

Hashing and Sketching
Part One

Randomized Data Structures
● Randomization is a powerful tool for

improving efficiency and solving problems
under seemingly impossible constraints.

● Over the next three lectures, we’ll explore
a sampler of data structures that give a
feel for the breadth of what’s out there.

● You can easily spend an entire academic
career just exploring this space; take
CS265 for more on randomized algorithms!

Where We’re Going
● Hashing and Sketching (Thursday /

Tuesday)
● Using hash functions to count without

counting.
● Cuckoo Hashing (Next Thursday)

● Hashing with worst-case O(1) lookups, along
with a splash of random hypergraph theory.

Outline for Today
● Hash Functions

● Understanding our basic building blocks.
● Frequency Estimation

● Estimating how many times we’ve seen
something.

● Probabilistic Techniques
● Standard but powerful tools for reasoning

about randomized data structures.

Preliminaries: Hash Functions

Hashing in Practice
● Hash functions are used extensively in

programming and software engineering:
● They make hash tables possible: think C++
std::hash, Python’s __hash__, or Java’s
Object.hashCode().

● They’re used in cryptography: SHA-256, HMAC,
etc.

● Question: When we’re in Theoryland, what
do we mean when we say “hash function?”

Hashing in Theoryland
● In Theoryland, a hash function is a

function from some domain called the
universe (typically denoted 𝒰) to some
codomain.

● The codomain is usually a set of the form
[m] = {0, 1, 2, 3, …, m – 1}

h : → [𝒰 m]

Hashing in Theoryland
● Intuition: No matter how clever you are with

designing a specific hash function, that hash
function isn’t random, and so there will be
pathological inputs.
● You can formalize this with the pigeonhole

principle.
● Idea: Rather than finding the One True Hash

Function, we’ll assume we have a collection of
hash functions to pick from, and we’ll choose
which one to use randomly.

h

Families of Hash Functions
● A family of hash functions is a set of ℋ

hash functions with the same domain
and codomain.

● We can then introduce randomness into
our data structures by sampling a
random hash function from ℋ.

● Key Point: The randomness in our data
structures almost always derives from
the random choice of hash functions,
not from the data.

Data is adversarial.
Hash function selection is random.

● Question: What makes a family of hash
functions a “good” family of hash ℋ
functions?

ℋ

 0 1 2 3 4 5 6 7 ... m-1

h

x

Goal: If we pick
h ∈ uniformly at ℋ

random, then h should
distribute elements
uniformly randomly.

 0 1 2 3 4 5 6 7 ... m-1

h

x

Goal: If we pick
h ∈ uniformly at ℋ

random, then h should
distribute elements
uniformly randomly.

 0 1 2 3 4 5 6 7 ... m-1

h

x

Goal: If we pick
h ∈ uniformly at ℋ

random, then h should
distribute elements
uniformly randomly.

y

 0 1 2 3 4 5 6 7 ... m-1

h

x

Goal: If we pick
h ∈ uniformly at ℋ

random, then h should
distribute elements
uniformly randomly.

y

 0 1 2 3 4 5 6 7 ... m-1

h

x

Goal: If we pick
h ∈ uniformly at ℋ

random, then h should
distribute elements
uniformly randomly.

y

z

 0 1 2 3 4 5 6 7 ... m-1

h

x

Goal: If we pick
h ∈ uniformly at ℋ

random, then h should
distribute elements
uniformly randomly.

y
z

Problem: A hash function
that distributes n elements
uniformly at random over
[m] requires Ω(n log m)
space in the worst case.

Question: Do we actually
need true randomness? Or

can we get away with
something weaker?

h

0 1 2 3 4 5 6 7 ... m-1

Distribution Property:
Each element should have

an equal probability of
being placed in each slot.

For any x ∈ and random𝒰
h ∈ , the value of ℋ h(x) is
uniform over its codomain.

x

ℋ

x

h

0 1 2 3 4 5 6 7 ... m-1

Distribution Property:
Each element should have

an equal probability of
being placed in each slot.

For any x ∈ and random𝒰
h ∈ , the value of ℋ h(x) is
uniform over its codomain.

x

ℋ

x

 0 1 2 3 4 5 6 7 ... m-1

Distribution Property:
Each element should have

an equal probability of
being placed in each slot.

For any x ∈ and random𝒰
h ∈ , the value of ℋ h(x) is
uniform over its codomain.

Find an “obviously bad” family of
hash functions that satisfies the

distribution property.

Answer at
https://pollev.com/cs166spr23

https://pollev.com/cs166spr23

 0 1 2 3 4 5 6 7 ... m-1

Distribution Property:
Each element should have

an equal probability of
being placed in each slot.

For any x ∈ and random𝒰
h ∈ , the value of ℋ h(x) is
uniform over its codomain.

Problem: This rule
doesn’t guarantee that

elements are spread out.

x
y
z
w

 0 1 2 3 4 5 6 7 ... m-1

Distribution Property:
Each element should have

an equal probability of
being placed in each slot.

For any x ∈ and random𝒰
h ∈ , the value of ℋ h(x) is
uniform over its codomain.

Problem: This rule
doesn’t guarantee that

elements are spread out.

x
y
z
w

 0 1 2 3 4 5 6 7 ... m-1

Distribution Property:
Each element should have

an equal probability of
being placed in each slot.

For any x ∈ and random𝒰
h ∈ , the value of ℋ h(x) is
uniform over its codomain.

Problem: This rule
doesn’t guarantee that

elements are spread out.

x
y
z
w

 0 1 2 3 4 5 6 7 ... m-1

Distribution Property:
Each element should have

an equal probability of
being placed in each slot.

Independence Property:
Where one element is

placed shouldn’t impact
where a second goes.

For any x ∈ and random𝒰
h ∈ , the value of ℋ h(x) is
uniform over its codomain.

For any distinct x, y ∈ 𝒰
and random h ∈ ,ℋ

h(x) and h(y) are independent
random variables.

x

y

 0 1 2 3 4 5 6 7 ... m-1

Distribution Property:
Each element should have

an equal probability of
being placed in each slot.

Independence Property:
Where one element is

placed shouldn’t impact
where a second goes.

For any x ∈ and random𝒰
h ∈ , the value of ℋ h(x) is
uniform over its codomain.

For any distinct x, y ∈ 𝒰
and random h ∈ ,ℋ

h(x) and h(y) are independent
random variables.

w
uA family of hash functions is called ℋ 2-independent (or
pairwise independent) if it satisfies the distribution

and independence properties.

 0 1 2 ... m-1

For any x ∈ and random𝒰
h ∈ , the value of ℋ h(x) is

uniform over its
codomain.

For any distinct x, y ∈ 𝒰
and random h ∈ ,ℋ

h(x) and h(y) are independent
random variables.

x
y

Intuition:
2-independence means
any pair of elements is

unlikely to collide.

 0 1 2 ... m-1

For any x ∈ and random𝒰
h ∈ , the value of ℋ h(x) is

uniform over its
codomain.

