Hashing and Sketching
 Part One

Randomized Data Structures

- Randomization is a powerful tool for improving efficiency and solving problems under seemingly impossible constraints.
- Over the next three lectures, we'll explore a sampler of data structures that give a feel for the breadth of what's out there.
- You can easily spend an entire academic career just exploring this space; take CS265 for more on randomized algorithms!

Where We're Going

- Hashing and Sketching (Thursday/ Tuesday)
- Using hash functions to count without counting.
- Cuckoo Hashing (Next Thursday)
- Hashing with worst-case O(1) lookups, along with a splash of random hypergraph theory.

Outline for Today

- Hash Functions
- Understanding our basic building blocks.
- Frequency Estimation
- Estimating how many times we've seen something.
- Probabilistic Techniques
- Standard but powerful tools for reasoning about randomized data structures.

Preliminaries: Hash Functions

Hashing in Practice

- Hash functions are used extensively in programming and software engineering:
- They make hash tables possible: think C++ std: :hash, Python's __hash__, or Java's Object.hashCode().
- They're used in cryptography: SHA-256, HMAC, etc.
- Question: When we're in Theoryland, what do we mean when we say "hash function?"

Hashing in Theoryland

- In Theoryland, a hash function is a function from some domain called the universe (typically denoted थ) to some codomain.
- The codomain is usually a set of the form

$$
[m]=\{0,1,2,3, \ldots, m-1\}
$$

$$
h: \mathscr{U} \rightarrow[m]
$$

Hashing in Theoryland

- Intuition: No matter how clever you are with designing a specific hash function, that hash function isn't random, and so there will be pathological inputs.
- You can formalize this with the pigeonhole principle.
- Idea: Rather than finding the One True Hash Function, we'll assume we have a collection of hash functions to pick from, and we'll choose which one to use randomly.

Families of Hash Functions

- A family of hash functions is a set \mathscr{H} of hash functions with the same domain and codomain.
- We can then introduce randomness into our data structures by sampling a random hash function from \mathscr{H}.
- Key Point: The randomness in our data structures almost always derives from the random choice of hash functions, not from the data.

Data is adversarial. Hash function selection is random.

- Question: What makes a family of hash functions \mathscr{H} a "good" family of hash functions?

Goal: If we pick $h \in \mathscr{H}$ uniformly at random, then h should distribute elements uniformly randomly.

Goal: If we pick $h \in \mathscr{H}$ uniformly at random, then h should distribute elements uniformly randomly.

Goal: If we pick $h \in \mathscr{H}$ uniformly at random, then h should distribute elements uniformly randomly.

χ

Goal: If we pick $h \in \mathscr{H}$ uniformly at random, then h should distribute elements uniformly randomly.

Goal: If we pick $h \in \mathscr{H}$ uniformly at random, then h should distribute elements uniformly randomly.

Goal: If we pick $h \in \mathscr{H}$ uniformly at random, then h should distribute elements uniformly randomly.

Problem: A hash function that distributes n elements uniformly at random over [m] requires $\Omega(n \log m)$ space in the worst case.

Question: Do we actually need true randomness? Or can we get away with something weaker?

Distribution Property:
Each element should have an equal probability of being placed in each slot.

For any $x \in \mathscr{U}$ and random $h \in \mathcal{H}$, the value of $h(x)$ is uniform over its codomain.

Distribution Property:
Each element should have an equal probability of being placed in each slot.

For any $x \in \mathscr{U}$ and random $h \in \mathcal{H}$, the value of $h(x)$ is uniform over its codomain.

Distribution Property:
Each element should have an equal probability of being placed in each slot.

For any $x \in \mathscr{U}$ and random $h \in \mathcal{H}$, the value of $h(x)$ is uniform over its codomain.

Find an "obviously bad" family of hash functions that satisfies the distribution property.

Answer at

 https://pollev.com/cs166spr23

Distribution Property:
Each element should have an equal probability of being placed in each slot.

For any $x \in \mathscr{U}$ and random $h \in \mathcal{H}$, the value of $h(x)$ is uniform over its codomain.

> Problem: This rule doesn't guarantee that elements are spread out.

Distribution Property:
Each element should have an equal probability of being placed in each slot.

For any $x \in \mathscr{U}$ and random $h \in \mathcal{H}$, the value of $h(x)$ is uniform over its codomain.

Distribution Property:
Each element should have an equal probability of being placed in each slot.

For any $x \in \mathscr{U}$ and random $h \in \mathcal{H}$, the value of $h(x)$ is uniform over its codomain.

Distribution Property:
Each element should have an equal probability of being placed in each slot.

Independence Property: Where one element is placed shouldn't impact where a second goes.

For any $x \in \mathscr{U}$ and random $h \in \mathcal{H}$, the value of $h(x)$ is uniform over its codomain.

For any distinct $\boldsymbol{x}, \boldsymbol{y} \in \mathscr{U}$ and random $h \in \mathcal{H}$, $h(x)$ and $h(y)$ are independent random variables.

χ

Distribution Property:
Each element should have an equal probability of being placed in each slot.

For any $x \in \mathscr{U}$ and random $h \in \mathcal{H}$, the value of $h(x)$ is uniform over its codomain.

Independence Property: Where one element is placed shouldn't impact where a second goes.

For any distinct $\boldsymbol{x}, \boldsymbol{y} \in \mathscr{U}$ and random $\boldsymbol{h} \in \mathcal{H}$, $h(x)$ and $h(y)$ are independent random variables.

A family of hash functions \mathscr{H} is called 2-independent (or pairwise independent) if it satisfies the distribution and independence properties.

For any $x \in \mathscr{U}$ and random $h \in \mathcal{H}$, the value of $h(x)$ is uniform over its codomain.

For any distinct $x, y \in \mathscr{U}$ and random $h \in \mathcal{H}$, $h(x)$ and $h(y)$ are independent random variables.

For any $x \in \mathscr{U}$ and random $h \in \mathcal{H}$, the value of $h(x)$ is uniform over its codomain.

For any distinct $x, y \in \mathscr{U}$ and random $h \in \mathcal{H}$, $h(x)$ and $h(y)$ are independent random variables.

$$
\operatorname{Pr}[h(x)=h(y)]
$$

For any $x \in \mathscr{U}$ and random $h \in \mathcal{H}$, the value of $h(x)$ is uniform over its codomain.

For any distinct $x, y \in \mathscr{U}$ and random $h \in \mathcal{H}$, $h(x)$ and $h(y)$ are independent random variables.

$$
\operatorname{Pr}[h(x)=h(y)]
$$

Question: Where did these elements collide with one another?

For any $x \in \mathscr{U}$ and random $h \in \mathcal{H}$, the value of $h(x)$ is uniform over its codomain.

Intuition:

2-independence means any pair of elements is unlikely to collide.

For any distinct $x, y \in \mathscr{U}$ and random $h \in \mathcal{H}$, $h(x)$ and $h(y)$ are independent random variables.

$$
\operatorname{Pr}[h(x)=h(y)]
$$

Question: Where did these elements collide with one another?

For any $x \in \mathscr{U}$ and random $h \in \mathcal{H}$, the value of $h(x)$ is uniform over its codomain.

