Hashing and Sketching Part One

Randomized Data Structures

- Randomization is a powerful tool for improving efficiency and solving problems under seemingly impossible constraints.
- Over the next three lectures, we'll explore a sampler of data structures that give a feel for the breadth of what's out there.
- You can easily spend an entire academic career just exploring this space; take CS265 for more on randomized algorithms!

Where We're Going

- Hashing and Sketching (Thursday / Tuesday)
 - Using hash functions to count without counting.
- Cuckoo Hashing (Next Thursday)
 - Hashing with worst-case O(1) lookups, along with a splash of random hypergraph theory.

Outline for Today

- Hash Functions
 - Understanding our basic building blocks.
- Frequency Estimation
 - Estimating how many times we've seen something.
- **Probabilistic Techniques**
 - Standard but powerful tools for reasoning about randomized data structures.

Preliminaries: *Hash Functions*

Hashing in Practice

- Hash functions are used extensively in programming and software engineering:
 - They make hash tables possible: think C++ std::hash, Python's __hash__, or Java's Object.hashCode().
 - They're used in cryptography: SHA-256, HMAC, etc.
- **Question:** When we're in Theoryland, what do we mean when we say "hash function?"

Hashing in Theoryland

- In Theoryland, a hash function is a function from some domain called the *universe* (typically denoted *?*) to some codomain.
- The codomain is usually a set of the form $[m] = \{0, 1, 2, 3, ..., m 1\}$

$$h: \mathcal{U} \rightarrow [m]$$

Hashing in Theoryland

- **Intuition:** No matter how clever you are with designing a specific hash function, that hash function isn't random, and so there will be pathological inputs.
 - You can formalize this with the pigeonhole principle.
- *Idea:* Rather than finding the One True Hash Function, we'll assume we have a collection of hash functions to pick from, and we'll choose which one to use randomly.

Families of Hash Functions

- A *family* of hash functions is a set \mathscr{H} of hash functions with the same domain and codomain.
- We can then introduce randomness into our data structures by sampling a random hash function from \mathscr{H} .
- *Key Point:* The randomness in our data structures almost always derives from the random choice of hash functions, not from the data.

Data is adversarial. Hash function selection is random.

 Question: What makes a family of hash functions *H* a "good" family of hash functions?

Problem: A hash function that distributes n elements uniformly at random over [m] requires $\Omega(n \log m)$ space in the worst case.

Question: Do we actually need true randomness? Or can we get away with something weaker?

For any $x \in \mathcal{U}$ and random $h \in \mathcal{H}$, the value of h(x) is uniform over its codomain.

X

For any $x \in \mathcal{U}$ and random $h \in \mathcal{H}$, the value of h(x) is uniform over its codomain.

X

For any $x \in \mathcal{U}$ and random $h \in \mathcal{H}$, the value of h(x) is uniform over its codomain.

Find an "obviously bad" family of hash functions that satisfies the distribution property.

Answer at https://pollev.com/cs166spr23

For any $x \in \mathcal{U}$ and random $h \in \mathcal{H}$, the value of h(x) is uniform over its codomain.

Problem: This rule doesn't guarantee that elements are spread out.

For any $x \in \mathcal{U}$ and random $h \in \mathcal{H}$, the value of h(x) is uniform over its codomain.

Problem: This rule doesn't guarantee that elements are spread out.

For any $x \in \mathcal{U}$ and random $h \in \mathcal{H}$, the value of h(x) is uniform over its codomain.

Problem: This rule doesn't guarantee that elements are spread out.

For any $x \in \mathcal{U}$ and random $h \in \mathcal{H}$, the value of h(x) is uniform over its codomain.

Independence Property:

Where one element is placed shouldn't impact where a second goes. For any distinct $x, y \in \mathcal{U}$ and random $h \in \mathcal{H}$, h(x) and h(y) are independent random variables.

For any $x \in \mathcal{U}$ and random $h \in \mathcal{H}$, the value of h(x) is uniform over its codomain.