For any distinct x, y ∈ 𝒰
and random h ∈ ,ℋ

h(x) and h(y) are independent
random variables.

Intuition:
2-independence means
any pair of elements is

unlikely to collide.

Pr [h(x) = h(y)]

= ∑
i=0

m−1

Pr [h(x) = i ∧ h(y) = i]

= ∑
i=0

m−1

Pr [h(x) = i] ⋅ Pr [h(y) = i]

= ∑
i=0

m−1 1
m2

= 1
mx

y

 0 1 2 ... m-1

For any x ∈ and random𝒰
h ∈ , the value of ℋ h(x) is

uniform over its
codomain.

For any distinct x, y ∈ 𝒰
and random h ∈ ,ℋ

h(x) and h(y) are independent
random variables.

Intuition:
2-independence means
any pair of elements is

unlikely to collide.

Pr [h(x) = h(y)]

= ∑
i=0

m−1

Pr [h(x) = i ∧ h(y) = i]

= ∑
i=0

m−1

Pr [h(x) = i] ⋅ Pr [h(y) = i]

= ∑
i=0

m−1 1
m2

= 1
m

Question: Where did
these elements collide

with one another?

x
y

 0 1 2 ... m-1

For any x ∈ and random𝒰
h ∈ , the value of ℋ h(x) is

uniform over its
codomain.

For any distinct x, y ∈ 𝒰
and random h ∈ ,ℋ

h(x) and h(y) are independent
random variables.

Intuition:
2-independence means
any pair of elements is

unlikely to collide.

Pr [h(x) = h(y)]

= ∑
i=0

m−1

Pr [h(x) = i ∧ h(y) = i]

= ∑
i=0

m−1

Pr [h(x) = i] ⋅ Pr [h(y) = i]

= ∑
i=0

m−1 1
m2

= 1
m

Question: Where did
these elements collide

with one another?

x
y

 0 1 2 ... m-1

For any x ∈ and random𝒰
h ∈ , the value of ℋ h(x) is

uniform over its
codomain.

For any distinct x, y ∈ 𝒰
and random h ∈ ,ℋ

h(x) and h(y) are independent
random variables.

Intuition:
2-independence means
any pair of elements is

unlikely to collide.

Pr [h(x) = h(y)]

= ∑
i=0

m−1

Pr [h(x) = i ∧ h(y) = i]

= ∑
i=0

m−1

Pr [h(x) = i] ⋅ Pr [h(y) = i]

= ∑
i=0

m−1 1
m2

= 1
m

Question: Where did
these elements collide

with one another?

x
y

 0 1 2 ... m-1

For any x ∈ and random𝒰
h ∈ , the value of ℋ h(x) is

uniform over its
codomain.

For any distinct x, y ∈ 𝒰
and random h ∈ ,ℋ

h(x) and h(y) are independent
random variables.

Intuition:
2-independence means
any pair of elements is

unlikely to collide.

Pr [h(x) = h(y)]

= ∑
i=0

m−1

Pr [h(x) = i ∧ h(y) = i]

= ∑
i=0

m−1

Pr [h(x) = i] ⋅ Pr [h(y) = i]

= ∑
i=0

m−1 1
m2

= 1
m

Question: Where did
these elements collide

with one another?

x
y

 0 1 2 ... m-1

For any x ∈ and random𝒰
h ∈ , the value of ℋ h(x) is

uniform over its
codomain.

For any distinct x, y ∈ 𝒰
and random h ∈ ,ℋ

h(x) and h(y) are independent
random variables.

Intuition:
2-independence means
any pair of elements is

unlikely to collide.

Pr [h(x) = h(y)]

= ∑
i=0

m−1

Pr [h(x) = i ∧ h(y) = i]

= ∑
i=0

m−1

Pr [h(x) = i] ⋅ Pr [h(y) = i]

= ∑
i=0

m−1 1
m2

= 1
m

Question: Where did
these elements collide

with one another?

x
y

 0 1 2 ... m-1

For any x ∈ and random𝒰
h ∈ , the value of ℋ h(x) is

uniform over its
codomain.

For any distinct x, y ∈ 𝒰
and random h ∈ ,ℋ

h(x) and h(y) are independent
random variables.

Intuition:
2-independence means
any pair of elements is

unlikely to collide.

Pr [h(x) = h(y)]

= ∑
i=0

m−1

Pr [h(x) = i ∧ h(y) = i]

= ∑
i=0

m−1

Pr [h(x) = i] ⋅ Pr [h(y) = i]

= ∑
i=0

m−1 1
m2

= 1
mx

y

 0 1 2 ... m-1

For any x ∈ and random𝒰
h ∈ , the value of ℋ h(x) is

uniform over its
codomain.

For any distinct x, y ∈ 𝒰
and random h ∈ ,ℋ

h(x) and h(y) are independent
random variables.

Intuition:
2-independence means
any pair of elements is

unlikely to collide.

Pr [h(x) = h(y)]

= ∑
i=0

m−1

Pr [h(x) = i ∧ h(y) = i]

= ∑
i=0

m−1

Pr [h(x) = i] ⋅ Pr [h(y) = i]

= ∑
i=0

m−1 1
m2

= 1
mx

y

 0 1 2 ... m-1

For any x ∈ and random𝒰
h ∈ , the value of ℋ h(x) is

uniform over its
codomain.

For any distinct x, y ∈ 𝒰
and random h ∈ ,ℋ

h(x) and h(y) are independent
random variables.

Intuition:
2-independence means
any pair of elements is

unlikely to collide.

Pr [h(x) = h(y)]

= ∑
i=0

m−1

Pr [h(x) = i ∧ h(y) = i]

= ∑
i=0

m−1

Pr [h(x) = i] ⋅ Pr [h(y) = i]

= ∑
i=0

m−1 1
m2

= 1
mx

y

 0 1 2 ... m-1

For any x ∈ and random𝒰
h ∈ , the value of ℋ h(x) is

uniform over its
codomain.

For any distinct x, y ∈ 𝒰
and random h ∈ ,ℋ

h(x) and h(y) are independent
random variables.

Intuition:
2-independence means
any pair of elements is

unlikely to collide.

Pr [h(x) = h(y)]

= ∑
i=0

m−1

Pr [h(x) = i ∧ h(y) = i]

= ∑
i=0

m−1

Pr [h(x) = i] ⋅ Pr [h(y) = i]

= ∑
i=0

m−1 1
m2

= 1
mx

y

 0 1 2 ... m-1

For any x ∈ and random𝒰
h ∈ , the value of ℋ h(x) is

uniform over its
codomain.

For any distinct x, y ∈ 𝒰
and random h ∈ ,ℋ

h(x) and h(y) are independent
random variables.

Intuition:
2-independence means
any pair of elements is

unlikely to collide.

