≠i

E[s (xi)s (x j)]E[a j X j]

= ai + ∑
j≠i

E[s(xi)]E[s (x j)]E[a j X j]

= ai + ∑
j≠i

0

= ai

E[âi] = E[ai + ∑
j≠i

a j s(xi)s(x j)X j]

= E[ai] + E[∑
j≠i

a j s(xi)s(x j)X j]

= ai + ∑
j≠i

E[a j s (xi)s(x j)X j]

= ai + ∑
j≠i

E[s (xi)s (x j)]E[a j X j]

= ai + ∑
j≠i

E[s(xi)]E[s (x j)]E[a j X j]

= ai + ∑
j≠i

0

= ai

X j = { 1 if h(xi) = h(x j)
 0 if h(xi) ≠ h(x j)

E[âi] = E[ai + ∑
j≠i

a j s(xi)s(x j)X j]

= E[ai] + E[∑
j≠i

a j s(xi)s(x j)X j]

= ai + ∑
j≠i

E[a j s (xi)s(x j)X j]

= ai + ∑
j≠i

E[s (xi)s (x j)]E[a j X j]

= ai + ∑
j≠i

E[s(xi)]E[s (x j)]E[a j X j]

= ai + ∑
j≠i

0

= ai

We chose the
hash functions

h and s
independently
of one another.

X j = { 1 if h(xi) = h(x j)
 0 if h(xi) ≠ h(x j)

E[âi] = E[ai + ∑
j≠i

a j s (xi)s(x j) X j]

= E[ai] + E[∑
j≠i

a j s (xi)s (x j) X j]

= ai + ∑
j≠i

E[a j s (xi)s(x j) X j]

= ai + ∑
j≠i

E[s (xi)s(x j)]E[a j X j]

= ai + ∑
j≠i

E[s (xi)]E[s(x j)]E[a j X j]

= ai + ∑
j≠i

0

= ai

We chose the
hash functions

h and s
independently
of one another.

X j = { 1 if h(xi) = h(x j)
 0 if h(xi) ≠ h(x j)

E[âi] = E[ai + ∑
j≠i

a j s(xi)s(x j)X j]

= E[ai] + E[∑
j≠i

a j s(xi)s(x j)X j]

= ai + ∑
j≠i

E[a j s (xi)s(x j)X j]

= ai + ∑
j≠i

E[s (xi)s (x j)]E[a j X j]

= ai + ∑
j≠i

E[s(xi)]E[s (x j)]E[a j X j]

= ai + ∑
j≠i

0

= ai

E[âi] = E[ai + ∑
j≠i

a j s(xi)s(x j)X j]

= E[ai] + E[∑
j≠i

a j s(xi)s(x j)X j]

= ai + ∑
j≠i

E[a j s (xi)s(x j)X j]

= ai + ∑
j≠i

E[s (xi)s (x j)]E[a j X j]

= ai + ∑
j≠i

E[s(xi)]E[s (x j)]E[a j X j]

= ai + ∑
j≠i

0

= ai

Since s is drawn from a
2-independent family of
hash functions, we know

s(xᵢ) and s(xⱼ) are
independent random

variables.

E[âi] = E[ai + ∑
j≠i

a j s(xi)s(x j)X j]

= E[ai] + E[∑
j≠i

a j s(xi)s(x j)X j]

= ai + ∑
j≠i

E[a j s (xi)s(x j)X j]

= ai + ∑
j≠i

E[s (xi)s (x j)]E[a j X j]

= ai + ∑
j≠i

E[s(xi)]E[s (x j)]E[a j X j]

= ai + ∑
j≠i

0

= ai

Since s is drawn from a
2-independent family of
hash functions, we know

s(xᵢ) and s(xⱼ) are
independent random

variables.

E[âi] = E[ai + ∑
j≠i

a j s(xi)s(x j)X j]

= E[ai] + E[∑
j≠i

a j s(xi)s(x j)X j]

= ai + ∑
j≠i

E[a j s (xi)s(x j)X j]

= ai + ∑
j≠i

E[s (xi)s (x j)]E[a j X j]

= ai + ∑
j≠i

E[s(xi)]E[s (x j)]E[a j X j]

= ai + ∑
j≠i

0

= ai

E[âi] = E[ai + ∑
j≠i

a j s(xi)s(x j)X j]

= E[ai] + E[∑
j≠i

a j s(xi)s(x j)X j]

= ai + ∑
j≠i

E[a j s (xi)s(x j)X j]

= ai + ∑
j≠i

E[s (xi)s (x j)]E[a j X j]

= ai + ∑
j≠i

E[s(xi)]E[s (x j)]E[a j X j]

= ai + ∑
j≠i

0

= ai

E[s(xᵢ)] = ½ · (-1) + ½ · (+1)
 = 0

E[âi] = E[ai + ∑
j≠i

a j s(xi)s(x j)X j]

= E[ai] + E[∑
j≠i

a j s(xi)s(x j)X j]

= ai + ∑
j≠i

E[a j s (xi)s(x j)X j]

= ai + ∑
j≠i

E[s (xi)s (x j)]E[a j X j]

= ai + ∑
j≠i

E[s(xi)]E[s (x j)]E[a j X j]

= ai + ∑
j≠i

0

= ai

s is drawn from a 2-independent
family of hash functions.

s(xᵢ) is uniformly over {-1, +1}

Pr[s(xᵢ) = -1] = ½ Pr[s(xᵢ) = +1] = ½

E[s(xᵢ)] = ½ · (-1) + ½ · (+1)
 = 0

E[âi] = E[ai + ∑
j≠i

a j s(xi)s(x j)X j]

= E[ai] + E[∑
j≠i

a j s(xi)s(x j)X j]

= ai + ∑
j≠i

E[a j s (xi)s(x j)X j]

= ai + ∑
j≠i

E[s (xi)s (x j)]E[a j X j]

= ai + ∑
j≠i

E[s(xi)]E[s (x j)]E[a j X j]

= ai + ∑
j≠i

0

= ai

s is drawn from a 2-independent
family of hash functions.

s(xᵢ) is uniform over {-1, +1}

Pr[s(xᵢ) = -1] = ½ Pr[s(xᵢ) = +1] = ½

E[s(xᵢ)] = ½ · (-1) + ½ · (+1)
 = 0

E[âi] = E[ai + ∑
j≠i

a j s(xi)s(x j)X j]