For any distinct $x, y \in \mathscr{U}$ and random $h \in \mathcal{H}$, $h(x)$ and $h(y)$ are independent random variables.

$$
\operatorname{Pr}[h(x)=h(y)]
$$

Question: Where did these elements collide with one another?

For any $x \in \mathscr{U}$ and random $h \in \mathcal{H}$, the value of $h(x)$ is uniform over its codomain.

For any distinct $x, y \in \mathscr{U}$ and random $h \in \mathcal{H}$, $h(x)$ and $h(y)$ are independent random variables.

$$
\operatorname{Pr}[h(x)=h(y)]
$$

Question: Where did these elements collide with one another?

For any $x \in \mathscr{U}$ and random $h \in \mathcal{H}$, the value of $h(x)$ is uniform over its codomain.

For any distinct $x, y \in \mathscr{U}$ and random $h \in \mathcal{H}$, $h(x)$ and $h(y)$ are independent random variables.

Intuition:

2-independence means any pair of elements is unlikely to collide.

Question: Where did these elements collide with one another?

For any $x \in \mathscr{U}$ and random $h \in \mathcal{H}$, the value of $h(x)$ is uniform over its codomain.

For any distinct $x, y \in \mathscr{U}$ and random $h \in \mathcal{H}$, $h(x)$ and $h(y)$ are independent random variables.

Intuition:

2-independence means any pair of elements is unlikely to collide.

For any $x \in \mathscr{U}$ and random $h \in \mathcal{H}$, the value of $h(x)$ is uniform over its codomain.

For any distinct $x, y \in \mathscr{U}$ and random $\boldsymbol{h} \in \mathcal{H}$, $h(x)$ and $h(y)$ are independent random variables.

Intuition:

2-independence means any pair of elements is unlikely to collide.

For any $x \in \mathscr{U}$ and random $h \in \mathcal{H}$, the value of $h(x)$ is uniform over its codomain.

For any distinct $x, y \in \mathscr{U}$ and random $h \in \mathcal{H}$, $h(x)$ and $h(y)$ are independent random variables.

Intuition:

2-independence means any pair of elements is unlikely to collide.

$$
\begin{aligned}
& \operatorname{Pr}[h(x)=h(y)] \\
= & \sum_{i=0}^{m-1} \operatorname{Pr}[h(x)=i \wedge h(y)=i] \\
= & \sum_{i=0}^{m-1} \operatorname{Pr}[h(x)=i] \cdot \operatorname{Pr}[h(y)=i]
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
y \\
y \\
x
\end{array} \\
& \begin{array}{|l|l|l|l|l|}
\hline & & & & \\
\hline 0 & 1 & 2 & \ldots & m-1 \\
\hline
\end{array}
\end{aligned}
$$

For any $x \in \mathscr{U}$ and random $h \in \mathcal{H}$, the value of $h(x)$ is uniform over its codomain.

For any distinct $x, y \in \mathscr{U}$ and random $h \in \mathcal{H}$, $h(x)$ and $h(y)$ are independent random variables.

$$
\begin{aligned}
& \operatorname{Pr}[h(x)=h(y)] \\
= & \sum_{i=0}^{m-1} \operatorname{Pr}[h(x)=i \wedge h(y)=i] \\
= & \sum_{i=0}^{m-1} \operatorname{Pr}[h(x)=i] \cdot \operatorname{Pr}[h(y)=i]
\end{aligned}
$$

Intuition:

2-independence means any pair of elements is unlikely to collide.

For any $x \in \mathscr{U}$ and random $h \in \mathcal{H}$, the value of $h(x)$ is uniform over its codomain.

For any distinct $x, y \in \mathscr{U}$ and random $h \in \mathcal{H}$, $h(x)$ and $h(y)$ are independent random variables.

Intuition:

2-independence means any pair of elements is unlikely to collide.

$$
\begin{aligned}
& \operatorname{Pr}[h(x)=h(y)] \\
= & \sum_{i=0}^{m-1} \operatorname{Pr}[h(x)=i \wedge h(y)=i] \\
= & \sum_{i=0}^{m-1} \operatorname{Pr}[h(x)=i] \cdot \operatorname{Pr}[h(y)=i]
\end{aligned}
$$

y
χ

For any $x \in \mathscr{U}$ and random $h \in \mathcal{H}$, the value of $h(x)$ is uniform over its codomain.

For any distinct $x, y \in \mathscr{U}$ and random $h \in \mathcal{H}$, $h(x)$ and $h(y)$ are independent random variables.

Intuition:

2-independence means any pair of elements is unlikely to collide.
y
x

$$
\begin{aligned}
& \operatorname{Pr}[h(x)=h(y)] \\
= & \sum_{i=0}^{m-1} \operatorname{Pr}[h(x)=i \wedge h(y)=i] \\
= & \sum_{i=0}^{m-1} \operatorname{Pr}[h(x)=i] \cdot \operatorname{Pr}[h(y)=i] \\
= & \sum_{i=0}^{m-1} \frac{1}{m^{2}}
\end{aligned}
$$

For any $x \in \mathscr{U}$ and random $h \in \mathcal{H}$, the value of $h(x)$ is uniform over its codomain.

For any distinct $x, y \in \mathscr{U}$ and random $h \in \mathcal{H}$, $h(x)$ and $h(y)$ are independent random variables.

Intuition:

2-independence means any pair of elements is unlikely to collide.

y				
x				
0	1	2	\ldots	$\mathrm{~m}-1$

$$
\begin{aligned}
& \operatorname{Pr}[h(x)=h(y)] \\
= & \sum_{i=0}^{m-1} \operatorname{Pr}[h(x)=i \wedge h(y)=i] \\
= & \sum_{i=0}^{m-1} \operatorname{Pr}[h(x)=i] \cdot \operatorname{Pr}[h(y)=i] \\
= & \sum_{i=0}^{m-1} \frac{1}{m^{2}}
\end{aligned}
$$

For any $x \in \mathscr{U}$ and random $h \in \mathcal{H}$, the value of $h(x)$ is uniform over its codomain.

For any distinct $x, y \in \mathscr{U}$ and random $h \in \mathcal{H}$, $h(x)$ and $h(y)$ are independent random variables.

Intuition:

2-independence means any pair of elements is unlikely to collide.

$$
\begin{aligned}
& \operatorname{Pr}[h(x)=h(y)] \\
= & \sum_{i=0}^{m-1} \operatorname{Pr}[h(x)=i \wedge h(y)=i] \\
= & \sum_{i=0}^{m-1} \operatorname{Pr}[h(x)=i] \cdot \operatorname{Pr}[h(y)=i] \\
= & \sum_{i=0}^{m-1} \frac{1}{m^{2}} \\
= & \frac{1}{m}
\end{aligned}
$$

For any $x \in \mathscr{U}$ and random $h \in \mathcal{H}$, the value of $h(x)$ is uniform over its codomain.

For any distinct $x, y \in \mathscr{U}$ and random $h \in \mathcal{H}$, $h(x)$ and $h(y)$ are independent random variables.

Intuition:

2-independence means any pair of elements is unlikely to collide.

$$
=\sum_{i=0}^{m-1} \frac{1}{m^{2}}
$$

$$
=\frac{1}{m}
$$

This is the same as if h were a truly random function.

For more on hashing outside of Theoryland, check out this Stack Exchange post.