Pr [h(x) = h(y)]

= ∑
i=0

m−1

Pr [h(x) = i ∧ h(y) = i]

= ∑
i=0

m−1

Pr [h(x) = i] ⋅ Pr [h(y) = i]

= ∑
i=0

m−1 1
m2

= 1
mx

y

 0 1 2 ... m-1

For any x ∈ and random𝒰
h ∈ , the value of ℋ h(x) is

uniform over its
codomain.

For any distinct x, y ∈ 𝒰
and random h ∈ ,ℋ

h(x) and h(y) are independent
random variables.

Intuition:
2-independence means
any pair of elements is

unlikely to collide.

Pr [h(x) = h(y)]

= ∑
i=0

m−1

Pr [h(x) = i ∧ h(y) = i]

= ∑
i=0

m−1

Pr [h(x) = i] ⋅ Pr [h(y) = i]

= ∑
i=0

m−1 1
m2

= 1
mx

y

 0 1 2 ... m-1

For any x ∈ and random𝒰
h ∈ , the value of ℋ h(x) is

uniform over its
codomain.

For any distinct x, y ∈ 𝒰
and random h ∈ ,ℋ

h(x) and h(y) are independent
random variables.

Intuition:
2-independence means
any pair of elements is

unlikely to collide.

Pr [h(x) = h(y)]

= ∑
i=0

m−1

Pr [h(x) = i ∧ h(y) = i]

= ∑
i=0

m−1

Pr [h(x) = i] ⋅ Pr [h(y) = i]

= ∑
i=0

m−1 1
m2

= 1
mx

y

 0 1 2 ... m-1

For any x ∈ and random𝒰
h ∈ , the value of ℋ h(x) is

uniform over its
codomain.

For any distinct x, y ∈ 𝒰
and random h ∈ ,ℋ

h(x) and h(y) are independent
random variables.

Intuition:
2-independence means
any pair of elements is

unlikely to collide.

Pr [h(x) = h(y)]

= ∑
i=0

m−1

Pr [h(x) = i ∧ h(y) = i]

= ∑
i=0

m−1

Pr [h(x) = i] ⋅ Pr [h(y) = i]

= ∑
i=0

m−1 1
m2

= 1
mx

y

 0 1 2 ... m-1

For any x ∈ and random𝒰
h ∈ , the value of ℋ h(x) is

uniform over its
codomain.

For any distinct x, y ∈ 𝒰
and random h ∈ ,ℋ

h(x) and h(y) are independent
random variables.

Intuition:
2-independence means
any pair of elements is

unlikely to collide.

Pr [h(x) = h(y)]

= ∑
i=0

m−1

Pr [h(x) = i ∧ h(y) = i]

= ∑
i=0

m−1

Pr [h(x) = i] ⋅ Pr [h(y) = i]

= ∑
i=0

m−1 1
m2

= 1
m This is the same as

if h were a truly
random function.

x
y

For more on hashing outside of Theoryland,
check out this Stack Exchange post.

https://softwareengineering.stackexchange.com/questions/49550/

Frequency Estimation

Frequency Estimators
● A frequency estimator is a data structure

supporting the following operations:
● increment(x), which increments the number of

times that x has been seen, and
● estimate(x), which returns an estimate of the

frequency of x.
● Using BSTs, we can solve this in space Θ(n)

with worst-case O(log n) costs on the
operations.

● Using hash tables, we can solve this in space
Θ(n) with expected O(1) costs on the
operations.

Frequency Estimators
● Frequency estimation has many applications:

● Search engines: Finding frequent search
queries.

● Network routing: Finding common source and
destination addresses.

● In these applications, Θ(n) memory can be
impractical.

● Goal: Get approximate answers to these
queries in sublinear space.

The Count-Min Sketch

How to Build an Estimator

Step One:
Build a Simple

Estimator

Count-Min Sketch

Revisiting the Exact Solution
● In the exact solution to the frequency estimation

problem, we maintained a single counter for each
distinct element. This is too space-inefficient.

● Idea: Store a fixed number of counters and assign a
counter to each x ∈ . Multiple objects might be 𝒰
assigned to the same counter.

● To increment(x), increment the counter for x.
● To estimate(x), read the value of the counter for x.

11 6 4 7

Revisiting the Exact Solution
● In the exact solution to the frequency estimation

problem, we maintained a single counter for each
distinct element. This is too space-inefficient.

● Idea: Store a fixed number of counters and assign a
counter to each x ∈ . Multiple objects might be 𝒰
assigned to the same counter.

● To increment(x), increment the counter for x.
● To estimate(x), read the value of the counter for x.

12 6 4 7

Revisiting the Exact Solution
● In the exact solution to the frequency estimation

problem, we maintained a single counter for each
distinct element. This is too space-inefficient.

● Idea: Store a fixed number of counters and assign a
counter to each x ∈ . Multiple objects might be 𝒰
assigned to the same counter.

● To increment(x), increment the counter for x.
● To estimate(x), read the value of the counter for x.

12 6 5 7

Our Initial Structure
● Create an array of counters, all initially 0, called count.

It will have w elements for some w we choose later.
● Choose, from a family of 2-independent hash functions

, a uniformly-random hash function ℋ h : → [𝒰 w].
● To increment(x), increment count[h(x)].
● To estimate(x), return count[h(x)].

31 41 59 26 58h

w counters

…

Which
counter? ꩜

Our Initial Structure
● Create an array of counters, all initially 0, called count.

It will have w elements for some w we choose later.
● Choose, from a family of 2-independent hash functions

, a uniformly-random hash function ℋ h : → [𝒰 w].
● To increment(x), increment count[h(x)].
● To estimate(x), return count[h(x)].

31 42 59 26 58h

w counters

…

Which
counter? ꩜

Our Initial Structure
● Create an array of counters, all initially 0, called count.

It will have w elements for some w we choose later.
● Choose, from a family of 2-independent hash functions

, a uniformly-random hash function ℋ h : → [𝒰 w].
● To increment(x), increment count[h(x)].
● To estimate(x), return count[h(x)].

31 42 59 26 58h

w counters

…

Which
counter? +

Our Initial Structure
● Create an array of counters, all initially 0, called count.

It will have w elements for some w we choose later.
● Choose, from a family of 2-independent hash functions

, a uniformly-random hash function ℋ h : → [𝒰 w].
● To increment(x), increment count[h(x)].
● To estimate(x), return count[h(x)].

31 42 59 27 58h

w counters

…

Which
counter? +

How to Build an Estimator

Step One:
Build a Simple

Estimator

Step Two:
Compute Expected
Value of Estimator

Hash items to counters;
add +1 when item seen.

Count-Min Sketch

Some Notation
● Let x₁, x₂, x₃, … denote the list of distinct items whose

frequencies are being stored.
● Let a₁, a₂, a₃, … denote the frequencies of those items.

● e.g. aᵢ is the true number of times xᵢ is seen.
● Let â₁, â₂, â₃, … denote the estimate our data structure

gives for the frequency of each item.
● e.g. âᵢ is our estimate for how many times xᵢ has been seen.
● Important detail: the aᵢ values are not random variables

(data are chosen adversarially), while the âᵢ values are
random variables (they depend on a randomly-sampled hash
function).