= E[ai] + E[∑
j≠i

a j s(xi)s(x j)X j]

= ai + ∑
j≠i

E[a j s (xi)s(x j)X j]

= ai + ∑
j≠i

E[s (xi)s (x j)]E[a j X j]

= ai + ∑
j≠i

E[s(xi)]E[s (x j)]E[a j X j]

= ai + ∑
j≠i

0

= ai

s is drawn from a 2-independent
family of hash functions.

s(xᵢ) is uniform over {-1, +1}

Pr[s(xᵢ) = -1] = ½ Pr[s(xᵢ) = +1] = ½

E[s(xᵢ)] = ½ · (-1) + ½ · (+1)
 = 0

E[âi] = E[ai + ∑
j≠i

a j s(xi)s(x j)X j]

= E[ai] + E[∑
j≠i

a j s(xi)s(x j)X j]

= ai + ∑
j≠i

E[a j s (xi)s(x j)X j]

= ai + ∑
j≠i

E[s (xi)s (x j)]E[a j X j]

= ai + ∑
j≠i

E[s(xi)]E[s (x j)]E[a j X j]

= ai + ∑
j≠i

0

= ai

s is drawn from a 2-independent
family of hash functions.

s(xᵢ) is uniform over {-1, +1}

Pr[s(xᵢ) = -1] = ½ Pr[s(xᵢ) = +1] = ½

E[s(xᵢ)] = ½ · (-1) + ½ · (+1)
 = 0

E[âi] = E[ai + ∑
j≠i

a j s(xi)s(x j)X j]

= E[ai] + E[∑
j≠i

a j s(xi)s(x j)X j]

= ai + ∑
j≠i

E[a j s (xi)s(x j)X j]

= ai + ∑
j≠i

E[s (xi)s (x j)]E[a j X j]

= ai + ∑
j≠i

E[s(xi)]E[s (x j)]E[a j X j]

= ai + ∑
j≠i

0

= ai

s is drawn from a 2-independent
family of hash functions.

s(xᵢ) is uniform over {-1, +1}

Pr[s(xᵢ) = -1] = ½ Pr[s(xᵢ) = +1] = ½

E[s(xᵢ)] = ½ · (-1) + ½ · (+1)
 = 0

E[âi] = E[ai + ∑
j≠i

a j s(xi)s(x j)X j]

= E[ai] + E[∑
j≠i

a j s(xi)s(x j)X j]

= ai + ∑
j≠i

E[a j s (xi)s(x j)X j]

= ai + ∑
j≠i

E[s (xi)s (x j)]E[a j X j]

= ai + ∑
j≠i

E[s(xi)]E[s (x j)]E[a j X j]

= ai + ∑
j≠i

0

= ai

s is drawn from a 2-independent
family of hash functions.

s(xᵢ) is uniform over {-1, +1}

Pr[s(xᵢ) = -1] = ½ Pr[s(xᵢ) = +1] = ½

E[s(xᵢ)] = ½ · (-1) + ½ · (+1)
 = 0

E[âi] = E[ai + ∑
j≠i

a j s(xi)s(x j)X j]

= E[ai] + E[∑
j≠i

a j s(xi)s(x j)X j]

= ai + ∑
j≠i

E[a j s (xi)s(x j)X j]

= ai + ∑
j≠i

E[s (xi)s (x j)]E[a j X j]

= ai + ∑
j≠i

E[s(xi)]E[s (x j)]E[a j X j]

= ai + ∑
j≠i

0

= ai

s is drawn from a 2-independent
family of hash functions.

s(xᵢ) is uniform over {-1, +1}

Pr[s(xᵢ) = -1] = ½ Pr[s(xᵢ) = +1] = ½

E[s(xᵢ)] = ½ · (-1) + ½ · (+1)
 = 0

How to Build an Estimator

Step One:
Build a Simple

Estimator

Step Two:
Compute Expected
Value of Estimator

Step Three:
Apply Concentration

Inequality

Step Four:
Replicate to Boost

Confidence

Hash items to counters;
add +1 when item seen.

Hash items to counters;
add ±1 when item seen.

Sum of indicators;
2-independent hashes
have low collision rate.

One-sided error; use
expected value and
Markov’s inequality.

Take min; only fails if all
estimates are bad.

2-independence breaks
up products; ±1 variables
have zero expected value.

Count-Min Sketch Count Sketch

2-independence breaks
up products; ±1 variables
have zero expected value.

Hash items to counters;
add ±1 when item seen.

Step Two:
Compute Expected
Value of Estimator

Sum of indicators;
2-independent hashes
have low collision rate.

Step One:
Build a Simple

Estimator
Hash items to counters;
add +1 when item seen.

How to Build an Estimator

Step Four:
Replicate to Boost

Confidence
Take min; only fails if all

estimates are bad.

Count-Min Sketch Count Sketch

Step Three:
Apply Concentration

Inequality

One-sided error; use
expected value and
Markov’s inequality.

A Hitch
● In the count-min sketch, we used Markov's

inequality to bound the probability that we get a
bad estimate.

● This worked because we had a one-sided error:
the distance âᵢ – aᵢ from the true answer was
nonnegative.

● With the count sketch, we have a two-sided error:
âᵢ – aᵢ can be negative in the count sketch because
collisions can decrease the estimate âᵢ below the
true value aᵢ.

● We'll need to use a different technique to bound the
error.

Chebyshev to the Rescue
● Chebyshev's inequality states that for any

random variable X with finite variance, given
any c > 0, we have

● If we can get the variance of âᵢ, we can bound

the probability that we get a bad estimate with
our data structure.

Pr [|X−E[X]| ≥ c] ≤ Var [X]
c2 .