Independence Property: Where one element is placed shouldn't impact where a second goes. For any distinct $x, y \in \mathcal{U}$ and random $h \in \mathcal{H}$, h(x) and h(y) are independent random variables.

A family of hash functions \mathscr{H} is called **2-independent** (or **pairwise independent**) if it satisfies the distribution and independence properties.

For any distinct $x, y \in \mathcal{U}$ and random $h \in \mathcal{H}$, h(x) and h(y) are independent random variables.

Intuition:

Intuition:

2-independence means any pair of elements is unlikely to collide. For any distinct $x, y \in \mathcal{U}$ and random $h \in \mathcal{H}$, h(x) and h(y) are independent random variables.

 $\Pr[h(x) = h(y)]$

Intuition:

2-independence means any pair of elements is unlikely to collide. For any distinct $x, y \in \mathcal{U}$ and random $h \in \mathcal{H}$, h(x) and h(y) are independent random variables.

 $\Pr[h(x) = h(y)]$

Intuition:

2-independence means any pair of elements is unlikely to collide.

For any distinct x, $y \in \mathcal{U}$ and random $h \in \mathcal{H}$, h(x) and h(y) are independent random variables.

 $\Pr[h(x) = h(y)]$

Intuition:

2-independence means any pair of elements is unlikely to collide. For any distinct $x, y \in \mathcal{U}$ and random $h \in \mathcal{H}$, h(x) and h(y) are independent random variables.

 $\Pr[h(x) = h(y)]$

Intuition:

2-independence means any pair of elements is unlikely to collide. For any distinct $x, y \in \mathcal{U}$ and random $h \in \mathcal{H}$, h(x) and h(y) are independent random variables.

 $\Pr[h(x) = h(y)]$

For any distinct $x, y \in \mathcal{U}$ and random $h \in \mathcal{H}$, h(x) and h(y) are independent random variables.

Intuition:

2-independence means any pair of elements is unlikely to collide.

$$\Pr[h(x) = h(y)]$$

=
$$\sum_{i=0}^{m-1} \Pr[h(x) = i \land h(y) = i]$$

For any distinct $x, y \in \mathcal{U}$ and random $h \in \mathcal{H}$, h(x) and h(y) are independent random variables.

Intuition:

$$\Pr[h(x) = h(y)]$$

=
$$\sum_{i=0}^{m-1} \Pr[h(x) = i \land h(y) = i]$$

For any distinct $x, y \in \mathcal{U}$ and random $h \in \mathcal{H}$, h(x) and h(y) are independent random variables.

Intuition:

$$\Pr[h(x) = h(y)]$$

=
$$\sum_{i=0}^{m-1} \Pr[h(x) = i \land h(y) = i]$$

For any distinct $x, y \in \mathcal{U}$ and random $h \in \mathcal{H}$, h(x) and h(y) are independent random variables.

Intuition:

$$\Pr[h(x) = h(y)]$$

$$= \sum_{i=0}^{m-1} \Pr[h(x) = i \land h(y) = i]$$

$$= \sum_{i=0}^{m-1} \Pr[h(x) = i] \cdot \Pr[h(y) = i]$$

For any distinct $x, y \in \mathcal{U}$ and random $h \in \mathcal{H}$, h(x) and h(y) are independent random variables.

Intuition:

$$\Pr[h(x) = h(y)]$$

$$= \sum_{i=0}^{m-1} \Pr[h(x) = i \land h(y) = i]$$

$$= \sum_{i=0}^{m-1} \Pr[h(x) = i] \cdot \Pr[h(y) = i]$$

For any distinct $x, y \in \mathcal{U}$ and random $h \in \mathcal{H}$, h(x) and h(y) are independent random variables.

Intuition:

$$\Pr[h(x) = h(y)]$$

$$\sum_{i=0}^{m-1} \Pr[h(x) = i \land h(y) = i]$$

$$\sum_{i=0}^{m-1} \Pr[h(x) = i] \cdot \Pr[h(y) = i]$$

For any distinct $x, y \in \mathcal{U}$ and random $h \in \mathcal{H}$, h(x) and h(y) are independent random variables.