● In what follows, imagine we’re querying the frequency of
some specific element xᵢ. We want to analyze âᵢ.

Analyzing our Estimator
● We’re interested in learning more about âᵢ. A good first step

is to work out E[âᵢ].
● âᵢ will be equal to ai, plus some “noise” terms from colliding

elements.
● Each of those elements is very unlikely to collide with us,

though. (There’s a ¹/w chance of a collision for any one other
element.)

● Reasonable guess: E[âi] = ai + ∑
j≠i

a j

w

Analyzing our Estimator
● We’re interested in learning more about âᵢ. A good first step

is to work out E[âᵢ].
● âᵢ will be equal to ai, plus some “noise” terms from colliding

elements.
● Each of those elements is very unlikely to collide with us,

though. (There’s a ¹/w chance of a collision for any one other
element.)

● Reasonable guess: E[âi] = ai + ∑
j≠i

a j

w
Frequency of each
other item, scaled

to account for chance
of a collision.

Making Things Formal
● Let’s make this more rigorous.
● For each element xⱼ:

● If h(xᵢ) = h(xⱼ), then xⱼ contributes aⱼ to count[h(xᵢ)].
● If h(xᵢ) ≠ h(xⱼ), then xⱼ contributes 0 to count[h(xᵢ)].

● To pin this down precisely, let’s define a set of random
variables X₁, X₂, …, as follows:

● The value of âᵢ is then given by

X j = { 1 if h(xi) = h(x j)
 0 otherwise

âi = ∑
j

a j X j = ai + ∑
j≠i

a j X j

Making Things Formal
● Let’s make this more rigorous.
● For each element xⱼ:

● If h(xᵢ) = h(xⱼ), then xⱼ contributes aⱼ to count[h(xᵢ)].
● If h(xᵢ) ≠ h(xⱼ), then xⱼ contributes 0 to count[h(xᵢ)].

● To pin this down precisely, let’s define a set of random
variables X₁, X₂, …, as follows:

● The value of âᵢ is then given by

X j = { 1 if h(xi) = h(x j)
 0 otherwise

âi = ∑
j

a j X j = ai + ∑
j≠i

a j X j

Making Things Formal
● Let’s make this more rigorous.
● For each element xⱼ:

● If h(xᵢ) = h(xⱼ), then xⱼ contributes aⱼ to count[h(xᵢ)].
● If h(xᵢ) ≠ h(xⱼ), then xⱼ contributes 0 to count[h(xᵢ)].

● To pin this down precisely, let’s define a set of random
variables X₁, X₂, …, as follows:

● The value of âᵢ is then given by

X j = { 1 if h(xi) = h(x j)
 0 otherwise

âi = ∑
j

a j X j = ai + ∑
j≠i

a j X j

Each of these variables is
called an indicator

random variable, since
it “indicates” whether

some event occurs.

Making Things Formal
● Let’s make this more rigorous.
● For each element xⱼ:

● If h(xᵢ) = h(xⱼ), then xⱼ contributes aⱼ to count[h(xᵢ)].
● If h(xᵢ) ≠ h(xⱼ), then xⱼ contributes 0 to count[h(xᵢ)].

● To pin this down precisely, let’s define a set of random
variables X₁, X₂, …, as follows:

● The value of âᵢ – aᵢ is then given by

X j = { 1 if h(xi) = h(x j)
 0 otherwise

âi−ai = ∑
j≠ i

a j X j

E [âi−ai] = E[∑
j≠i

a j X j]

= ∑
j≠i

E[a j X j]

= ∑
j≠i

a jE[X j]

= ∑
j≠i

a j

w

≤
‖a‖1

w

E [âi−ai] = E[∑
j≠i

a j X j]

= ∑
j≠i

E[a j X j]

= ∑
j≠i

a jE[X j]

= ∑
j≠i

a j

w

≤
‖a‖1

w

E [âi−ai] = E[∑
j≠i

a j X j]

= ∑
j≠i

E[a j X j]

= ∑
j≠i

a jE[X j]

= ∑
j≠i

a j

w

≤
‖a‖1

w

This follows from linearity
of expectation. We’ll use
this property extensively
over the next few days.

E [âi−ai] = E[∑
j≠i

a j X j]

= ∑
j≠i

E[a j X j]

= ∑
j≠i

a jE[X j]

= ∑
j≠i

a j

w

≤
‖a‖1

w

E [âi−ai] = E[∑
j≠i

a j X j]

= ∑
j≠i

E[a j X j]

= ∑
j≠i

a jE[X j]

= ∑
j≠i

a j

w

≤
‖a‖1

w

The values of aⱼ are not
random. The randomness
comes from our choice of

hash function.

E [âi−ai] = E[∑
j≠i

a j X j]

= ∑
j≠i

E[a j X j]

= ∑
j≠i

a jE[X j]

= ∑
j≠i

a j

w

≤
‖a‖1

w

E [âi−ai] = E[∑
j≠i

a j X j]

= ∑
j≠i

E[a j X j]

= ∑
j≠i

a jE[X j]

= ∑
j≠i

a j

w

≤
‖a‖1

w

E[X j] = 1⋅Pr [h(xi)=h(x j)] + 0⋅Pr [h(xi)≠h(x j)]
= Pr [h(xi)=h(x j)]

= 1
w

E [âi−ai] = E[∑
j≠i

a j X j]

= ∑
j≠i

E[a j X j]

= ∑
j≠i

a jE[X j]

= ∑
j≠i

a j

w

≤
‖a‖1

w

E[X j] = 1⋅Pr [h(xi)=h(x j)] + 0⋅Pr [h(xi)≠h(x j)]
= Pr [h(xi)=h(x j)]

= 1
w

 X j={ 1 if h(xi)=h(x j)
 0 otherwise

E [âi−ai] = E[∑
j≠i

a j X j]

= ∑
j≠i

E[a j X j]

= ∑
j≠i

a jE[X j]

= ∑
j≠i

a j

w

≤
‖a‖1

w

E[X j] = 1⋅Pr [h(xi)=h(x j)] + 0⋅Pr [h(xi)≠h(x j)]
= Pr [h(xi)=h(x j)]

= 1
w

 X j={ 1 if h(xi)=h(x j)
 0 otherwise

E [âi−ai] = E[∑
j≠i

a j X j]

= ∑
j≠i

E[a j X j]

= ∑
j≠i

a jE[X j]

= ∑
j≠i

a j

w

≤
‖a‖1

w

E[X j] = 1⋅Pr [h(xi)=h(x j)] + 0⋅Pr [h(xi)≠h(x j)]
= Pr [h(xi)=h(x j)]

= 1
w

E [âi−ai] = E[∑
j≠i

a j X j]

= ∑
j≠i

E[a j X j]

= ∑
j≠i

a jE[X j]

= ∑
j≠i

a j

w

≤
‖a‖1

w

E[X j] = 1⋅Pr [h(xi)=h(x j)] + 0⋅Pr [h(xi)≠h(x j)]
= Pr [h(xi)=h(x j)]

= 1
w

E [âi−ai] = E[∑
j≠i

a j X j]

= ∑
j≠i

E[a j X j]

= ∑
j≠i

a jE[X j]

= ∑
j≠i

a j

w

≤
‖a‖1

w

E[X j] = 1⋅Pr [h(xi)=h(x j)] + 0⋅Pr [h(xi)≠h(x j)]
= Pr [h(xi)=h(x j)]

= 1
w

 If X is an indicator variable for some event Ɛ,
then E[X] = Pr[Ɛ]. This is really useful when

using linearity of expectation!