Var [âi] = Var [ai + ∑
j≠i

a j s(xi)s(x j) X j]

= Var [∑
j≠i

a j s (x i)s(x j) X j]

= ∑
j≠i

Var [a j s(xi)s (x j) X j]

≤ ∑
j≠i

E [(a j s(xi)s(x j)X j)
2]

= ∑
j≠i

E[a j
2 s(xi)

2 s(x j)
2 X j

2]

= ∑
j≠i

a j
2E[X j

2]

= ∑
j≠i

a j
2E [X j]

= 1
w ∑

j≠i
a j

2

= ‖a‖2
2
/w

Var [âi] = Var [ai + ∑
j≠i

a j s(xi)s(x j) X j]

= Var [∑
j≠i

a j s (x i)s(x j) X j]

= ∑
j≠i

Var [a j s(xi)s (x j) X j]

≤ ∑
j≠i

E [(a j s(xi)s(x j)X j)
2]

= ∑
j≠i

E [a j
2 s(xi)

2 s(x j)
2 X j

2]

= ∑
j≠i

a j
2E[X j

2]

= ∑
j≠i

a j
2E [X j]

= 1
w ∑

j≠i
a j

2

= ‖a‖2
2
/w

Var[a + X] = Var[X]

Var [âi] = Var [ai + ∑
j≠i

a j s(xi)s(x j) X j]

= Var [∑
j≠i

a j s (x i)s(x j) X j]

= ∑
j≠i

Var [a j s(xi)s (x j) X j]

≤ ∑
j≠i

E [(a j s(xi)s(x j)X j)
2]

= ∑
j≠i

E [a j
2 s(xi)

2 s(x j)
2 X j

2]

= ∑
j≠i

a j
2E[X j

2]

= ∑
j≠i

a j
2E [X j]

= 1
w ∑

j≠i
a j

2

= ‖a‖2
2
/w

Var[a + X] = Var[X]

Var [âi] = Var [ai + ∑
j≠i

a j s(xi)s(x j) X j]

= Var [∑
j≠i

a j s (x i)s(x j) X j]

= ∑
j≠i

Var [a j s(xi)s (x j) X j]

≤ ∑
j≠i

E [(a j s(xi)s(x j)X j)
2]

= ∑
j≠i

E [a j
2 s(xi)

2 s(x j)
2 X j

2]

= ∑
j≠i

a j
2E[X j

2]

= ∑
j≠i

a j
2E [X j]

= 1
w∑

j≠i
a j

2

= ‖a‖2
2
/w

In general, Var is not a linear
operator.

However, if the terms in the sum
are pairwise uncorrelated, then

Var is linear.

Lemma: The terms in this sum
are pairwise uncorrelated.

(Prove this!)

Var [âi] = Var [ai + ∑
j≠i

a j s(xi)s(x j) X j]

= Var [∑
j≠i

a j s (x i)s(x j) X j]

= ∑
j≠i

Var [a j s(xi)s (x j) X j]

≤ ∑
j≠i

E [(a j s(xi)s(x j)X j)
2]

= ∑
j≠i

E [a j
2 s(xi)

2 s(x j)
2 X j

2]

= ∑
j≠i

a j
2E[X j

2]

= ∑
j≠i

a j
2E [X j]

= 1
w∑

j≠i
a j

2

= ‖a‖2
2
/w

In general, Var is not a linear
operator.

However, if the terms in the sum
are pairwise uncorrelated, then

Var is linear.

Lemma: The terms in this sum
are pairwise uncorrelated.

(Prove this!)

Var [âi] = Var [ai + ∑
j≠i

a j s(xi)s(x j) X j]

= Var [∑
j≠i

a j s (x i)s(x j) X j]

= ∑
j≠i

Var [a j s(xi)s (x j) X j]

≤ ∑
j≠i

E [(a j s(xi)s(x j)X j)
2]

= ∑
j≠i

E [a j
2 s(xi)

2 s(x j)
2 X j

2]

= ∑
j≠i

a j
2E[X j

2]

= ∑
j≠i

a j
2E [X j]

= 1
w∑

j≠i
a j

2

= ‖a‖2
2
/w

Var [âi] = Var [ai + ∑
j≠i

a j s(xi)s(x j) X j]

= Var [∑
j≠i

a j s (x i)s(x j) X j]

= ∑
j≠i

Var [a j s(xi)s (x j) X j]

≤ ∑
j≠i

E [(a j s(xi)s(x j)X j)
2]

= ∑
j≠i

E [a j
2 s(xi)

2 s(x j)
2 X j

2]

= ∑
j≠i

a j
2E[X j

2]

= ∑
j≠i

a j
2E [X j]

= 1
w∑

j≠i
a j

2

= ‖a‖2
2
/w

The “Sum-o’-Var”
Samovar!

Var [âi] = Var [ai + ∑
j≠i

a j s(xi)s(x j) X j]

= Var [∑
j≠i

a j s (x i)s(x j) X j]

= ∑
j≠i

Var [a j s(xi)s (x j) X j]

≤ ∑
j≠i

E [(a j s(xi)s(x j)X j)
2]

= ∑
j≠i

E[a j
2 s(xi)

2 s(x j)
2 X j

2]

= ∑
j≠i

a j
2E[X j

2]

= ∑
j≠i

a j
2E [X j]

= 1
w ∑

j≠i
a j

2

= ‖a‖2
2
/w

Var [âi] = Var [ai + ∑
j≠i

a j s(xi)s(x j) X j]

= Var [∑
j≠i

a j s (x i)s(x j) X j]

= ∑
j≠i

Var [a j s(xi)s (x j) X j]

≤ ∑
j≠i

E [(a j s(xi)s(x j)X j)
2]

= ∑
j≠i

E[a j
2 s(xi)

2 s(x j)
2 X j

2]

= ∑
j≠i

a j
2E[X j

2]

= ∑
j≠i

a j
2E [X j]

= 1
w ∑

j≠i
a j

2

= ‖a‖2
2
/w

 Var[Z] = E[Z2] – E[Z]2

≤ E[Z2]

Var [âi] = Var [ai + ∑
j≠i

a j s(xi)s(x j) X j]

= Var [∑
j≠i

a j s (x i)s(x j) X j]

= ∑
j≠i

Var [a j s(xi)s (x j) X j]

≤ ∑
j≠i

E [(a j s(xi)s(x j)X j)
2]

= ∑
j≠i

E[a j
2 s(xi)

2 s(x j)
2 X j

2]

= ∑
j≠i

a j
2E[X j

2]

= ∑
j≠i

a j
2E [X j]

= 1
w ∑

j≠i
a j

2

= ‖a‖2
2
/w

 Var[Z] = E[Z2] – E[Z]2

≤ E[Z2]

Var [âi] = Var [ai + ∑
j≠i

a j s(xi)s(x j) X j]

= Var [∑
j≠i

a j s (x i)s(x j) X j]

= ∑
j≠i

Var [a j s(xi)s (x j) X j]

≤ ∑
j≠i

E [(a j s(xi)s(x j)X j)
2]