Intuition:

$$\Pr[h(x) = h(y)]$$

$$= \sum_{i=0}^{m-1} \Pr[h(x) = i \land h(y) = i]$$

$$= \sum_{i=0}^{m-1} \Pr[h(x) = i] \cdot \Pr[h(y) = i]$$

$$= \sum_{i=0}^{m-1} \frac{1}{m^2}$$
For any $x \in \mathcal{U}$ and random $h \in \mathcal{H}$, the value of h(x) is uniform over its codomain. For any distinct $x, y \in \mathcal{U}$ and random $h \in \mathcal{H}$, h(x) and h(y) are independent random variables.

Intuition:

2-independence means any pair of elements is unlikely to collide.

$$\Pr[h(x) = h(y)]$$

$$= \sum_{i=0}^{m-1} \Pr[h(x) = i \land h(y) = i]$$

$$= \sum_{i=0}^{m-1} \Pr[h(x) = i] \cdot \Pr[h(y) = i]$$

$$= \sum_{i=0}^{m-1} \frac{1}{m^2}$$

For any $x \in \mathcal{U}$ and random $h \in \mathcal{H}$, the value of h(x) is uniform over its codomain. For any distinct $x, y \in \mathcal{U}$ and random $h \in \mathcal{H}$, h(x) and h(y) are independent random variables.

Intuition:

2-independence means any pair of elements is unlikely to collide.

X

0

1

2

m – 1

$$\Pr[h(x) = h(y)]$$

$$= \sum_{i=0}^{m-1} \Pr[h(x) = i \land h(y) = i]$$

$$= \sum_{i=0}^{m-1} \Pr[h(x) = i] \cdot \Pr[h(y) = i]$$

$$= \sum_{i=0}^{m-1} \frac{1}{m^2}$$

$$= \frac{1}{m}$$

For any $x \in \mathcal{U}$ and random $h \in \mathcal{H}$, the value of h(x) is uniform over its codomain. For any distinct $x, y \in \mathcal{U}$ and random $h \in \mathcal{H}$, h(x) and h(y) are independent random variables.

Intuition:

2-independence means any pair of elements is unlikely to collide.

X

0

1

2

m

$$\Pr[h(x) = h(y)]$$

$$= \sum_{i=0}^{m-1} \Pr[h(x) = i \land h(y) = i]$$

$$= \sum_{i=0}^{m-1} \Pr[h(x) = i] \cdot \Pr[h(y) = i]$$

$$= \sum_{i=0}^{m-1} \frac{1}{m^2}$$

$$= \frac{1}{m}$$
This is the same as if *h* were a truly random function.

For more on hashing outside of Theoryland, check out *this Stack Exchange post*.

Frequency Estimation

Frequency Estimators

- A *frequency estimator* is a data structure supporting the following operations:
 - *increment*(x), which increments the number of times that x has been seen, and
 - *estimate*(*x*), which returns an estimate of the frequency of *x*.
- Using BSTs, we can solve this in space $\Theta(n)$ with worst-case $O(\log n)$ costs on the operations.
- Using hash tables, we can solve this in space $\Theta(n)$ with expected O(1) costs on the operations.

Frequency Estimators

- Frequency estimation has many applications:
 - Search engines: Finding frequent search queries.
 - Network routing: Finding common source and destination addresses.
- In these applications, $\Theta(n)$ memory can be impractical.
- **Goal:** Get *approximate* answers to these queries in sublinear space.

The Count-Min Sketch

How to Build an Estimator

	Count-Min Sketch
Step One: Build a Simple Estimator	

Revisiting the Exact Solution

- In the exact solution to the frequency estimation problem, we maintained a single counter for each distinct element. This is too space-inefficient.
- **Idea:** Store a fixed number of counters and assign a counter to each $x \in \mathcal{U}$. Multiple objects might be assigned to the same counter.
- To *increment*(*x*), increment the counter for *x*.
- To *estimate*(*x*), read the value of the counter for *x*.