E[X j] = 1⋅Pr [h(xi)=h(x j)] + 0⋅Pr [h(xi)≠h(x j)]
= Pr [h(xi)=h(x j)]

= 1
w

E [âi−ai] = E[∑
j≠i

a j X j]

= ∑
j≠i

E[a j X j]

= ∑
j≠i

a jE[X j]

= ∑
j≠i

a j

w

≤
‖a‖1

w

E[X j] = 1⋅Pr [h(xi)=h(x j)] + 0⋅Pr [h(xi)≠h(x j)]
= Pr [h(xi)=h(x j)]

= 1
w

 Hey, we saw this
earlier!

E [âi−ai] = E[∑
j≠i

a j X j]

= ∑
j≠i

E[a j X j]

= ∑
j≠i

a jE[X j]

= ∑
j≠i

a j

w

≤
‖a‖1

w

E [âi−ai] = E[∑
j≠i

a j X j]

= ∑
j≠i

E[a j X j]

= ∑
j≠i

a jE[X j]

= ∑
j≠i

a j

w

≤
‖a‖1

w

E[X j] = 1⋅Pr [h(xi)=h(x j)] + 0⋅Pr [h(xi)≠h(x j)]
= Pr [h(xi)=h(x j)]

= 1
w

 Hey, we saw this
earlier!

E [âi−ai] = E[∑
j≠i

a j X j]

= ∑
j≠i

E[a j X j]

= ∑
j≠i

a jE[X j]

= ∑
j≠i

a j

w

≤
‖a‖1

w

E[X j] = 1⋅Pr [h(xi)=h(x j)] + 0⋅Pr [h(xi)≠h(x j)]
= Pr [h(xi)=h(x j)]

= 1
w

 Hey, we saw this
earlier!

E[X j] = 1⋅Pr [h(xi)=h(x j)] + 0⋅Pr [h(xi)≠h(x j)]
= Pr [h(xi)=h(x j)]

= 1
w

E [âi−ai] = E[∑
j≠i

a j X j]

= ∑
j≠i

E[a j X j]

= ∑
j≠i

a jE[X j]

= ∑
j≠i

a j

w

≤
‖a‖1

w

E [âi−ai] = E[∑
j≠i

a j X j]

= ∑
j≠i

E[a j X j]

= ∑
j≠i

a jE[X j]

= ∑
j≠i

a j

w

≤
‖a‖1

w

E [âi−ai] = E[∑
j≠i

a j X j]

= ∑
j≠i

E[a j X j]

= ∑
j≠i

a jE[X j]

= ∑
j≠i

a j

w

≤
‖a‖1

w

E [âi−ai] = E[∑
j≠i

a j X j]

= ∑
j≠i

E[a j X j]

= ∑
j≠i

a jE[X j]

= ∑
j≠i

a j

w

≤
‖a‖1

w

Idea: Think of our
element frequencies

a₁, a₂, a₃, … as a vector

a = [a₁, a₂, a₃, …]

The total number of
objects is the sum of
the vector entries.

‖a‖1 = ∑
i

|ai|

This is called the
L₁ norm of a, and is

denoted ║a║₁:

E [âi−ai] = E[∑
j≠i

a j X j]

= ∑
j≠i

E[a j X j]

= ∑
j≠i

a jE[X j]

= ∑
j≠i

a j

w

≤
‖a‖1

w

Idea: Think of our
element frequencies

a₁, a₂, a₃, … as a vector

a = [a₁, a₂, a₃, …]

The total number of
objects is the sum of
the vector entries.

‖a‖1 = ∑
i

|ai|

This is called the
L₁ norm of a, and is

denoted ║a║₁:

E [âi−ai] = E[∑
j≠i

a j X j]

= ∑
j≠i

E[a j X j]

= ∑
j≠i

a jE[X j]

= ∑
j≠i

a j

w

≤
‖a‖1

w

How to Build an Estimator

Step One:
Build a Simple

Estimator

Step Two:
Compute Expected
Value of Estimator

Step Three:
Apply Concentration

Inequality

Hash items to counters;
add +1 when item seen.

Sum of indicators;
2-independent hashes
have low collision rate.

Count-Min Sketch

On Expected Values
● We know that E[âᵢ – aᵢ] ≤ ||a||₁ / w. This means that the

expected overestimate is low.
● Claim: This fact, in isolation, is not very useful.
● Below is a probability distribution for a random variable whose

expected value is 9 that never takes values near 9.
● If this is the sort of distribution we get for âᵢ, then our estimator

is not very useful!

0 189

On Expected Values
● We’re looking for a way to say something like the

following:
“Not only is our estimate’s expected value pretty
close to the real value, our estimate has a high

probability of being close to the real value.”
● In other words, if the true frequency is 9, we want the

distribution of our estimate to kinda sorta look like this:

0 189

If the true frequency is 9, why isn’t
there any probability mass below 9?

Answer at
https://pollev.com/cs166spr23

https://pollev.com/cs166spr23

On Expected Values
● We’re looking for a way to say something like the

following:
“Not only is our estimate’s expected value pretty
close to the real value, our estimate has a high

probability of being close to the real value.”
● In other words, if the true frequency is 9, we want the

distribution of our estimate to kinda sorta look like this:

0 189

How Close is Close?
● In some applications, we might be okay overshooting by a larger

amount (e.g. roughly estimating which restaurants people are
visiting).

● In others, it’s really bad if we overestimate by too much (e.g.
polling for an election).

● Idea: Allow the client of the estimator to pick some value ε
between 0 and 1 indicating how close they want to be to the true
value. The closer ε is to 0, the better the approximation we want.

0 189

How Close is Close?
● In some applications, we might be okay overshooting by a larger

amount (e.g. roughly estimating which restaurants people are
visiting).

● In others, it’s really bad if we overestimate by too much (e.g.
polling for an election).

● Idea: Allow the client of the estimator to pick some value ε
between 0 and 1 indicating how close they want to be to the true
value. The closer ε is to 0, the better the approximation we want.

0 189

How Close is Close?
● In some applications, we might be okay overshooting by a larger

amount (e.g. roughly estimating which restaurants people are
visiting).

● In others, it’s really bad if we overestimate by too much (e.g.
polling for an election).