= ∑
j≠i

E[a j
2 s(xi)

2 s(x j)
2 X j

2]

= ∑
j≠i

a j
2E[X j

2]

= ∑
j≠i

a j
2E [X j]

= 1
w ∑

j≠i
a j

2

= ‖a‖2
2
/w

Var [âi] = Var [ai + ∑
j≠i

a j s(xi)s(x j) X j]

= Var [∑
j≠i

a j s (x i)s(x j) X j]

= ∑
j≠i

Var [a j s(xi)s (x j) X j]

≤ ∑
j≠i

E [(a j s(xi)s(x j)X j)
2]

= ∑
j≠i

E[a j
2 s(xi)

2 s(x j)
2 X j

2]

= ∑
j≠i

a j
2E[X j

2]

= ∑
j≠i

a j
2E [X j]

= 1
w ∑

j≠i
a j

2

= ‖a‖2
2
/w

s(x) = ±1,

so

s(x)2 = 1

Var [âi] = Var [ai + ∑
j≠i

a j s(xi)s(x j) X j]

= Var [∑
j≠i

a j s (x i)s(x j) X j]

= ∑
j≠i

Var [a j s(xi)s (x j) X j]

≤ ∑
j≠i

E [(a j s(xi)s(x j)X j)
2]

= ∑
j≠i

E[a j
2 s(xi)

2 s(x j)
2 X j

2]

= ∑
j≠i

a j
2E[X j

2]

= ∑
j≠i

a j
2E [X j]

= 1
w ∑

j≠i
a j

2

= ‖a‖2
2
/w

s(x) = ±1,

so

s(x)2 = 1

Var [âi] = Var [ai + ∑
j≠i

a j s(xi)s(x j) X j]

= Var [∑
j≠i

a j s (x i)s(x j) X j]

= ∑
j≠i

Var [a j s(xi)s (x j) X j]

≤ ∑
j≠i

E [(a j s(xi)s(x j)X j)
2]

= ∑
j≠i

E[a j
2 s(xi)

2 s(x j)
2 X j

2]

= ∑
j≠i

a j
2E[X j

2]

= ∑
j≠i

a j
2E [X j]

= 1
w ∑

j≠i
a j

2

= ‖a‖2
2
/w

Var [âi] = Var [ai + ∑
j≠i

a j s(xi)s(x j) X j]

= Var [∑
j≠i

a j s (x i)s(x j) X j]

= ∑
j≠i

Var [a j s(xi)s (x j) X j]

≤ ∑
j≠i

E [(a j s(xi)s(x j)X j)
2]

= ∑
j≠i

E[a j
2 s(xi)

2 s(x j)
2 X j

2]

= ∑
j≠i

a j
2E[X j

2]

= ∑
j≠i

a j
2E [X j]

= 1
w ∑

j≠i
a j

2

= ‖a‖2
2
/w

X j = { 1 if h(xi) = h(x j)
 0 if h(xi) ≠ h(x j)

Var [âi] = Var [ai + ∑
j≠i

a j s(xi)s(x j) X j]

= Var [∑
j≠i

a j s (x i)s(x j) X j]

= ∑
j≠i

Var [a j s(xi)s (x j) X j]

≤ ∑
j≠i

E [(a j s(xi)s(x j)X j)
2]

= ∑
j≠i

E [a j
2 s(xi)

2 s(x j)
2 X j

2]

= ∑
j≠i

a j
2E[X j

2]

= ∑
j≠i

a j
2E [X j]

= 1
w∑

j≠i
a j

2

= ‖a‖2
2
/w

X j = { 1 if h(xi) = h(x j)
 0 if h(xi) ≠ h(x j)

2 2

2

Var [âi] = Var [ai + ∑
j≠i

a j s(xi)s(x j) X j]

= Var [∑
j≠i

a j s (x i)s(x j) X j]

= ∑
j≠i

Var [a j s(xi)s (x j) X j]

≤ ∑
j≠i

E [(a j s(xi)s(x j)X j)
2]

= ∑
j≠i

E [a j
2 s(xi)

2 s(x j)
2 X j

2]

= ∑
j≠i

a j
2E[X j

2]

= ∑
j≠i

a j
2E [X j]

= 1
w∑

j≠i
a j

2

= ‖a‖2
2
/w

X j = { 1 if h(xi) = h(x j)
 0 if h(xi) ≠ h(x j)

2

Var [âi] = Var [ai + ∑
j≠i

a j s(xi)s(x j) X j]

= Var [∑
j≠i

a j s (x i)s(x j) X j]

= ∑
j≠i

Var [a j s(xi)s (x j) X j]

≤ ∑
j≠i

E [(a j s(xi)s(x j)X j)
2]

= ∑
j≠i

E [a j
2 s(xi)

2 s(x j)
2 X j

2]

= ∑
j≠i

a j
2E[X j

2]

= ∑
j≠i

a j
2E [X j]

= 1
w∑

j≠i
a j

2

= ‖a‖2
2
/w

Useful Fact: If X is an
indicator, then X2 = X.

X j = { 1 if h(xi) = h(x j)
 0 if h(xi) ≠ h(x j)

2

Var [âi] = Var [ai + ∑
j≠i

a j s(xi)s(x j) X j]

= Var [∑
j≠i

a j s (x i)s(x j) X j]

= ∑
j≠i

Var [a j s(xi)s (x j) X j]

≤ ∑
j≠i

E [(a j s(xi)s(x j)X j)
2]

= ∑
j≠i

E [a j
2 s(xi)

2 s(x j)
2 X j

2]

= ∑
j≠i

a j
2E[X j

2]

= ∑
j≠i

a j
2E [X j]

= 1
w∑

j≠i
a j

2

= ‖a‖2
2
/w

Useful Fact: If X is an
indicator, then X2 = X.