Frequency Estimation

Frequency Estimators

- A frequency estimator is a data structure supporting the following operations:
- increment(x), which increments the number of times that x has been seen, and
- estimate(x), which returns an estimate of the frequency of x.
- Using BSTs, we can solve this in space $\Theta(n)$ with worst-case $\mathrm{O}(\log n)$ costs on the operations.
- Using hash tables, we can solve this in space $\Theta(n)$ with expected $\mathrm{O}(1)$ costs on the operations.

Frequency Estimators

- Frequency estimation has many applications:
- Search engines: Finding frequent search queries.
- Network routing: Finding common source and destination addresses.
- In these applications, $\Theta(n)$ memory can be impractical.
- Goal: Get approximate answers to these queries in sublinear space.

The Count-Min Sketch

How to Build an Estimator

Revisiting the Exact Solution

- In the exact solution to the frequency estimation problem, we maintained a single counter for each distinct element. This is too space-inefficient.
- Idea: Store a fixed number of counters and assign a counter to each $x \in \mathscr{U}$. Multiple objects might be assigned to the same counter.
- To increment (x), increment the counter for x.
- To estimate(x), read the value of the counter for x.

Revisiting the Exact Solution

- In the exact solution to the frequency estimation problem, we maintained a single counter for each distinct element. This is too space-inefficient.
- Idea: Store a fixed number of counters and assign a counter to each $x \in \mathscr{U}$. Multiple objects might be assigned to the same counter.
- To increment (x), increment the counter for x.
- To estimate(x), read the value of the counter for x.

Revisiting the Exact Solution

- In the exact solution to the frequency estimation problem, we maintained a single counter for each distinct element. This is too space-inefficient.
- Idea: Store a fixed number of counters and assign a counter to each $x \in \mathscr{U}$. Multiple objects might be assigned to the same counter.
- To increment (x), increment the counter for x.
- To estimate(x), read the value of the counter for x.

Our Initial Structure

- Create an array of counters, all initially 0, called count. It will have w elements for some w we choose later.
- Choose, from a family of 2-independent hash functions \mathscr{H}, a uniformly-random hash function $h: \mathscr{U} \rightarrow[w]$.
- To increment(x), increment count[$h(x)$].
- To estimate(x), return count[h(x)].

Our Initial Structure

- Create an array of counters, all initially 0 , called count. It will have w elements for some w we choose later.
- Choose, from a family of 2-independent hash functions \mathscr{H}, a uniformly-random hash function $h: \mathscr{U} \rightarrow[w]$.
- To increment(x), increment count[$h(x)$].
- To estimate(x), return count[h(x)].

Our Initial Structure

- Create an array of counters, all initially 0 , called count. It will have w elements for some w we choose later.
- Choose, from a family of 2-independent hash functions \mathscr{H}, a uniformly-random hash function $h: \mathscr{U} \rightarrow[w]$.
- To increment(x), increment count[$h(x)$].
- To estimate(x), return count[h(x)].

Our Initial Structure

- Create an array of counters, all initially 0, called count. It will have w elements for some w we choose later.
- Choose, from a family of 2-independent hash functions \mathscr{H}, a uniformly-random hash function $h: \mathscr{U} \rightarrow[w]$.
- To increment(x), increment count[$h(x)$].
- To estimate(x), return count[h(x)].

How to Build an Estimator

Some Notation

- Let $\chi_{1}, x_{2}, x_{3}, \ldots$ denote the list of distinct items whose frequencies are being stored.
- Let $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}, \ldots$ denote the frequencies of those items.
- e.g. \boldsymbol{a}_{i} is the true number of times x_{i} is seen.
- Let $\hat{\boldsymbol{a}}_{1}, \hat{\boldsymbol{a}}_{2}, \hat{\boldsymbol{a}}_{3}, \ldots$ denote the estimate our data structure gives for the frequency of each item.
- e.g. $\hat{\boldsymbol{a}}_{i}$ is our estimate for how many times χ_{i} has been seen.
- Important detail: the \boldsymbol{a}_{i} values are not random variables (data are chosen adversarially), while the $\hat{\boldsymbol{a}}_{i}$ values are random variables (they depend on a randomly-sampled hash function).
- In what follows, imagine we're querying the frequency of some specific element x_{i}. We want to analyze $\hat{\boldsymbol{a}}_{i}$.

Analyzing our Estimator

- We're interested in learning more about $\hat{\boldsymbol{a}}_{i}$. A good first step is to work out $\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}\right]$.
- $\hat{\boldsymbol{a}}_{i}$ will be equal to \boldsymbol{a}_{i}, plus some "noise" terms from colliding elements.
- Each of those elements is very unlikely to collide with us, though. (There's a ${ }^{1 / w}$ chance of a collision for any one other element.)
- Reasonable guess: $\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}\right]=\boldsymbol{a}_{i}+\sum_{j \neq i} \frac{\boldsymbol{a}_{j}}{w}$

Analyzing our Estimator

- We're interested in learning more about $\hat{\boldsymbol{a}}_{i}$. A good first step is to work out $\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}\right]$.
- $\hat{\boldsymbol{a}}_{i}$ will be equal to \boldsymbol{a}_{i}, plus some "noise" terms from colliding elements.
- Each of those elements is very unlikely to collide with us, though. (There's a $1 / w$ chance of a collision for any one other element.)
- Reasonable guess: $\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}\right]=\boldsymbol{a}_{i}+\sum_{j \neq i} \frac{\boldsymbol{a}_{j}}{w}$

Frequency of each other item, scaled to account for chance of a collision.

Making Things Formal

- Let's make this more rigorous.
- For each element χ_{j} :
- If $h\left(x_{i}\right)=h\left(x_{j}\right)$, then χ_{j} contributes \boldsymbol{a}_{j} to count $\left[h\left(x_{i}\right)\right]$.
- If $h\left(x_{i}\right) \neq h\left(x_{j}\right)$, then x_{j} contributes 0 to count $\left[h\left(x_{i}\right)\right]$.

Making Things Formal

- Let's make this more rigorous.
- For each element χ_{j} :
- If $h\left(x_{i}\right)=h\left(x_{j}\right)$, then χ_{j} contributes \boldsymbol{a}_{j} to count $\left[h\left(x_{i}\right)\right]$.
- If $h\left(x_{i}\right) \neq h\left(x_{j}\right)$, then x_{j} contributes 0 to count[$\left[\left(x_{i}\right)\right]$.
- To pin this down precisely, let's define a set of random variables X_{1}, X_{2}, \ldots, as follows:

$$
X_{j}= \begin{cases}1 & \text { if } h\left(x_{i}\right)=h\left(x_{j}\right) \\ 0 & \text { otherwise }\end{cases}
$$

Making Things Formal

- Let's make this more rigorous.
- For each element χ_{j} :
- If $h\left(x_{i}\right)=h\left(x_{j}\right)$, then χ_{j} contributes \boldsymbol{a}_{j} to count $\left[h\left(x_{i}\right)\right]$.
- If $h\left(x_{i}\right) \neq h\left(x_{j}\right)$, then x_{j} contributes 0 to count[$\left[\left(x_{i}\right)\right]$.
- To pin this down precisely, let's define a set of random variables X_{1}, X_{2}, \ldots, as follows:

$$
X_{j}= \begin{cases}1 & \text { if } h\left(x_{i}\right)=h\left(x_{j}\right) \\ 0 & \text { otherwise }\end{cases}
$$

Each of these variables is called an indicator random variable, since it "indicates" whether some event occurs.