● Idea: Allow the client of the estimator to pick some value ε
between 0 and 1 indicating how close they want to be to the true
value. The closer ε is to 0, the better the approximation we want.

0 189

How Close is Close?
● In some applications, we might be okay overshooting by a larger

amount (e.g. roughly estimating which restaurants people are
visiting).

● In others, it’s really bad if we overestimate by too much (e.g.
polling for an election).

● Idea: Allow the client of the estimator to pick some value ε
between 0 and 1 indicating how close they want to be to the true
value. The closer ε is to 0, the better the approximation we want.

0 189

How Close is Close?
● Our overestimate is related to ||a||₁.
● We’ll formalize how ε works as follows: we’ll say we’re okay

with any estimate that’s within ε||a||₁ of the true value.
● This is okay for high-frequency elements, but not so great

for low-frequency elements. (Why?)
● But that’s okay. In practice, we are most interested in

finding the high-frequency items.

0 189

Making Things Formal
● We know that

● We want to bound this quantity:

● Let’s run the numbers!

0 189

Pr [âi −ai > ε‖a‖1]

E[âi−ai] ≤
‖a‖1

w

Pr [âi − ai > ε‖a‖1]

≤
E [âi − ai]

ε‖a‖1

≤
‖a‖1

w ⋅ 1
ε‖a‖1

= 1
ε w

Pr [âi − ai > ε‖a‖1]

≤
E [âi − ai]

ε‖a‖1

≤
‖a‖1

w ⋅ 1
ε‖a‖1

= 1
ε w

Pr [âi − ai > ε‖a‖1]

≤
E [âi − ai]

ε‖a‖1

≤
‖a‖1

w ⋅ 1
ε‖a‖1

= 1
ε w

We don’t know the exact distribution of
this random variable.

Pr [X ≥ c] ≤ E[X]
c .

However, we have a one-sided error:
our estimate can never be lower than the

true value. This means that âᵢ – aᵢ ≥ 0.

Markov’s inequality says that if X is a
nonnegative random variable, then

Pr [âi − ai > ε‖a‖1]

≤
E [âi − ai]

ε‖a‖1

≤
‖a‖1

w ⋅ 1
ε‖a‖1

= 1
ε w

We don’t know the exact distribution of
this random variable.

Pr [X ≥ c] ≤ E[X]
c .

However, we have a one-sided error:
our estimate can never be lower than the

true value. This means that âᵢ – aᵢ ≥ 0.

Markov’s inequality says that if X is a
nonnegative random variable, then

Pr [âi − ai > ε‖a‖1]

≤
E [âi − ai]

ε‖a‖1

≤
‖a‖1

w ⋅ 1
ε‖a‖1

= 1
ε w

Pr [âi − ai > ε‖a‖1]

≤
E [âi − ai]

ε‖a‖1

≤
‖a‖1

w ⋅ 1
ε‖a‖1

= 1
ε w

Pr [âi − ai > ε‖a‖1]

≤
E [âi − ai]

ε‖a‖1

≤
‖a‖1

w ⋅ 1
ε‖a‖1

= 1
ε w

E[âi−ai] ≤
‖a‖1

w

Pr [âi − ai > ε‖a‖1]

≤
E [âi − ai]

ε‖a‖1

≤
‖a‖1

w ⋅ 1
ε‖a‖1

= 1
ε w

E[âi−ai] ≤
‖a‖1

w

Pr [âi − ai > ε‖a‖1]

≤
E [âi − ai]

ε‖a‖1

≤
‖a‖1

w ⋅ 1
ε‖a‖1

= 1
ε w

Pr [âi − ai > ε‖a‖1]

≤
E [âi − ai]

ε‖a‖1

≤
‖a‖1

w ⋅ 1
ε‖a‖1

= 1
ε w

Interpreting this Result
● Here’s what we just proved:

● What does this tell us?

● Increasing w decreases the chance of an overestimate.
Decreasing w increases the chance of an overestimate.

● As the user decreases ε, we have to proportionally
increase w for this bound to tell us anything useful.

● Idea: Choose w = e · ε-1.
● The choice of e is “somewhat” arbitrary in that any

constant will work – but I peeked ahead and there’s a
good reason to choose e here. 😃

Pr [âi − ai > ε‖a‖1] ≤ 1
ε w

Interpreting this Result
● Here’s what we just proved:

● What does this tell us?

● Increasing w decreases the chance of an overestimate.
Decreasing w increases the chance of an overestimate.

● As the user decreases ε, we have to proportionally
increase w for this bound to tell us anything useful.

● Idea: Choose w = e · ε-1.
● The choice of e is “somewhat” arbitrary in that any

constant will work – but I peeked ahead and there’s a
good reason to choose e here. 😃

Pr [âi − ai > ε‖a‖1] ≤ 1
ε we -1

The Story So Far
● The user chooses a value ε ∈ (0, 1). We pick w = e · ε-1.
● Create an array count of w counters, each initially zero.
● Choose, from a family of 2-independent hash functions

, a uniformly-random hash function ℋ h : → [𝒰 w].
● To increment(x), increment count[h(x)].
● To estimate(x), return count[h(x)].
● With probability at least 1 – ¹/ₑ, the estimate for the

frequency of item xᵢ is within ε · ||a||₁ of the true
frequency.

31 41 59 26 58h

w = O(ε -1) counters

…

How to Build an Estimator

Step One:
Build a Simple

Estimator

Step Two:
Compute Expected
Value of Estimator

Step Three:
Apply Concentration

Inequality

Step Four:
Boost Confidence

Hash items to counters;
add +1 when item seen.

Sum of indicators;
2-independent hashes
have low collision rate.

One-sided error; use
expected value and
Markov’s inequality.

Count-Min Sketch

The Story So Far
● We now have a simple estimator where

● This means we have a decent chance of getting an
estimate we’re happy with.

● Problem: We probably want to be more confident
than this.
● In some applications, maybe it’s okay to have a 63%

success rate.
● In others (say, election polling) we’ll need to be a lot more

confident than this.
● Question: How do you define “confident enough”?

Pr [âi− ai > ε ‖a‖1] ≤ e−1

The Parameter δ
● The user already can select a parameter ε tuning the accuracy

of the estimator: how close we want to be to the true value.
● Let’s have them also select a parameter δ tuning the

confidence of the estimator: how likely it is that we achieve
this goal.

● δ ranges from 0 to 1. Lower δ means a higher chance of getting
a good estimate.

0 189

The Parameter δ
● The user already can select a parameter ε tuning the accuracy

of the estimator: how close we want to be to the true value.
● Let’s have them also select a parameter δ tuning the

confidence of the estimator: how likely it is that we achieve
this goal.

● δ ranges from 0 to 1. Lower δ means a higher chance of getting
a good estimate.

0 189

The Parameter δ
● The user already can select a parameter ε tuning the accuracy

of the estimator: how close we want to be to the true value.
● Let’s have them also select a parameter δ tuning the

confidence of the estimator: how likely it is that we achieve
this goal.