Var [âi] = Var [ai + ∑
j≠i

a j s(xi)s(x j) X j]

= Var [∑
j≠i

a j s (x i)s(x j) X j]

= ∑
j≠i

Var [a j s(xi)s (x j) X j]

≤ ∑
j≠i

E [(a j s(xi)s(x j)X j)
2]

= ∑
j≠i

E[a j
2 s(xi)

2 s(x j)
2 X j

2]

= ∑
j≠i

a j
2E[X j

2]

= ∑
j≠i

a j
2E [X j]

= 1
w ∑

j≠i
a j

2

= ‖a‖2
2
/w

Var [âi] = Var [ai + ∑
j≠i

a j s(xi)s(x j) X j]

= Var [∑
j≠i

a j s (x i)s(x j) X j]

= ∑
j≠i

Var [a j s(xi)s (x j) X j]

≤ ∑
j≠i

E [(a j s(xi)s(x j)X j)
2]

= ∑
j≠i

E[a j
2 s(xi)

2 s(x j)
2 X j

2]

= ∑
j≠i

a j
2E[X j

2]

= ∑
j≠i

a j
2E [X j]

= 1
w ∑

j≠i
a j

2

= ‖a‖2
2
/w

X j = { 1 if h(xi) = h(x j)
 0 if h(xi) ≠ h(x j)

Var [âi] = Var [ai + ∑
j≠i

a j s(xi)s(x j) X j]

= Var [∑
j≠i

a j s (x i)s(x j) X j]

= ∑
j≠i

Var [a j s(xi)s (x j) X j]

≤ ∑
j≠i

E[(a j s(xi)s(x j)X j)
2]

= ∑
j≠i

E [a j
2 s(xi)

2 s(x j)
2 X j

2]

= ∑
j≠i

a j
2E[X j

2]

= ∑
j≠i

a j
2E[X j]

= 1
w∑

j≠i
a j

2

= ‖a‖2
2
/w

X j = { 1 if h(xi) = h(x j)
 0 if h(xi) ≠ h(x j)

Var [âi] = Var [ai + ∑
j≠i

a j s(xi)s(x j) X j]

= Var [∑
j≠i

a j s (x i)s(x j) X j]

= ∑
j≠i

Var [a j s(xi)s (x j) X j]

≤ ∑
j≠i

E[(a j s(xi)s(x j)X j)
2]

= ∑
j≠i

E [a j
2 s(xi)

2 s(x j)
2 X j

2]

= ∑
j≠i

a j
2E[X j

2]

= ∑
j≠i

a j
2E[X j]

= 1
w∑

j≠i
a j

2

= ‖a‖2
2
/w

I know this might look
really dense, but many of

these substeps end up
being really useful

techniques. These ideas
generalize, I promise.

 Var [âi] ≤ 1
w ∑

j≠i
a j

2 ≤
‖a‖2

2

w

Think of [a₁, a₂, a₃, …] as a vector.

What does the following quantity represent?

∑
j

a j
2

 Var [âi] ≤ 1
w ∑

j≠i
a j

2 ≤
‖a‖2

2

w

Think of [a₁, a₂, a₃, …] as a vector.

What does the following quantity represent?

This is the square of the magnitude of the vector!

∑
j

a j
2

 Var [âi] ≤ 1
w ∑

j≠i
a j

2 ≤
‖a‖2

2

w

Think of [a₁, a₂, a₃, …] as a vector.

What does the following quantity represent?

This is the square of the magnitude of the vector!

The magnitude of a vector is called its L₂ norm and
is denoted

∑
j

a j
2

‖a‖2 = √∑j
a j

2

‖a‖2 .

 Var [âi] ≤ 1
w ∑

j≠i
a j

2 ≤
‖a‖2

2

w

Think of [a₁, a₂, a₃, …] as a vector.

What does the following quantity represent?

This is the square of the magnitude of the vector!

The magnitude of a vector is called its L₂ norm and
is denoted

Therefore, our above sum is

∑
j

a j
2

‖a‖2 = √∑j
a j

2

‖a‖2
2 .

‖a‖2 .

 Var [âi] ≤ 1
w ∑

j≠i
a j

2 ≤
‖a‖2

2

w

Think of [a₁, a₂, a₃, …] as a vector.

What does the following quantity represent?

This is the square of the magnitude of the vector!

The magnitude of a vector is called its L₂ norm and
is denoted

Therefore, our above sum is

∑
j

a j
2

‖a‖2 = √∑j
a j

2

‖a‖2
2 .

‖a‖2 .

 Var [âi] ≤ 1
w ∑

j≠i
a j

2 ≤
‖a‖2

2

w

Think of [a₁, a₂, a₃, …] as a vector.

What does the following quantity represent?

This is the square of the magnitude of the vector!

The magnitude of a vector is called its L₂ norm and
is denoted

Therefore, our above sum is

∑
j

a j
2

‖a‖2
2 .

‖a‖2 .

‖a‖2 = √∑j
a j

2

Great exercise: Prove
that the L₂ norm of a

vector is never greater
than the L₁ norm.

Where We Stand
● We know that

● With the count-min sketch, we bounded the
probability that we overestimated by more than
ε||a||₁.

● Since the variance is related to ||a||₂, for the
count sketch we’ll bound the probability that
we are more than ε||a||₂ from our estimate:

Var [âi] ≤
‖a‖2

2

w .

Pr [|âi−ai| > ε‖a‖2]

Pr [|âi−ai| > ε‖a‖2]

≤
Var [âi]

(ε‖a‖2)
2

≤
‖a‖2

2

w ⋅ 1
(ε‖a‖2)

2

= 1
wε2

Pr [|âi−ai| > ε‖a‖2]

≤
Var [âi]

(ε‖a‖2)
2

≤
‖a‖2

2

w ⋅ 1
(ε‖a‖2)

2

= 1
wε2

Chebyshev’s inequality says that

Pr [|X−E[X]| ≥ c] ≤ Var [X]
c2 .

Pr [|âi−ai| > ε‖a‖2]

≤
Var [âi]

(ε‖a‖2)
2

≤
‖a‖2

2

w ⋅ 1
(ε‖a‖2)

2

= 1
wε2

Chebyshev’s inequality says that

Pr [|X−E[X]| ≥ c] ≤ Var [X]
c2 .

Pr [|âi−ai| > ε‖a‖2]

≤
Var [âi]

(ε‖a‖2)
2

≤
‖a‖2

2

w ⋅ 1
(ε‖a‖2)

2

= 1
wε2Var [âi] ≤

‖a‖2
2

w

Pr [|âi−ai| > ε‖a‖2]

≤
Var [âi]

(ε‖a‖2)
2

≤
‖a‖2

2

w ⋅ 1
(ε‖a‖2)

2

= 1
wε2Var [âi] ≤

‖a‖2
2

w

Pr [|âi−ai| > ε‖a‖2]

≤
Var [âi]

(ε‖a‖2)
2

≤
‖a‖2

2

w ⋅ 1
(ε‖a‖2)

2

= 1
wε2

Taking Stock
● We’ve just shown that

● This means that we w = Θ(ε-2) in order to get a
strong bound.
● Compare with the count sketch, where we related w

to ε-1.
● Idea: Set w = 4 · ε-2.