Making Things Formal

- Let's make this more rigorous.
- For each element χ_{j} :
- If $h\left(x_{i}\right)=h\left(x_{j}\right)$, then χ_{j} contributes \boldsymbol{a}_{j} to count $\left[h\left(x_{i}\right)\right]$.
- If $h\left(x_{i}\right) \neq h\left(x_{j}\right)$, then x_{j} contributes 0 to count[$\left[\left(x_{i}\right)\right]$.
- To pin this down precisely, let's define a set of random variables X_{1}, X_{2}, \ldots, as follows:

$$
X_{j}= \begin{cases}1 & \text { if } h\left(x_{i}\right)=h\left(x_{j}\right) \\ 0 & \text { otherwise }\end{cases}
$$

- The value of $\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}$ is then given by

$$
\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}=\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}
$$

$\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}\right]=\mathrm{E}\left[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}\right]$

$$
\begin{aligned}
\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}\right] & =\mathrm{E}\left[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \mathrm{E}\left[\boldsymbol{a}_{j} X_{j}\right]
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}\right] & =\mathrm{E}\left[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \mathrm{E}\left[\boldsymbol{a}_{j} X_{j}\right]
\end{aligned}
$$

This follows from linearity of expectation. We'll use this property extensively over the next few days.

$$
\begin{aligned}
\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}\right] & =\mathrm{E}\left[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \mathrm{E}\left[\boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \boldsymbol{a}_{j} \mathrm{E}\left[X_{j}\right]
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}\right] & =\mathrm{E}\left[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \mathrm{E}\left[\boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \boldsymbol{a}_{j} \mathrm{E}\left[X_{j}\right]
\end{aligned}
$$

The values of \boldsymbol{a}_{j} are not random. The randomness comes from our choice of hash function.

$$
\begin{aligned}
\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}\right] & =\mathrm{E}\left[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \mathrm{E}\left[\boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \boldsymbol{a}_{j} \mathrm{E}\left[X_{j}\right]
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}\right] & =\mathrm{E}\left[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \mathrm{E}\left[\boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \boldsymbol{a}_{j} \mathrm{E}\left[X_{j}\right]
\end{aligned}
$$

$\mathrm{E}\left[X_{j}\right]=$

$$
\begin{aligned}
\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}\right] & =\mathrm{E}\left[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \mathrm{E}\left[\boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \boldsymbol{a}_{j} \mathrm{E}\left[X_{j}\right]
\end{aligned}
$$

$\mathrm{E}\left[X_{j}\right]=$

$$
X_{j}= \begin{cases}1 & \text { if } h\left(x_{i}\right)=h\left(x_{j}\right) \\ 0 & \text { otherwise }\end{cases}
$$

$$
\begin{aligned}
\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}\right] & =\mathrm{E}\left[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \mathrm{E}\left[\boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \boldsymbol{a}_{j} \mathrm{E}\left[X_{j}\right]
\end{aligned}
$$

$$
\mathrm{E}\left[X_{j}\right]=1 \cdot \operatorname{Pr}\left[h\left(x_{i}\right)=h\left(x_{j}\right)\right]+0 \cdot \operatorname{Pr}\left[h\left(x_{i}\right) \neq h\left(x_{j}\right)\right]
$$

$$
X_{j}= \begin{cases}1 & \text { if } h\left(x_{i}\right)=h\left(x_{j}\right)\end{cases}
$$

0 otherwise

$$
\begin{aligned}
\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}\right] & =\mathrm{E}\left[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \mathrm{E}\left[\boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \boldsymbol{a}_{j} \mathrm{E}\left[X_{j}\right]
\end{aligned}
$$

$\mathrm{E}\left[X_{j}\right]=1 \cdot \operatorname{Pr}\left[h\left(x_{i}\right)=h\left(x_{j}\right)\right]+0 \cdot \operatorname{Pr}\left[h\left(x_{i}\right) \neq h\left(x_{j}\right)\right]$

$$
\begin{aligned}
\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}\right] & =\mathrm{E}\left[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \mathrm{E}\left[\boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \boldsymbol{a}_{j} \mathrm{E}\left[X_{j}\right]
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{E}\left[X_{j}\right] & =1 \cdot \operatorname{Pr}\left[h\left(x_{i}\right)=h\left(x_{j}\right)\right]+0 \cdot \operatorname{Pr}\left[h\left(x_{i}\right) \neq h\left(x_{j}\right)\right] \\
& =\operatorname{Pr}\left[h\left(x_{i}\right)=h\left(x_{j}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}\right] & =\mathrm{E}\left[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \mathrm{E}\left[\boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \boldsymbol{a}_{j} \mathrm{E}\left[X_{j}\right]
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{E}\left[X_{j}\right] & =1 \cdot \operatorname{Pr}\left[h\left(x_{i}\right)=h\left(x_{j}\right)\right]+0 \cdot \operatorname{Pr}\left[h\left(x_{i}\right) \neq h\left(x_{j}\right)\right] \\
& =\operatorname{Pr}\left[h\left(x_{i}\right)=h\left(x_{j}\right)\right]
\end{aligned}
$$

If X is an indicator variable for some event ε, then $\mathbf{E}[\boldsymbol{X}]=\operatorname{Pr}[\mathcal{E}]$. This is really useful when using linearity of expectation!

$$
\begin{aligned}
\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}\right] & =\mathrm{E}\left[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \mathrm{E}\left[\boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \boldsymbol{a}_{j} \mathrm{E}\left[X_{j}\right]
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{E}\left[X_{j}\right] & =1 \cdot \operatorname{Pr}\left[h\left(x_{i}\right)=h\left(x_{j}\right)\right]+0 \cdot \operatorname{Pr}\left[h\left(x_{i}\right) \neq h\left(x_{j}\right)\right] \\
& =\operatorname{Pr}\left[h\left(x_{i}\right)=h\left(x_{j}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}\right] & =\mathrm{E}\left[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \mathrm{E}\left[\boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \boldsymbol{a}_{j} \mathrm{E}\left[X_{j}\right]
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{E}\left[X_{j}\right] & =1 \cdot \operatorname{Pr}\left[h\left(x_{i}\right)=h\left(x_{j}\right)\right]+0 \cdot \operatorname{Pr}\left[h\left(x_{i}\right) \neq h\left(x_{j}\right)\right] \\
& =\operatorname{Pr}\left[h\left(x_{i}\right)=h\left(x_{j}\right)\right]
\end{aligned}
$$

Hey, we saw this earlier!

$$
\begin{aligned}
\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}\right] & =\mathrm{E}\left[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \mathrm{E}\left[\boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \boldsymbol{a}_{j} \mathrm{E}\left[X_{j}\right]
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{E}\left[X_{j}\right] & =1 \cdot \operatorname{Pr}\left[h\left(x_{i}\right)=h\left(x_{j}\right)\right]+0 \cdot \operatorname{Pr}\left[h\left(x_{i}\right) \neq h\left(x_{j}\right)\right] \\
& =\operatorname{Pr}\left[h\left(x_{i}\right)=h\left(x_{j}\right)\right]
\end{aligned}
$$

$$
=\frac{1}{w}
$$

Hey, we saw this earlier!