Revisiting the Exact Solution

- In the exact solution to the frequency estimation problem, we maintained a single counter for each distinct element. This is too space-inefficient.
- **Idea:** Store a fixed number of counters and assign a counter to each $x \in \mathcal{U}$. Multiple objects might be assigned to the same counter.
- To *increment*(*x*), increment the counter for *x*.
- To *estimate*(*x*), read the value of the counter for *x*.

Revisiting the Exact Solution

- In the exact solution to the frequency estimation problem, we maintained a single counter for each distinct element. This is too space-inefficient.
- **Idea:** Store a fixed number of counters and assign a counter to each $x \in \mathcal{U}$. Multiple objects might be assigned to the same counter.
- To *increment*(*x*), increment the counter for *x*.
- To *estimate*(*x*), read the value of the counter for *x*.

- Create an array of counters, all initially 0, called count. It will have w elements for some w we choose later.
- Choose, from a family of 2-independent hash functions \mathcal{H} , a uniformly-random hash function $h : \mathcal{U} \to [w]$.
- To *increment*(*x*), increment **count**[*h*(*x*)].
- To *estimate*(*x*), return *count*[*h*(*x*)].

- Create an array of counters, all initially 0, called count. It will have w elements for some w we choose later.
- Choose, from a family of 2-independent hash functions \mathcal{H} , a uniformly-random hash function $h : \mathcal{U} \to [w]$.
- To *increment*(*x*), increment **count**[*h*(*x*)].
- To *estimate*(*x*), return *count*[*h*(*x*)].

- Create an array of counters, all initially 0, called count. It will have w elements for some w we choose later.
- Choose, from a family of 2-independent hash functions \mathcal{H} , a uniformly-random hash function $h : \mathcal{U} \to [w]$.
- To *increment*(x), increment count[h(x)].
- To *estimate*(*x*), return *count*[*h*(*x*)].

- Create an array of counters, all initially 0, called count. It will have w elements for some w we choose later.
- Choose, from a family of 2-independent hash functions \mathcal{H} , a uniformly-random hash function $h : \mathcal{U} \to [w]$.
- To *increment*(x), increment count[h(x)].
- To *estimate*(*x*), return *count*[*h*(*x*)].

How to Build an Estimator

	Count-Min Sketch
Step One: Build a Simple Estimator	Hash items to counters; add +1 when item seen.
Step Two: Compute Expected Value of Estimator	

Some Notation

- Let *x*₁, *x*₂, *x*₃, ... denote the list of distinct items whose frequencies are being stored.
- Let a_1 , a_2 , a_3 , ... denote the frequencies of those items.
 - e.g. a_i is the true number of times x_i is seen.
- Let \hat{a}_1 , \hat{a}_2 , \hat{a}_3 , ... denote the estimate our data structure gives for the frequency of each item.
 - e.g. \hat{a}_i is our estimate for how many times x_i has been seen.
 - **Important detail:** the a_i values are not random variables (data are chosen adversarially), while the \hat{a}_i values are random variables (they depend on a randomly-sampled hash function).
- In what follows, imagine we're querying the frequency of some specific element x_i . We want to analyze \hat{a}_i .

Analyzing our Estimator

- We're interested in learning more about \hat{a}_i . A good first step is to work out $E[\hat{a}_i]$.
- *â*_i will be equal to *a*_i, plus some "noise" terms from colliding elements.
- Each of those elements is very unlikely to collide with us, though. (There's a 1/w chance of a collision for any one other element.)
- **Reasonable guess:** $E[\hat{a}_i] = a_i + \sum_{j \neq i} \frac{a_j}{w}$

Analyzing our Estimator

- We're interested in learning more about \hat{a}_i . A good first step is to work out $E[\hat{a}_i]$.
- *â*_i will be equal to *a*_i, plus some "noise" terms from colliding elements.
- Each of those elements is very unlikely to collide with us, though. (There's a 1/w chance of a collision for any one other element.)
- **Reasonable guess:** $E[\hat{a}_i] = a_i + \sum_{j \neq i} \frac{a_j}{w}$

Frequency of each other item, scaled to account for chance of a collision.