● Why 4? Because I peeked ahead. 😃

Pr [|âi−ai| > ε‖a‖2] ≤
1

wε2¼

How to Build an Estimator

Step One:
Build a Simple

Estimator

Step Two:
Compute Expected
Value of Estimator

Step Three:
Apply Concentration

Inequality

Step Four:
Replicate to Boost

Confidence

Hash items to counters;
add +1 when item seen.

Hash items to counters;
add ±1 when item seen.

Sum of indicators;
2-independent hashes
have low collision rate.

One-sided error; use
expected value and
Markov’s inequality.

Take min; only fails if all
estimates are bad.

2-independence breaks
up products; ±1 variables
have zero expected value.

Two-sided error; compute
variance and use

Chebyshev’s inequality.

Count-Min Sketch Count Sketch

Step Two:
Compute Expected
Value of Estimator

Sum of indicators;
2-independent hashes
have low collision rate.

Step One:
Build a Simple

Estimator
Hash items to counters;
add +1 when item seen.

Step Three:
Apply Concentration

Inequality

One-sided error; use
expected value and
Markov’s inequality.

Two-sided error; compute
variance and use

Chebyshev’s inequality.

2-independence breaks
up products; ±1 variables
have zero expected value.

Hash items to counters;
add ±1 when item seen.

How to Build an Estimator

Count-Min Sketch Count Sketch

Step Four:
Replicate to Boost

Confidence
Take min; only fails if all

estimates are bad.

Running in Parallel
● Imagine we run d copies of this estimator and call estimate(x)

on each of our estimators and get back these estimates.
● We need to give back a single number.
● Question: How should we aggregate these numbers into a

single estimate?

Estimator 1:

137
Estimator 2:

271
Estimator 3:

166
Estimator 4:

103
Estimator 5:

261

Answer at
https://pollev.com/cs166spr23

https://pollev.com/cs166spr23

Running in Parallel
● Imagine we run d copies of this estimator and call estimate(x)

on each of our estimators and get back these estimates.
● We need to give back a single number.
● Question: How should we aggregate these numbers into a

single estimate?

Estimator 1:

137
Estimator 2:

271
Estimator 3:

166
Estimator 4:

103
Estimator 5:

261

Running in Parallel

Estimator 1:

137
Estimator 2:

271
Estimator 3:

166
Estimator 4:

103
Estimator 5:

261

● Unlike last time, we have a two-sided error, so
taking the minimum would be a Very Bad Thing.

● Two reasonable options come to mind:
● Take the mean of the estimates.
● Take the median of the estimates.

● Question: Which should we pick?

Working With Means
● Claim: Taking the mean of multiple estimators does increase

our probability of being close to the expected value, but not
very quickly.

● Intuition: Not all outliers are created equal, and outliers far
from the target range skew the estimate.

● The Math: Averaging d copies of an estimator decreases the
variance by a factor of d. (Prove this!) By Chebyshev, that
decreases the probability of getting a bad answer by a factor
of d. We’d like something that decays exponentially in d.

Working With Medians
● Claim: If we output the median estimate given by

the data structures, we have high probability of
giving an acceptably close answer.

● Intuition: The only way that the median isn’t in
the “good” area is if at least half the estimates
are in the “bad” area.

● Each individual data structure has a “reasonable”
chance to be good, so this is very unlikely.

Working With Medians
● Claim: If we output the median estimate given by

the data structures, we have high probability of
giving an acceptably close answer.

● Intuition: The only way that the median isn’t in
the “good” area is if at least half the estimates
are in the “bad” area.

● Each individual data structure has a “reasonable”
chance to be good, so this is very unlikely.

Working With Medians
● Claim: If we output the median estimate given by

the data structures, we have high probability of
giving an acceptably close answer.

● Intuition: The only way that the median isn’t in
the “good” area is if at least half the estimates
are in the “bad” area.

● Each individual data structure has a “reasonable”
chance to be good, so this is very unlikely.

Working With Medians
● Claim: If we output the median estimate given by

the data structures, we have high probability of
giving an acceptably close answer.

● Intuition: The only way that the median isn’t in
the “good” area is if at least half the estimates
are in the “bad” area.

● Each individual data structure has a “reasonable”
chance to be good, so this is very unlikely.

Working With Medians
● Claim: If we output the median estimate given by

the data structures, we have high probability of
giving an acceptably close answer.

● Intuition: The only way that the median isn’t in
the “good” area is if at least half the estimates
are in the “bad” area.

● Each individual data structure has a “reasonable”
chance to be good, so this is very unlikely.

Working With Medians
● Claim: If we output the median estimate given by

the data structures, we have high probability of
giving an acceptably close answer.

● Intuition: The only way that the median isn’t in
the “good” area is if at least half the estimates
are in the “bad” area.

● Each individual data structure has a “reasonable”
chance to be good, so this is very unlikely.

Working With Medians
● Let D denote a random variable equal to the

number of data structures that produce an
answer not within ε||a||₂ of the true answer.

● Since each independent data structure has
failure probability at most ¼, we can upper-
bound D with a Binom(d, ¼) variable.

● We want to know Pr[D > d / 2].
● How can we determine this?

Chernoff Bounds
● The Chernoff bound says that if X ~ Binom(n, p)

and p < ½, then

where z(p) = (½ – p)2 / 2p.

● In our case, D ~ Binom(d, ¼), so we know that

● Therefore, choosing d = 8 log δ-1 ensures that

Pr [D ≥ d
2] ≤ e−n⋅z (1/4) = e−d/8

Pr [X ≥
n
2] < e−n⋅z (p)

Pr [|âi−ai| > ε‖a‖2] ≤ Pr [D ≥
d
2] ≤ δ

Chernoff Bounds
● The Chernoff bound says that if X ~ Binom(n, p)

and p < ½, then

where z(p) = (½ – p)2 / 2p.