● δ ranges from 0 to 1. Lower δ means a higher chance of getting
a good estimate.

0 189

The Parameter δ
● The user already can select a parameter ε tuning the accuracy

of the estimator: how close we want to be to the true value.
● Let’s have them also select a parameter δ tuning the

confidence of the estimator: how likely it is that we achieve
this goal.

● δ ranges from 0 to 1. Lower δ means a higher chance of getting
a good estimate.

0 189

The Parameter δ
● The user already can select a parameter ε tuning the accuracy

of the estimator: how close we want to be to the true value.
● Let’s have them also select a parameter δ tuning the

confidence of the estimator: how likely it is that we achieve
this goal.

● δ ranges from 0 to 1. Lower δ means a higher chance of getting
a good estimate.

0 189

Our Goal
● Right now, we have this statement:

● We want to get to this one:

● How might we achieve this?

Pr [âi−ai > ε‖a‖1] ≤ e−1

Pr [âi−ai > ε‖a‖1] ≤ δ

A Key Technique

It’s super unlikely that
you’ll miss the center

of the target every
single time!

Running in Parallel
● Let’s run d copies of our data structure in parallel with

one another.
● Each row has its hash function sampled uniformly at

random from our hash family.
● Each time we increment an item, we perform the

corresponding increment operation on each row.

w = ⌈e · ε-1⌉

d =
 ??

h₂
h₃

hd

…

27 18 28 18 28 … 45

16 18 3 39 88 … 75

69 31 47 18 5 … 59

...

h₁ 31 41 59 26 53 58…

Running in Parallel
● Let’s run d copies of our data structure in parallel with

one another.
● Each row has its hash function sampled uniformly at

random from our hash family.
● Each time we increment an item, we perform the

corresponding increment operation on each row.

w = ⌈e · ε-1⌉

d =
 ??

h₂
h₃

hd

…

27 18 28 18 28 … 45

16 18 3 39 88 … 75

69 31 47 18 5 … 59

...

h₁ 31 41 59 26 53 58…

Running in Parallel
● Let’s run d copies of our data structure in parallel with

one another.
● Each row has its hash function sampled uniformly at

random from our hash family.
● Each time we increment an item, we perform the

corresponding increment operation on each row.

w = ⌈e · ε-1⌉

d =
 ??

h₂
h₃

hd

…

27 18 29 18 28 … 45

16 18 3 40 88 … 75

69 31 47 18 5 … 60

...

h₁ 32 41 59 26 53 58…

Running in Parallel
● Let’s run d copies of our data structure in parallel with

one another.
● Each row has its hash function sampled uniformly at

random from our hash family.
● Each time we increment an item, we perform the

corresponding increment operation on each row.

w = ⌈e · ε-1⌉

d =
 ??

h₂
h₃

hd

…

27 18 29 18 28 … 45

16 18 3 40 88 … 75

69 31 47 18 5 … 60

...

h₁ 32 41 59 26 53 58…

Running in Parallel
● Imagine we call estimate(x) on each of our estimators

and get back these estimates.
● We need to give back a single number.
● Question: How should we aggregate these numbers

into a single estimate?

Estimator 1:

137
Estimator 2:

271
Estimator 3:

166
Estimator 4:

103
Estimator 5:

261

Answer at
https://pollev.com/cs166spr23

https://pollev.com/cs166spr23

Running in Parallel
● Imagine we call estimate(x) on each of our estimators

and get back these estimates.
● We need to give back a single number.
● Question: How should we aggregate these numbers

into a single estimate?

Estimator 1:

137
Estimator 2:

271
Estimator 3:

166
Estimator 4:

103
Estimator 5:

261

Running in Parallel
● Imagine we call estimate(x) on each of our estimators

and get back these estimates.
● We need to give back a single number.
● Question: How should we aggregate these numbers

into a single estimate?

Estimator 1:

137
Estimator 2:

271
Estimator 3:

166
Estimator 5:

261
Estimator 4:

103

Running in Parallel
● Imagine we call estimate(x) on each of our estimators

and get back these estimates.
● We need to give back a single number.
● Question: How should we aggregate these numbers

into a single estimate?

Estimator 1:

137
Estimator 2:

271
Estimator 3:

166
Estimator 5:

261
Estimator 4:

103

Intuition: The smallest
estimate returned has
the least “noise,” and

that’s the best guess for
the frequency.

Pr [min { âij − ai } > ε‖a‖1]

= Pr [∧
j

(âij − ai > ε‖a‖1)]

= ∏
j

Pr [âij −ai > ε‖a‖1]

< ∏
j

1
k

= k− d
Let âᵢⱼ be the

estimate from the
jth copy of the data

structure.

Our final estimate is
min {âᵢⱼ}

Pr [min { âij }− ai > ε‖a‖1]

= Pr [∧
j

(âij − ai > ε‖a‖1)]

= ∏
j

Pr [âij −ai > ε‖a‖1]

≤ ∏
j

e−1

= e−d

Let âᵢⱼ be the
estimate from the

jth copy of the data
structure.

Our final estimate is
min {âᵢⱼ}

Pr [min { âij }− ai > ε‖a‖1]

= Pr [∧
j =1

d
(âij − ai > ε‖a‖1)]

= ∏
j=1

d

Pr [âij −ai > ε‖a‖1]

≤ ∏
j=1

d

e−1

= e−d
Let âᵢⱼ be the

estimate from the
jth copy of the data

structure.

Our final estimate is
min {âᵢⱼ}

Pr [min { âij }− ai > ε‖a‖1]

= Pr [∧
j =1

d
(âij − ai > ε‖a‖1)]

= ∏
j=1

d

Pr [âij −ai > ε‖a‖1]

≤ ∏
j=1

d

e−1

= e−d
Let âᵢⱼ be the

estimate from the
jth copy of the data

structure.

Our final estimate is
min {âᵢⱼ}

The only way the
minimum estimate
is inaccurate is if
every estimate is

inaccurate.

Pr [min { âij }− ai > ε‖a‖1]

= Pr [∧
j =1

d
(âij − ai > ε‖a‖1)]

= ∏
j=1

d

Pr [âij −ai > ε‖a‖1]

≤ ∏
j=1

d

e−1

= e−d
Let âᵢⱼ be the

estimate from the
jth copy of the data

structure.

Our final estimate is
min {âᵢⱼ}

The only way the
minimum estimate
is inaccurate is if
every estimate is

inaccurate.

Pr [min { âij }− ai > ε‖a‖1]

= Pr [∧
j =1

d
(âij − ai > ε‖a‖1)]

= ∏
j=1

d

Pr [âij −ai > ε‖a‖1]

≤ ∏
j=1

d

e−1

= e−d
Let âᵢⱼ be the

estimate from the
jth copy of the data

structure.

Our final estimate is
min {âᵢⱼ}

Pr [min { âij }− ai > ε‖a‖1]

= Pr [∧
j =1

d
(âij − ai > ε‖a‖1)]

= ∏
j=1

d

Pr [âij −ai > ε‖a‖1]

≤ ∏
j=1

d

e−1

= e−d
Let âᵢⱼ be the

estimate from the
jth copy of the data

structure.