- Let's make this more rigorous.
- For each element x_j :
 - If $h(x_i) = h(x_j)$, then x_j contributes a_j to count $[h(x_i)]$.
 - If $h(x_i) \neq h(x_j)$, then x_j contributes 0 to count $[h(x_i)]$.

- Let's make this more rigorous.
- For each element x_j :
 - If $h(x_i) = h(x_j)$, then x_j contributes a_j to count $[h(x_i)]$.
 - If $h(x_i) \neq h(x_j)$, then x_j contributes 0 to count $[h(x_i)]$.
- To pin this down precisely, let's define a set of random variables $X_1, X_2, ...,$ as follows:

$$X_{j} = \begin{cases} 1 & \text{if } h(x_{i}) = h(x_{j}) \\ 0 & \text{otherwise} \end{cases}$$

- Let's make this more rigorous.
- For each element x_j :
 - If $h(x_i) = h(x_j)$, then x_j contributes a_j to count $[h(x_i)]$.
 - If $h(x_i) \neq h(x_j)$, then x_j contributes 0 to count $[h(x_i)]$.
- To pin this down precisely, let's define a set of random variables $X_1, X_2, ...,$ as follows:

$$X_{j} = \begin{cases} 1 & \text{if } h(x_{i}) = h(x_{j}) \\ 0 & \text{otherwise} \end{cases}$$

Each of these variables is called an *indicator random variable*, since it "indicates" whether some event occurs.

- Let's make this more rigorous.
- For each element x_j :
 - If $h(x_i) = h(x_j)$, then x_j contributes a_j to count $[h(x_i)]$.
 - If $h(x_i) \neq h(x_j)$, then x_j contributes 0 to count $[h(x_i)]$.
- To pin this down precisely, let's define a set of random variables $X_1, X_2, ...,$ as follows:

$$X_{j} = \begin{cases} 1 & \text{if } h(x_{i}) = h(x_{j}) \\ 0 & \text{otherwise} \end{cases}$$

• The value of $\hat{a}_i - a_i$ is then given by

$$\hat{\boldsymbol{a}}_i - \boldsymbol{a}_i = \sum_{j \neq i} \boldsymbol{a}_j X_j$$

$$E[\hat{\boldsymbol{a}}_i - \boldsymbol{a}_i] = E[\sum_{j \neq i} \boldsymbol{a}_j X_j]$$

$$E[\hat{\boldsymbol{a}}_{i} - \boldsymbol{a}_{i}] = E[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}]$$
$$= \sum_{j \neq i} E[\boldsymbol{a}_{j} X_{j}]$$

$$E[\hat{\boldsymbol{a}}_{i} - \boldsymbol{a}_{i}] = E[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}]$$
$$= \sum_{j \neq i} E[\boldsymbol{a}_{j} X_{j}]$$

This follows from *linearity of expectation*. We'll use this property extensively over the next few days.

$$E[\hat{\boldsymbol{a}}_{i} - \boldsymbol{a}_{i}] = E[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}]$$
$$= \sum_{j \neq i} E[\boldsymbol{a}_{j} X_{j}]$$
$$= \sum_{j \neq i} \boldsymbol{a}_{j} E[X_{j}]$$

$$E[\hat{\boldsymbol{a}}_{i} - \boldsymbol{a}_{i}] = E[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}]$$
$$= \sum_{j \neq i} E[\boldsymbol{a}_{j} X_{j}]$$
$$= \sum_{j \neq i} \boldsymbol{a}_{j} E[X_{j}]$$

The values of *a_j* are not random. *The randomness comes from our choice of hash function.*

$$E[\hat{\boldsymbol{a}}_{i} - \boldsymbol{a}_{i}] = E[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}]$$
$$= \sum_{j \neq i} E[\boldsymbol{a}_{j} X_{j}]$$
$$= \sum_{j \neq i} \boldsymbol{a}_{j} E[X_{j}]$$

$$E[\hat{\boldsymbol{a}}_{i} - \boldsymbol{a}_{i}] = E[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}]$$
$$= \sum_{j \neq i} E[\boldsymbol{a}_{j} X_{j}]$$
$$= \sum_{j \neq i} \boldsymbol{a}_{j} E[X_{j}]$$