$$
\begin{aligned}
\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}\right] & =\mathrm{E}\left[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \mathrm{E}\left[\boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \boldsymbol{a}_{j} \mathrm{E}\left[X_{j}\right] \\
& =\sum_{j \neq i} \frac{\boldsymbol{a}_{j}}{w}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{E}\left[X_{j}\right] & =1 \cdot \operatorname{Pr}\left[h\left(x_{i}\right)=h\left(x_{j}\right)\right]+0 \cdot \operatorname{Pr}\left[h\left(x_{i}\right) \neq h\left(x_{j}\right)\right] \\
& =\operatorname{Pr}\left[h\left(x_{i}\right)=h\left(x_{j}\right)\right]
\end{aligned}
$$

$$
=\frac{1}{w}
$$

Hey, we saw this earlier!

$$
\begin{aligned}
\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}\right] & =\mathrm{E}\left[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \mathrm{E}\left[\boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \boldsymbol{a}_{j} \mathrm{E}\left[X_{j}\right] \\
& =\sum_{j \neq i} \frac{\boldsymbol{a}_{j}}{w}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{E}\left[X_{j}\right] & =1 \cdot \operatorname{Pr}\left[h\left(x_{i}\right)=h\left(x_{j}\right)\right]+0 \cdot \operatorname{Pr}\left[h\left(x_{i}\right) \neq h\left(x_{j}\right)\right] \\
& =\operatorname{Pr}\left[h\left(x_{i}\right)=h\left(x_{j}\right)\right] \\
& =\frac{1}{w}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}\right] & =\mathrm{E}\left[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \mathrm{E}\left[\boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \boldsymbol{a}_{j} \mathrm{E}\left[X_{j}\right] \\
& =\sum_{j \neq i} \frac{\boldsymbol{a}_{j}}{w}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}\right] & =\mathrm{E}\left[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \mathrm{E}\left[\boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \boldsymbol{a}_{j} \mathrm{E}\left[X_{j}\right] \\
& =\sum_{j \neq i} \frac{\boldsymbol{a}_{j}}{w}
\end{aligned}
$$

$$
\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}\right]=\mathrm{E}\left[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}\right]
$$

Idea: Think of our element frequencies
$\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}, \ldots$ as a vector $\boldsymbol{a}=\left[\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}, \ldots\right]$

The total number of objects is the sum of the vector entries.

This is called the \boldsymbol{L}_{1} norm of \boldsymbol{a}, and is denoted $\|\boldsymbol{a}\|_{1}$:

$$
\|\boldsymbol{a}\|_{1}=\sum_{i}|\boldsymbol{a}|
$$

$$
\begin{aligned}
& =\sum_{j \neq i} \mathrm{E}\left[\boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \boldsymbol{a}_{j} \mathrm{E}\left[X_{j}\right] \\
& =\sum_{j \neq i} \frac{\boldsymbol{a}_{j}}{w}
\end{aligned}
$$

$$
\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}\right]=\mathrm{E}\left[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}\right]
$$

Idea: Think of our element frequencies
$\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}, \ldots$ as a vector $\boldsymbol{a}=\left[\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}, \ldots\right]$

The total number of objects is the sum of the vector entries.

This is called the \mathbf{L}_{1} norm of \boldsymbol{a}, and is denoted $\|\boldsymbol{a}\|_{1}$:

$$
\|\boldsymbol{a}\|_{1}=\sum_{i}|\boldsymbol{a}|
$$

$$
\begin{aligned}
& =\sum_{j \neq i} \mathrm{E}\left[\boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \boldsymbol{a}_{j} \mathrm{E}\left[X_{j}\right] \\
& =\sum_{j \neq i} \frac{\boldsymbol{a}_{j}}{w} \\
& \leq \frac{\|\boldsymbol{a}\|_{1}}{w}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}\right] & =\mathrm{E}\left[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \mathrm{E}\left[\boldsymbol{a}_{j} X_{j}\right] \\
& =\sum_{j \neq i} \boldsymbol{a}_{j} \mathrm{E}\left[X_{j}\right] \\
& =\sum_{j \neq i} \frac{\boldsymbol{a}_{j}}{w} \\
& \leq \frac{\|\boldsymbol{a}\|_{1}}{w}
\end{aligned}
$$

How to Build an Estimator

On Expected Values

- We know that $E\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}\right] \leq\|\boldsymbol{a}\|_{1} / w$. This means that the expected overestimate is low.
- Claim: This fact, in isolation, is not very useful.
- Below is a probability distribution for a random variable whose expected value is 9 that never takes values near 9 .
- If this is the sort of distribution we get for $\hat{\boldsymbol{a}}_{i}$, then our estimator is not very useful!

On Expected Values

- We're looking for a way to say something like the following:
"Not only is our estimate's expected value pretty close to the real value, our estimate has a high probability of being close to the real value."
- In other words, if the true frequency is 9 , we want the distribution of our estimate to kinda sorta look like this:

If the true frequency is 9 , why isn't there any probability mass below 9 ?

Answer at
https://pollev.com/cs166spr23

On Expected Values

- We're looking for a way to say something like the following:
"Not only is our estimate's expected value pretty close to the real value, our estimate has a high probability of being close to the real value."
- In other words, if the true frequency is 9, we want the distribution of our estimate to kinda sorta look like this:

How Close is Close?

- In some applications, we might be okay overshooting by a larger amount (e.g. roughly estimating which restaurants people are visiting).
- In others, it's really bad if we overestimate by too much (e.g. polling for an election).
- Idea: Allow the client of the estimator to pick some value ε between 0 and 1 indicating how close they want to be to the true value. The closer ε is to 0 , the better the approximation we want.

How Close is Close?

- In some applications, we might be okay overshooting by a larger amount (e.g. roughly estimating which restaurants people are visiting).
- In others, it's really bad if we overestimate by too much (e.g. polling for an election).
- Idea: Allow the client of the estimator to pick some value ε between 0 and 1 indicating how close they want to be to the true value. The closer ε is to 0 , the better the approximation we want.

How Close is Close?

- In some applications, we might be okay overshooting by a larger amount (e.g. roughly estimating which restaurants people are visiting).
- In others, it's really bad if we overestimate by too much (e.g. polling for an election).
- Idea: Allow the client of the estimator to pick some value ε between 0 and 1 indicating how close they want to be to the true value. The closer ε is to 0 , the better the approximation we want.

How Close is Close?

- In some applications, we might be okay overshooting by a larger amount (e.g. roughly estimating which restaurants people are visiting).
- In others, it's really bad if we overestimate by too much (e.g. polling for an election).
- Idea: Allow the client of the estimator to pick some value ε between 0 and 1 indicating how close they want to be to the true value. The closer ε is to 0 , the better the approximation we want.

How Close is Close?

- Our overestimate is related to $\|\boldsymbol{a}\|_{1}$.
- We'll formalize how ε works as follows: we'll say we're okay with any estimate that's within $\varepsilon\|a\|_{1}$ of the true value.
- This is okay for high-frequency elements, but not so great for low-frequency elements. (Why?)
- But that's okay. In practice, we are most interested in finding the high-frequency items.