● In our case, D ~ Binom(d, ¼), so we know that

● Therefore, choosing d = 8 log δ-1 ensures that

Pr [D ≥ d
2] ≤ e−n⋅z (1/4) = e−d/8

Pr [X ≥
n
2] < e−n⋅z (p)

Pr [|âi−ai| > ε‖a‖2] ≤ Pr [D ≥
d
2] ≤ δ

Intuition: For any fixed value of p,
this quantity decays exponentially

quickly as a function of n. It’s
extremely unlikely that more than

half our estimates will be bad.

Chernoff Bounds
● The Chernoff bound says that if X ~ Binom(n, p)

and p < ½, then

where z(p) = (½ – p)2 / 2p.

● In our case, D ~ Binom(d, ¼), so we know that

● Therefore, choosing d = 8 ln δ-1 ensures that

Pr [D ≥ d
2] ≤ e−d⋅z (1/4) = e−d/8

Pr [X ≥
n
2] < e−n⋅z (p)

Pr [|âi−ai| > ε‖a‖2] ≤ Pr [D ≥
d
2] ≤ δ

How to Build an Estimator

Step One:
Build a Simple

Estimator

Step Two:
Compute Expected
Value of Estimator

Step Three:
Apply Concentration

Inequality

Step Four:
Replicate to Boost

Confidence

Hash items to counters;
add +1 when item seen.

Hash items to counters;
add ±1 when item seen.

Sum of indicators;
2-independent hashes
have low collision rate.

One-sided error; use
expected value and
Markov’s inequality.

Take min; only fails if all
estimates are bad.

2-independence breaks
up products; ±1 variables
have zero expected value.

Two-sided error; compute
variance and use

Chebyshev’s inequality.

Take median; only can fail
if half of estimates are
wrong; use Chernoff.

Count-Min Sketch Count Sketch

The Count Sketch

31 41 -59 -26 58h₁
27 -18 28 -18 … -45h₂
16 -18 -3 39 … -75h₃

69 -31 47 -18 … 59hd

...…

w = ⌈4 · ε-2⌉
d =

 ⌈8 ln δ
-1⌉

…

Sampled uniformly and
independently from

2-independent families
of hash functions

s₁
s₂
s₃

sd

…

The Count Sketch

31 41 -59 -26 58h₁
27 -18 28 -18 … -45h₂
16 -18 -3 39 … -75h₃

69 -31 47 -18 … 59hd

...…

w = ⌈4 · ε-2⌉
d =

 ⌈8 ln δ
-1⌉

…s₁
s₂
s₃

sd

…

increment(x):
 for i = 1 … d:
 count[i][h (x)] += s (ᵢ ᵢ x)

The Count Sketch

31 41 -59 -26 58h₁
27 -18 28 -18 … -45h₂
16 -18 -3 39 … -75h₃

69 -31 47 -18 … 59hd

...…

w = ⌈4 · ε-2⌉
d =

 ⌈8 ln δ
-1⌉

…s₁
s₂
s₃

sd

…

increment(x):
 for i = 1 … d:
 count[i][h (x)] += s (ᵢ ᵢ x)

The Count Sketch

31 40 -59 -26 58h₁
27 -18 28 -19 … -45h₂
16 -18 -3 40 … -75h₃

69 -31 47 -18 … 58hd

...…

w = ⌈4 · ε-2⌉
d =

 ⌈8 ln δ
-1⌉

…s₁
s₂
s₃

sd

…

increment(x):
 for i = 1 … d:
 count[i][h (x)] += s (ᵢ ᵢ x)

The Count Sketch

31 40 -59 -26 58h₁
27 -18 28 -19 … -45h₂
16 -18 -3 40 … -75h₃

69 -31 47 -18 … 58hd

...…

w = ⌈4 · ε-2⌉
d =

 ⌈8 ln δ
-1⌉

…s₁
s₂
s₃

sd

…

increment(x):
 for i = 1 … d:
 count[i][h (x)] += s (ᵢ ᵢ x)

The Count Sketch

h₁
h₂
h₃

hd

…

w = ⌈4 · ε-2⌉
d =

 ⌈8 ln δ
-1⌉

s₁
s₂
s₃

sd

…

increment(x):
 for i = 1 … d:
 count[i][h (x)] += s (ᵢ ᵢ x)

estimate(x):
 options = []
 for i = 1 … d:
 options += count[i][h (x)] * s (x)ᵢ ᵢ
 return medianOf(options)

31 40 -59 -26 58

27 -18 28 -19 … -45

16 -18 -3 40 … -75

69 -31 47 -18 … 58

...

…

The Count Sketch

h₁
h₂
h₃

hd

…

w = ⌈4 · ε-2⌉
d =

 ⌈8 ln δ
-1⌉

s₁
s₂
s₃

sd

…

increment(x):
 for i = 1 … d:
 count[i][h (x)] += s (ᵢ ᵢ x)

estimate(x):
 options = []
 for i = 1 … d:
 options += count[i][h (x)] * s (x)ᵢ ᵢ
 return medianOf(options)

31 40 -59 -26 58

27 -18 28 -19 … -45

16 -18 -3 40 … -75

69 -31 47 -18 … 58

...

…

The Final Analysis
● Here’s a

comparison of these
two structures.

● Question to
ponder: When is a
count-min sketch
better than a count
sketch, and vice-
versa?

Count-Min Sketch
Space: Θ(ε-1 · log δ-1)
increment: Θ(log δ-1)
estimate: Θ(log δ-1)
Accuracy: within ε||a||₁.

Count Sketch

Space: Θ(ε-2 · log δ-1)
increment: Θ(log δ-1)
estimate: Θ(log δ-1)
Accuracy: within ε||a||₂

Major Ideas Here
● Concentration inequalities are useful tools for showing the

right thing probably happens.
● For one-sided errors, try Markov’s inequality.
● For two-sided errors, try Chebyshev’s inequality.
● To bound the probability that lots of things all go wrong, use

Chernoff bounds.
● For more on different mathematical tools like these, check out

this blog post by Scott Aaronson.
● Modest success probability can be amplified by running

things in parallel.
● For one-sided errors, try using the min or max.
● For two-sided errors, try using the median.

● We can estimate quantities using significantly less space
than storing those quantities exactly if we’re okay with
approximate answers.

https://www.scottaaronson.com/blog/?p=3712

Cardinality Estimation

Cardinality Estimation
● A cardinality estimator is a data structure supporting the

following operations:
● see(x), which records that x has been seen, and
● estimate(), which returns an estimate of the number of distinct

values we’ve seen.
● In other words, they estimate the cardinality of the set of all

items that have been seen.
● These data structures are widely deployed in practice.