$$\mathbf{E}[X_j] =$$

$$E[\hat{\boldsymbol{a}}_{i} - \boldsymbol{a}_{i}] = E[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}]$$
$$= \sum_{j \neq i} E[\boldsymbol{a}_{j} X_{j}]$$
$$= \sum_{j \neq i} \boldsymbol{a}_{j} E[X_{j}]$$

$$\mathbf{E}[X_j] =$$

$$\begin{bmatrix} X_{j} = \begin{cases} 1 & \text{if } h(x_{i}) = h(x_{j}) \\ 0 & \text{otherwise} \end{cases}$$

$$E[\hat{\boldsymbol{a}}_{i} - \boldsymbol{a}_{i}] = E[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}]$$
$$= \sum_{j \neq i} E[\boldsymbol{a}_{j} X_{j}]$$
$$= \sum_{j \neq i} \boldsymbol{a}_{j} E[X_{j}]$$

$\mathbf{E}[\mathbf{X}_j] = \mathbf{1} \cdot \Pr[h(\mathbf{x}_i) = h(\mathbf{x}_j)] + \mathbf{0} \cdot \Pr[h(\mathbf{x}_i) \neq h(\mathbf{x}_j)]$

$$X_{j} = \begin{cases} 1 & \text{if } h(x_{i}) = h(x_{j}) \\ 0 & \text{otherwise} \end{cases}$$

$$E[\hat{\boldsymbol{a}}_{i} - \boldsymbol{a}_{i}] = E[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}]$$
$$= \sum_{j \neq i} E[\boldsymbol{a}_{j} X_{j}]$$
$$= \sum_{j \neq i} \boldsymbol{a}_{j} E[X_{j}]$$

$$\mathbf{E}[X_j] = \mathbf{1} \cdot \Pr[h(x_i) = h(x_j)] + \mathbf{0} \cdot \Pr[h(x_i) \neq h(x_j)]$$

$$E[\hat{\boldsymbol{a}}_{i} - \boldsymbol{a}_{i}] = E[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}]$$
$$= \sum_{j \neq i} E[\boldsymbol{a}_{j} X_{j}]$$
$$= \sum_{j \neq i} \boldsymbol{a}_{j} E[X_{j}]$$

$$\begin{split} \mathbf{E}[X_j] &= \mathbf{1} \cdot \Pr[h(x_i) = h(x_j)] + \mathbf{0} \cdot \Pr[h(x_i) \neq h(x_j)] \\ &= \Pr[h(x_i) = h(x_j)] \end{split}$$

$$E[\hat{\boldsymbol{a}}_{i} - \boldsymbol{a}_{i}] = E[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}]$$
$$= \sum_{j \neq i} E[\boldsymbol{a}_{j} X_{j}]$$
$$= \sum_{j \neq i} \boldsymbol{a}_{j} E[X_{j}]$$

$$\begin{split} \mathbf{E}[X_j] &= \mathbf{1} \cdot \Pr[h(x_i) = h(x_j)] + \mathbf{0} \cdot \Pr[h(x_i) \neq h(x_j)] \\ &= \mathbf{Pr}[h(x_i) = h(x_j)] \end{split}$$

If X is an indicator variable for some event \mathcal{E} , then $\mathbf{E}[X] = \mathbf{Pr}[\mathcal{E}]$. This is really useful when using linearity of expectation!
$$E[\hat{\boldsymbol{a}}_{i} - \boldsymbol{a}_{i}] = E[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}]$$
$$= \sum_{j \neq i} E[\boldsymbol{a}_{j} X_{j}]$$
$$= \sum_{j \neq i} \boldsymbol{a}_{j} E[X_{j}]$$

$$\begin{split} \mathbf{E}[X_j] &= \mathbf{1} \cdot \Pr[h(x_i) = h(x_j)] + \mathbf{0} \cdot \Pr[h(x_i) \neq h(x_j)] \\ &= \Pr[h(x_i) = h(x_j)] \end{split}$$

$$E[\hat{\boldsymbol{a}}_{i} - \boldsymbol{a}_{i}] = E[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}]$$
$$= \sum_{j \neq i} E[\boldsymbol{a}_{j} X_{j}]$$
$$= \sum_{j \neq i} \boldsymbol{a}_{j} E[X_{j}]$$

$$\begin{split} \mathbf{E}[X_j] &= \mathbf{1} \cdot \Pr[h(x_i) = h(x_j)] + \mathbf{0} \cdot \Pr[h(x_i) \neq h(x_j)] \\ &= \mathbf{Pr}[h(x_i) = h(x_j)] \end{split}$$