Making Things Formal

- We know that

$$
\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}\right] \leq \frac{\|\boldsymbol{a}\|_{1}}{w}
$$

- We want to bound this quantity:

$$
\operatorname{Pr}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right]
$$

- Let's run the numbers!

$$
\operatorname{Pr}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right]
$$

$$
\operatorname{Pr}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right]
$$

$$
\operatorname{Pr}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right]
$$

We don't know the exact distribution of this random variable.
However, we have a one-sided error: our estimate can never be lower than the true value. This means that $\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i} \geq 0$.

Markov's inequality says that if X is a nonnegative random variable, then

$$
\operatorname{Pr}[X \geq c] \leq \frac{\mathrm{E}[X]}{c}
$$

$$
\begin{aligned}
& \operatorname{Pr}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right] \\
\leq & \frac{\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}\right]}{\varepsilon\|\boldsymbol{a}\|_{1}}
\end{aligned}
$$

We don't know the exact distribution of this random variable.
However, we have a one-sided error: our estimate can never be lower than the true value. This means that $\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i} \geq 0$.

Markov's inequality says that if X is a nonnegative random variable, then

$$
\operatorname{Pr}[X \geq c] \leq \frac{\mathrm{E}[X]}{c}
$$

$$
\begin{aligned}
& \operatorname{Pr}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right] \\
\leq & \frac{\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}\right]}{\varepsilon\|\boldsymbol{a}\|_{1}}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Pr}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right] \\
\leq & \frac{\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}\right]}{\varepsilon\|\boldsymbol{a}\|_{1}}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Pr}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right] \\
\leq & \frac{\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}\right]}{\varepsilon\|\boldsymbol{a}\|_{1}}
\end{aligned}
$$

$\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}\right] \leq \frac{\|\boldsymbol{a}\|_{1}}{w}$

$$
\begin{aligned}
& \operatorname{Pr}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right] \\
\leq & \frac{\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}\right]}{\varepsilon\|\boldsymbol{a}\|_{1}} \\
\leq & \frac{\|\boldsymbol{a}\|_{1}}{w} \cdot \frac{1}{\varepsilon\|\boldsymbol{a}\|_{1}}
\end{aligned}
$$

$$
\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}\right] \leq \frac{\|\boldsymbol{a}\|_{1}}{w}
$$

$$
\begin{aligned}
& \operatorname{Pr}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right] \\
\leq & \frac{\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}\right]}{\varepsilon\|\boldsymbol{a}\|_{1}} \\
\leq & \frac{\|\boldsymbol{a}\|_{1}}{w} \cdot \frac{1}{\varepsilon\|\boldsymbol{a}\|_{1}}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Pr}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right] \\
\leq & \frac{\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}\right]}{\varepsilon\|\boldsymbol{a}\|_{1}} \\
\leq & \frac{\|\boldsymbol{a}\|_{1}}{w} \cdot \frac{1}{\varepsilon\|\boldsymbol{a}\|_{1}} \\
= & \frac{1}{\varepsilon w}
\end{aligned}
$$

Interpreting this Result

- Here's what we just proved:

$$
\operatorname{Pr}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right] \leq \frac{1}{\varepsilon w}
$$

- What does this tell us?
- Increasing w decreases the chance of an overestimate. Decreasing w increases the chance of an overestimate.
- As the user decreases ε, we have to proportionally increase w for this bound to tell us anything useful.
- Idea: Choose $w=e \cdot \varepsilon^{-1}$.
- The choice of e is "somewhat" arbitrary in that any constant will work - but I peeked ahead and there's a good reason to choose e here.

Interpreting this Result

- Here's what we just proved:

$$
\operatorname{Pr}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right] \leq e^{-1}
$$

- What does this tell us?
- Increasing w decreases the chance of an overestimate. Decreasing w increases the chance of an overestimate.
- As the user decreases ε, we have to proportionally increase w for this bound to tell us anything useful.
- Idea: Choose $w=e \cdot \varepsilon^{-1}$.
- The choice of e is "somewhat" arbitrary in that any constant will work - but I peeked ahead and there's a good reason to choose e here.

The Story So Far

- The user chooses a value $\varepsilon \in(0,1)$. We pick $w=e \cdot \varepsilon^{-1}$.
- Create an array count of w counters, each initially zero.
- Choose, from a family of 2-independent hash functions \mathscr{H}, a uniformly-random hash function $h: \mathscr{U} \rightarrow[w]$.
- To increment(x), increment count[h(x)].
- To estimate (x), return count[$h(x)$].
- With probability at least $1-\frac{1}{e} e$, the estimate for the frequency of item χ_{i} is within $\varepsilon \cdot\|a\|_{1}$ of the true frequency.

How to Build an Estimator

The Story So Far

- We now have a simple estimator where

$$
\operatorname{Pr}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right] \leq e^{-1}
$$

- This means we have a decent chance of getting an estimate we're happy with.
- Problem: We probably want to be more confident than this.
- In some applications, maybe it's okay to have a 63\% success rate.
- In others (say, election polling) we'll need to be a lot more confident than this.
- Question: How do you define "confident enough"?

The Parameter δ

- The user already can select a parameter ε tuning the accuracy of the estimator: how close we want to be to the true value.
- Let's have them also select a parameter δ tuning the confidence of the estimator: how likely it is that we achieve this goal.
- δ ranges from 0 to 1 . Lower δ means a higher chance of getting a good estimate.

The Parameter δ

- The user already can select a parameter ε tuning the accuracy of the estimator: how close we want to be to the true value.
- Let's have them also select a parameter δ tuning the confidence of the estimator: how likely it is that we achieve this goal.
- δ ranges from 0 to 1 . Lower δ means a higher chance of getting a good estimate.

The Parameter δ

- The user already can select a parameter ε tuning the accuracy of the estimator: how close we want to be to the true value.
- Let's have them also select a parameter δ tuning the confidence of the estimator: how likely it is that we achieve this goal.
- δ ranges from 0 to 1 . Lower δ means a higher chance of getting a good estimate.

The Parameter δ

- The user already can select a parameter ε tuning the accuracy of the estimator: how close we want to be to the true value.
- Let's have them also select a parameter δ tuning the confidence of the estimator: how likely it is that we achieve this goal.
- δ ranges from 0 to 1 . Lower δ means a higher chance of getting a good estimate.

The Parameter δ

- The user already can select a parameter ε tuning the accuracy of the estimator: how close we want to be to the true value.
- Let's have them also select a parameter δ tuning the confidence of the estimator: how likely it is that we achieve this goal.
- δ ranges from 0 to 1 . Lower δ means a higher chance of getting a good estimate.

Our Goal

- Right now, we have this statement:

$$
\operatorname{Pr}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right] \leq e^{-1}
$$

- We want to get to this one:

$$
\operatorname{Pr}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right] \leq \delta
$$

- How might we achieve this?

A Key Technique

It's super unlikely that you'll miss the center of the target every
 single time!

Running in Parallel

- Let's run d copies of our data structure in parallel with one another.
- Each row has its hash function sampled uniformly at random from our hash family.
- Each time we increment an item, we perform the corresponding increment operation on each row.