● Databases use them to select which of many different algorithms
to run, based on the number of items to process.

● Websites use them to estimate how many different people have
visited the site in a given time window.

≈ ꩜ + ☜☆ ☆ ꩜ ≈ ≈

Cardinality Estimation
● As with frequency estimation, we can solve the

cardinality estimation problem exactly using hash
tables or binary search trees using Ω(n) space.

● To be useful in large-scale data applications,
cardinality estimators need to use significantly
less space than this.

● Question: How low can we go?

≈ ꩜ + ☜☆ ☆ ꩜ ≈ ≈

Flipping Coins

Score: 4

Score: 0

Score: 2

Flipping Coins
● Here’s a game: I’m

going to flip a coin
until I get tails. My
score is the number
of heads that I flip.

● The probability of
flipping k or more
consecutive heads is
2-k, so it’s pretty
unlikely that I’m
going to flip lots of
heads in a row.

H H H H T

T

H H T

Flipping Coins
● Suppose I show you the

following clip of me
playing this game.

● Which is more likely?
● I played the game once and

got really lucky.
● I played the game 256 times

and showed you my best
run.

● Probability you see this
after one game: ¹/₅₁₂.

● Probability this is the best
you see after 256 games:
approximately 23.3%.

H H H
H H H
H H T

Flipping Coins
● Intuition: Play this

game multiple times
and track the
maximum number of
heads you get in a
row.

● If the maximum
number of heads we
see is H, estimate that
we played 2H times.

● Question: How good
of an estimate is this?

H H H
H H H
H H T

Flipping Coins
● Suppose we play this game n times. What’s

the probability we see at least k
consecutive heads at least once?
 = Pr[see at least k heads in n games]
 = 1 – Pr[never see k heads in n games]
 = 1 – Pr[never see k heads in one game]ⁿ
 = 1 – (1 – 2⁻ᵏ)ⁿ

● What does this function look like?

Play this game n times. What is the probability

that our maximum score is k or more?

At 210 elements,
63% chance of
getting 10 or

more in a row.

At 210 elements,
6% chance of
getting 14 or
more in a row

Intuition: We’re
well-concentrated
around k = log₂ n.

Fact:
E[H] ≈ log₂ n + 0.333,
which requires some

nontrivial math to
prove. 😃

From Coins to Cardinality
● Ultimately, we’re interested in building a cardinality estimator.

How does this help us?
● Idea: Hash each item in the data stream, and use each hash as the

random source for the coin-flipping game.
● Duplicate items give duplicate hashes, which provide duplicate

games, which function as if they never happened.
● If we track the highest score across all these games, we can use

that to estimate how many games we played, which is equal to the
number of distinct elements we saw.

≈ ꩜ + ☜☆ ☆ ꩜ ≈ ≈

46 35 1 22 1746 1 35 35

THT… THH… HHH… HTH… HTH…THT… HHH… THH… THH…

From Coins to Cardinality
● We need some way of going from hash codes to

sequences of coin tosses.
● Idea: Treat the hash as a sequence of bits. 0

means heads, 1 means tails.

☜
2682174240

From Coins to Cardinality
● We need some way of going from hash codes to

sequences of coin tosses.
● Idea: Treat the hash as a sequence of bits. 0

means heads, 1 means tails.
● Then, count how many 0 bits appear

consecutively at the end of the number.

☜
10011111110111101011101100100000

THHTTTTTTTHTTTTHTHTTTHTTHHTHHHHH

A Simple Estimator
● Keep track of a value H,

initially zero, that records the
maximum number of zero bits
seen at the end of a number.

● To see an item:
● Compute a hash code for that

item.
● Compute the number of trailing

zeros.
● Update H if this is a new

record.
● To estimate the number of

distinct elements:
● Return 2H.

꩜

1101111010111011

TTHTTTTHTHTTTHTT

A Simple Estimator
● How much space does this

single estimator need?
● Assume we have an upper

bound U on the maximum
cardinality. Our hashes
never need more than
Θ(log U) bits.

● Bits required to write down
the position of a bit in that
hash: Θ(log log U).

● That is an absolutely tiny
amount of space compared
to storing the elements!

꩜

1101111010111011

TTHTTTTHTHTTTHTT

Improving the Estimator
● The current estimator has a few weaknesses.

● It always outputs a size that’s a power of two, so we’re
likely to be off by a full binary order of magnitude.

● It tends to skew high, since a single unexpected run of
heads pushes the whole total up.

● But we have already seen some techniques for
improving estimators:
● Run lots of copies in parallel to reduce the likelihood of

any one of them being bad.
● Use some creative strategy to combine those individual

estimates into one really good one.
● And in fact, folks have done just that. 😃

HyperLogLog
● The HyperLogLog estimator uses many independent

copies of this estimator to produce a very high-quality
estimate.
● Run m copies of the estimator, using a hash function to distribute

items to estimators, so that each copy gets roughly a ¹/ₘ fraction
of the items.

● Compute the harmonic mean of the estimates to mitigate outliers
while smoothing between powers of two.

● Multiply in a debiasing term to mitigate the skew from both the
original estimates and the harmonic mean.

● This estimator is used extensively in practice; with about
768 bytes of memory, it can estimate cardinalities for any
real-world data stream to about 3% accuracy.

● It’s widely used in database systems, and many open-
source implementations are available.

HyperLogLog
● The analysis of HyperLogLog from the

original paper is exceedingly difficult, and I
haven’t been able to follow along with all the
details.

● Hopefully, this intuitive explanation of how it
works is enough for you. 😃

● (Probably?) Open problem: Find a
significantly simpler and cleaner rigorous
analysis of HyperLogLog than the original.

Major Ideas We’ve Seen
● You can build a great estimator by running lots

of weak estimators in parallel and aggregating
the results.

● Indicator variables and linearity of expectation
are powerful tools when analyzing sketches.

● Markov’s and Chebyshev’s inequalities are
useful for bounding probabilities involving
hashing.

● The Chernoff bound is a great tool for showing
it’s unlikely for lots of things to go wrong.

Next Time
● Cuckoo Hashing

● Hashing with worst-case efficient lookups.
● The Erdős–Rényi Model

● Random graph theory revisited.
● Hypergraph Orientation

● A beautiful and surprising theory.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139