Our final estimate is
min {âᵢⱼ}

Each copy of the
data structure is

independent of the
others.

Pr [min { âij }− ai > ε‖a‖1]

= Pr [∧
j =1

d
(âij − ai > ε‖a‖1)]

= ∏
j=1

d

Pr [âij −ai > ε‖a‖1]

≤ ∏
j=1

d

e−1

= e−d
Let âᵢⱼ be the

estimate from the
jth copy of the data

structure.

Our final estimate is
min {âᵢⱼ}

Each copy of the
data structure is

independent of the
others.

Pr [min { âij }− ai > ε‖a‖1]

= Pr [∧
j =1

d
(âij − ai > ε‖a‖1)]

= ∏
j=1

d

Pr [âij −ai > ε‖a‖1]

≤ ∏
j=1

d

e−1

= e−d
Let âᵢⱼ be the

estimate from the
jth copy of the data

structure.

Our final estimate is
min {âᵢⱼ}

Pr [min { âij }− ai > ε‖a‖1]

= Pr [∧
j =1

d
(âij − ai > ε‖a‖1)]

= ∏
j=1

d

Pr [âij −ai > ε‖a‖1]

≤ ∏
j=1

d

e−1

= e−d
Pr [âi−ai ≥ ε‖a‖1] ≤ e−1

Let âᵢⱼ be the
estimate from the

jth copy of the data
structure.

Our final estimate is
min {âᵢⱼ}

Pr [min { âij }− ai > ε‖a‖1]

= Pr [∧
j =1

d
(âij − ai > ε‖a‖1)]

= ∏
j=1

d

Pr [âij −ai > ε‖a‖1]

≤ ∏
j=1

d

e−1

= e−d
Let âᵢⱼ be the

estimate from the
jth copy of the data

structure.

Our final estimate is
min {âᵢⱼ}

Pr [âi−ai ≥ ε‖a‖1] ≤ e−1

Pr [min { âij }− ai > ε‖a‖1]

= Pr [∧
j =1

d
(âij − ai > ε‖a‖1)]

= ∏
j=1

d

Pr [âij −ai > ε‖a‖1]

≤ ∏
j=1

d

e−1

= e−d
Let âᵢⱼ be the

estimate from the
jth copy of the data

structure.

Our final estimate is
min {âᵢⱼ}

Let âᵢⱼ be the
estimate from the

jth copy of the data
structure.

Our final estimate is
min {âᵢⱼ}

Pr [min { âij }− ai > ε‖a‖1]

= Pr [∧
j =1

d
(âij − ai > ε‖a‖1)]

= ∏
j=1

d

Pr [âij −ai > ε‖a‖1]

≤ ∏
j=1

d

e−1

= e− d

Finishing Touches
● We now see that

● We want to reach this goal:

● So set d = ln δ-1.

Pr [âi−ai > ε‖a‖1] ≤ e− d

Pr [âi−ai > ε‖a‖1] ≤ δ

The Count-Min Sketch

31 41 59 26 53 58h₁
27 18 28 18 28 … 45h₂
16 18 3 39 88 … 75h₃

69 31 47 18 5 … 59hd

...…

w = ⌈e · ε-1⌉
d =

 ⌈ln δ
-1⌉

…

Sampled uniformly and
independently from a
2-independent family

of hash functions

The Count-Min Sketch

31 41 59 26 53 58h₁
27 18 28 18 28 … 45h₂
16 18 3 39 88 … 75h₃

69 31 47 18 5 … 59hd

...…

…

increment(x):
 for i = 1 … d:
 count[i][h (x)]++ᵢ

The Count-Min Sketch

31 41 59 26 53 58h₁
27 18 28 18 28 … 45h₂
16 18 3 39 88 … 75h₃

69 31 47 18 5 … 59hd

...…

…

increment(x):
 for i = 1 … d:
 count[i][h (x)]++ᵢ

The Count-Min Sketch

32 41 59 26 53 58h₁
27 18 28 19 28 … 45h₂
16 19 3 39 88 … 75h₃

69 31 47 18 5 … 60hd

...…

…

increment(x):
 for i = 1 … d:
 count[i][h (x)]++ᵢ

The Count-Min Sketch

32 41 59 26 53 58h₁
27 18 28 19 28 … 45h₂
16 19 3 39 88 … 75h₃

69 31 47 18 5 … 60hd

...…

…

increment(x):
 for i = 1 … d:
 count[i][h (x)]++ᵢ

The Count-Min Sketch

h₁
h₂
h₃

hd

…

increment(x):
 for i = 1 … d:
 count[i][h (x)]++ᵢ

estimate(x):
 result = ∞
 for i = 1 … d:
 result = min(result, count[i][h (x)])ᵢ
 return result

32 41 59 26 53 58

27 18 28 19 28 … 45

16 19 3 39 88 … 75

69 31 47 18 5 … 60

...

…

The Count-Min Sketch

h₁
h₂
h₃

hd

…

increment(x):
 for i = 1 … d:
 count[i][h (x)]++ᵢ

estimate(x):
 result = ∞
 for i = 1 … d:
 result = min(result, count[i][h (x)])ᵢ
 return result

32 41 59 26 53 58

27 18 28 19 28 … 45

16 19 3 39 88 … 75

69 31 47 18 5 … 60

...

…

The Count-Min Sketch
● Update and query times are Θ(log δ-1).

● That’s the number of replicated copies, and we do O(1) work
at each.

● Space usage: Θ(ε-1 · log δ-1) counters.
● Each individual estimator has Θ(ε-1) counters, and we run

Θ(log δ-1) copies in parallel.
● Provides an estimate to within ε║a║₁ with probability at

least 1 – δ.
● This can be significantly better than just storing a raw

frequency count – especially if your goal is to find items
that appear very frequently.

How to Build an Estimator

Step One:
Build a Simple

Estimator

Step Two:
Compute Expected
Value of Estimator

Step Three:
Apply Concentration

Inequality

Step Four:
Replicate to Boost

Confidence

Hash items to counters;
add +1 when item seen.

Sum of indicators;
2-independent hashes
have low collision rate.

One-sided error; use
expected value and
Markov’s inequality.

Take min; only fails if all
estimates are bad.

Count-Min Sketch

Major Ideas From Today
● 2-independent hash families are useful when we

want to keep collisions low.
● A “good” approximation of some quantity should

have tunable confidence and accuracy parameters.
● Sums of indicator variables are useful for deriving

expected values of estimators.
● Concentration inequalities like Markov’s

inequality are useful for showing estimators don’t
stay too much from their expected values.

● Good estimators can be built from multiple parallel
copies of weaker estimators.

Next Time
● Count Sketches

● An alternative frequency estimator with
different time/space bounds.

● Cardinality Estimation
● Estimating how many different items you’ve

seen in a data stream.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148