	$w=\left\lceil e \cdot \varepsilon^{-1}\right\rceil$						
h_{1}	31	41	59	26	53	\ldots	58
h_{2}	27	18	28	18	28	...	45
h_{3}	16	18	3	39	88	...	75
...	...						
h_{d}	69	31	47	18	5	...	59

Running in Parallel

- Let's run d copies of our data structure in parallel with one another.
- Each row has its hash function sampled uniformly at random from our hash family.
- Each time we increment an item, we perform the corresponding increment operation on each row.

	$w=\left\lceil e \cdot \varepsilon^{-1}\right\rceil$						
h_{1}	31	41	59	26	53	\ldots	58
h_{2}	27	18	28	18	28	\ldots	45
h_{3}	16	18	3	39	88	\ldots	75
.	...						
h_{d}	69	31	47	18	5	...	59

Running in Parallel

- Let's run d copies of our data structure in parallel with one another.
- Each row has its hash function sampled uniformly at random from our hash family.
- Each time we increment an item, we perform the corresponding increment operation on each row.

	$w=\left\lceil e \cdot \varepsilon^{-1}\right\rceil$						
h_{1}	32	41	59	26	53	\ldots	58
h_{2}	27	18	29	18	28	\ldots	45
h_{3}	16	18	3	40	88	\ldots	75
...	...						
h_{d}	69	31	47	18	5	...	60

Running in Parallel

- Let's run d copies of our data structure in parallel with one another.
- Each row has its hash function sampled uniformly at random from our hash family.
- Each time we increment an item, we perform the corresponding increment operation on each row.

	$w=\left\lceil e \cdot \varepsilon^{-1}\right\rceil$						
h_{1}	32	41	59	26	53	\ldots	58
h_{2}	27	18	29	18	28	\ldots	45
h_{3}	16	18	3	40	88	\ldots	75
...	...						
h_{d}	69	31	47	18	5	\ldots	60

Running in Parallel

- Imagine we call estimate(x) on each of our estimators and get back these estimates.
- We need to give back a single number.
- Question: How should we aggregate these numbers into a single estimate?

Answer at
https://pollev.com/cs166spr23

Estimator 5:
261

Running in Parallel

- Imagine we call estimate(x) on each of our estimators and get back these estimates.
- We need to give back a single number.
- Question: How should we aggregate these numbers into a single estimate?

Estimator 5:
261

Running in Parallel

- Imagine we call estimate(x) on each of our estimators and get back these estimates.
- We need to give back a single number.
- Question: How should we aggregate these numbers into a single estimate?

Estimator 5:
261

Running in Parallel

- Imagine we call estimate(x) on each of our estimators and get back these estimates.
- We need to give back a single number.
- Question: How should we aggr Intuition: The smallest into a single estimate?
estimate returned has the least "noise," and that's the best guess for the frequency.

Estimator 5:
261

$$
\operatorname{Pr}\left[\min \left\{\hat{\boldsymbol{a}}_{i j}\right\}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right]
$$

$$
\operatorname{Pr}\left[\min \left\{\hat{\boldsymbol{a}}_{i j}\right\}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right]
$$

Let $\hat{\boldsymbol{a}}_{i j}$ be the estimate from the j th copy of the data structure.

Our final estimate is $\min \left\{\hat{\boldsymbol{a}}_{i j}\right\}$

$\operatorname{Pr}\left[\min \left\{\hat{\boldsymbol{a}}_{i j}\right\}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right]$

> The only way the minimum estimate is inaccurate is if every estimate is inaccurate.

$$
\operatorname{Pr}\left[\min \left\{\hat{\boldsymbol{a}}_{i j}\right\}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right]
$$

$$
=\operatorname{Pr}\left[\bigwedge_{j=1}^{d}\left(\hat{\boldsymbol{a}}_{i j}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right)\right]
$$

> The only way the minimum estimate is inaccurate is if every estimate is inaccurate.

$$
\begin{aligned}
& \operatorname{Pr}\left[\min \left\{\hat{\boldsymbol{a}}_{i j}\right\}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right] \\
= & \operatorname{Pr}\left[\bigcap_{j=1}^{d}\left(\hat{\boldsymbol{a}}_{i j}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right)\right]
\end{aligned}
$$

Let $\hat{\boldsymbol{a}}_{i j}$ be the estimate from the j th copy of the data structure.

Our final estimate is $\min \left\{\hat{\boldsymbol{a}}_{i j}\right\}$

$$
\begin{aligned}
& \operatorname{Pr}\left[\min \left\{\hat{\boldsymbol{a}}_{i j}\right\}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right] \\
= & \operatorname{Pr}\left[\bigcap_{j=1}^{d}\left(\hat{\boldsymbol{a}}_{i j}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right)\right]
\end{aligned}
$$

> Each copy of the data structure is independent of the others.

Let $\hat{\boldsymbol{a}}_{i j}$ be the estimate from the j th copy of the data structure.

Our final estimate is $\min \left\{\hat{\boldsymbol{a}}_{i j}\right\}$

$$
\begin{aligned}
& \operatorname{Pr}\left[\min \left\{\hat{\boldsymbol{a}}_{i j}\right\}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right] \\
= & \operatorname{Pr}\left[\bigcap_{j=1}^{d}\left(\hat{\boldsymbol{a}}_{i j}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right)\right] \\
= & \prod_{j=1}^{d} \operatorname{Pr}\left[\hat{\boldsymbol{a}}_{i j}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right]
\end{aligned}
$$

> Each copy of the data structure is independent of the others.

Let $\hat{\boldsymbol{a}}_{i j}$ be the estimate from the j th copy of the data structure.

Our final estimate is $\min \left\{\hat{\boldsymbol{a}}_{i j}\right\}$

$$
\begin{aligned}
& \operatorname{Pr}\left[\min \left\{\hat{\boldsymbol{a}}_{i j}\right\}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right] \\
= & \operatorname{Pr}\left[\bigcap_{j=1}^{d}\left(\hat{\boldsymbol{a}}_{i j}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right)\right] \\
= & \prod_{j=1}^{d} \operatorname{Pr}\left[\hat{\boldsymbol{a}}_{i j}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right]
\end{aligned}
$$

Let $\hat{\boldsymbol{a}}_{i j}$ be the estimate from the j th copy of the data structure.

Our final estimate is $\min \left\{\hat{\boldsymbol{a}}_{i j}\right\}$

$$
\begin{aligned}
& \operatorname{Pr}\left[\min \left\{\hat{\boldsymbol{a}}_{i j}\right\}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right] \\
= & \operatorname{Pr}\left[\bigcap_{j=1}^{d}\left(\hat{\boldsymbol{a}}_{i j}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right)\right] \\
= & \prod_{j=1}^{d} \operatorname{Pr}\left[\hat{\boldsymbol{a}}_{i j}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right]
\end{aligned}
$$

$$
\operatorname{Pr}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i} \geq \varepsilon\|\boldsymbol{a}\|_{1}\right] \leq e^{-1}
$$

Let $\hat{\boldsymbol{a}}_{i j}$ be the estimate from the j th copy of the data structure.

Our final estimate is $\min \left\{\hat{\boldsymbol{a}}_{i j}\right\}$

$$
\begin{aligned}
& \operatorname{Pr}\left[\min \left\{\hat{\boldsymbol{a}}_{i j}\right\}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right] \\
= & \operatorname{Pr}\left[\bigcap_{j=1}^{d}\left(\hat{\boldsymbol{a}}_{i j}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right)\right] \\
= & \prod_{j=1}^{d} \operatorname{Pr}\left[\hat{\boldsymbol{a}}_{i j}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right] \\
\leq & \prod_{j=1}^{d} e^{-1}
\end{aligned}
$$

$$
\operatorname{Pr}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i} \geq \varepsilon\|\boldsymbol{a}\|_{1}\right] \leq e^{-1}
$$

Let $\hat{\boldsymbol{a}}_{i j}$ be the estimate from the j th copy of the data structure.

Our final estimate is $\min \left\{\hat{\boldsymbol{a}}_{i j}\right\}$

$$
\begin{aligned}
& \operatorname{Pr}\left[\min \left\{\hat{\boldsymbol{a}}_{i j}\right\}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right] \\
&= \operatorname{Pr}\left[\bigwedge_{j=1}^{d}\left(\hat{\boldsymbol{a}}_{i j}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right)\right] \\
&= \prod_{j=1}^{d} \operatorname{Pr}\left[\hat{\boldsymbol{a}}_{i j}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right] \\
& \leq \prod_{j=1}^{d} e^{-1} \\
& \quad \begin{array}{c}
\text { Let } \hat{\boldsymbol{a}}_{i j} \text { be the } \\
\text { estimate from the } \\
j \text { th copy of the data } \\
\text { structure. } \\
\text { Our final estimate is } \\
\text { min }\left\{\hat{\boldsymbol{a}}_{i j}\right\}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Pr}\left[\min \left\{\hat{\boldsymbol{a}}_{i j}\right\}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right] \\
= & \operatorname{Pr}\left[\bigwedge_{j=1}^{d}\left(\hat{\boldsymbol{a}}_{i j}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right)\right] \\
= & \prod_{j=1}^{d} \operatorname{Pr}\left[\hat{\boldsymbol{a}}_{i j}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right] \\
\leq & \prod_{j=1}^{d} e^{-1} \\
= & e^{-d} \quad \begin{array}{c}
\begin{array}{c}
\text { Let } \hat{\boldsymbol{a}}_{i j} \text { be the } \\
\text { estimate from the } \\
j \text { th copy of the data } \\
\text { structure. } \\
\text { Our final estimate is } \\
\text { min }\left\{\hat{\boldsymbol{a}}_{i j}\right\}
\end{array}
\end{array}
\end{aligned}
$$

Finishing Touches

- We now see that

$$
\operatorname{Pr}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right] \leq e^{-d}
$$

- We want to reach this goal:

$$
\operatorname{Pr}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}>\varepsilon\|\boldsymbol{a}\|_{1}\right] \leq \delta
$$

- So set $\boldsymbol{d}=\ln \boldsymbol{\delta}^{-1}$.

The Count-Min Sketch

$w=\left\lceil e \cdot \varepsilon^{-1}\right\rceil$

h_{1}
h_{2}
h_{3}
\ldots
h_{d}

31	41	59	26	53	\ldots	58
27	18	28	18	28	\ldots	45
16	18	3	39	88	\ldots	75
\ldots						
69	31	47	18	5	\ldots	59

$d=\left\lceil\ln \delta^{-1}\right\rceil$

Sampled uniformly and independently from a 2-independent family of hash functions

The Count-Min Sketch

h_{1}	31	41	59	26	53	...	58
h_{2}	27	18	28	18	28	\ldots	45
h_{3}	16	18	3	39	88	...	75
\ldots	\ldots						
h_{d}	69	31	47	18	5	...	59

```
increment(x):
    for i = 1 ... d:
        count[i][hi(x)]++
```


The Count-Min Sketch

h_{1}	31	41	59	26	53	\ldots	58
h_{2}	27	18	28	18	28	...	45
h_{3}	16	18	3	39	88	...	75
\ldots	...						
h_{d}	69	31	47	18	5	...	59

```
increment(x):
    for i = 1 ... d:
        count[i][hi(x)]++
```


The Count-Min Sketch

h_{1}	32	41	59	26	53	\ldots	58
h_{2}	27	18	28	19	28	\ldots	45
h_{3}	16	19	3	39	88	...	75
\ldots	...						
h_{d}	69	31	47	18	5	...	60

```
increment(x):
    for i = 1 ... d:
        count[i][hi(x)]++
```


The Count-Min Sketch

h_{1}	32	41	59	26	53	\ldots	58
h_{2}	27	18	28	19	28	\ldots	45
h_{3}	16	19	3	39	88	...	75
\ldots	\ldots						
h_{d}	69	31	47	18	5	...	60

```
increment(x):
    for i = 1 ... d:
        count[i][hi(x)]++
```


The Count-Min Sketch

h_{1}	32	41	59	26	53	...	58
h_{2}	27	18	28	19	28	...	45
h_{3}	16	19	3	39	88	...	75
\ldots	\ldots						
h_{d}	69	31	47	18	5	...	60

```
increment(x):
    for i = 1 ... d:
        count[i][hi(x)]++
```

```
estimate(x):
    result = \infty
    for i = 1 ... d:
        result = min(result, count[i][hi(x)])
    return result
```


The Count-Min Sketch

h_{1}	32	41	59	26	53	...	58
h_{2}	27	18	28	19	28	...	45
h_{3}	16	19	3	39	88	...	75
\ldots	\ldots						
h_{d}	69	31	47	18	5	...	60

```
increment(x):
    for i = 1 ... d:
        count[i][hi(x)]++
```

```
estimate(x):
    result = \infty
    for i = 1 ... d:
        result = min(result, count[i][hi(x)])
    return result
```


The Count-Min Sketch

- Update and query times are Θ ($\log \delta^{-1}$).
- That's the number of replicated copies, and we do $O(1)$ work at each.
- Space usage: $\Theta\left(\varepsilon^{-1} \cdot \log \delta^{-1}\right)$ counters.
- Each individual estimator has $\Theta\left(\varepsilon^{-1}\right)$ counters, and we run $\Theta\left(\log \delta^{-1}\right)$ copies in parallel.
- Provides an estimate to within $\varepsilon\|\boldsymbol{a}\|_{1}$ with probability at least 1 - δ.
- This can be significantly better than just storing a raw frequency count - especially if your goal is to find items that appear very frequently.

How to Build an Estimator

Step One: Build a Simple Estimator	Count-Min Sketch
Step Two: Compute Expected Value of Estimator	Hash items to counters; add +1 when item seen.
Sum of indicators; 2-independent hashes have low collision rate.	
Step Three: Inequality	One-sided error; use expected value and Markov's inequality.
Step Four: Replicate to Boost Confidence	Take min; only fails if all estimates are bad.

Major Ideas From Today

- 2-independent hash families are useful when we want to keep collisions low.
- A "good" approximation of some quantity should have tunable confidence and accuracy parameters.
- Sums of indicator variables are useful for deriving expected values of estimators.
- Concentration inequalities like Markov's inequality are useful for showing estimators don't stay too much from their expected values.
- Good estimators can be built from multiple parallel copies of weaker estimators.

Next Time

- Count Sketches
- An alternative frequency estimator with different time/space bounds.
- Cardinality Estimation
- Estimating how many different items you've seen in a data stream.