Hey, we saw this earlier!

$$E[\hat{\boldsymbol{a}}_{i} - \boldsymbol{a}_{i}] = E[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}]$$
$$= \sum_{j \neq i} E[\boldsymbol{a}_{j} X_{j}]$$
$$= \sum_{j \neq i} \boldsymbol{a}_{j} E[X_{j}]$$

$$E[X_{j}] = 1 \cdot \Pr[h(x_{i}) = h(x_{j})] + 0 \cdot \Pr[h(x_{i}) \neq h(x_{j})]$$

=
$$\Pr[h(x_{i}) = h(x_{j})]$$

=
$$\frac{1}{w}$$

Hey, we saw this earlier!

$$E[\hat{\boldsymbol{a}}_{i} - \boldsymbol{a}_{i}] = E[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}]$$
$$= \sum_{j \neq i} E[\boldsymbol{a}_{j} X_{j}]$$
$$= \sum_{j \neq i} \boldsymbol{a}_{j} E[X_{j}]$$
$$= \sum_{j \neq i} \frac{\boldsymbol{a}_{j}}{W}$$

$$\begin{split} \mathbf{E}[X_j] &= \mathbf{1} \cdot \Pr[h(x_i) = h(x_j)] + \mathbf{0} \cdot \Pr[h(x_i) \neq h(x_j)] \\ &= \Pr[h(x_i) = h(x_j)] \\ &= \frac{1}{w} \end{split} \end{split} \\ \end{split}$$

$$E[\hat{\boldsymbol{a}}_{i} - \boldsymbol{a}_{i}] = E[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}]$$
$$= \sum_{j \neq i} E[\boldsymbol{a}_{j} X_{j}]$$
$$= \sum_{j \neq i} \boldsymbol{a}_{j} E[X_{j}]$$
$$= \sum_{j \neq i} \frac{\boldsymbol{a}_{j}}{W}$$

$$E[X_j] = 1 \cdot \Pr[h(x_i) = h(x_j)] + 0 \cdot \Pr[h(x_i) \neq h(x_j)]$$

=
$$\Pr[h(x_i) = h(x_j)]$$

=
$$\frac{1}{w}$$

$$E[\hat{\boldsymbol{a}}_{i} - \boldsymbol{a}_{i}] = E[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}]$$
$$= \sum_{j \neq i} E[\boldsymbol{a}_{j} X_{j}]$$
$$= \sum_{j \neq i} \boldsymbol{a}_{j} E[X_{j}]$$
$$= \sum_{j \neq i} \frac{\boldsymbol{a}_{j}}{W}$$

$$E[\hat{\boldsymbol{a}}_{i} - \boldsymbol{a}_{i}] = E[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}]$$
$$= \sum_{j \neq i} E[\boldsymbol{a}_{j} X_{j}]$$
$$= \sum_{j \neq i} \boldsymbol{a}_{j} E[X_{j}]$$
$$= \sum_{j \neq i} \frac{\boldsymbol{a}_{j}}{W}$$

$$E[\hat{a}_{i}-a_{i}] = E[\sum_{j\neq i} a_{j}X_{j}]$$

$$= \sum_{j\neq i} E[a_{j}X_{j}]$$

$$= \sum_{j\neq i} E[a_{j}X_{j}]$$

$$= \sum_{j\neq i} a_{j}E[X_{j}]$$

$$= \sum_{j\neq i} a_{j}E[X_{j}]$$

$$= \sum_{j\neq i} \frac{a_{j}}{w}$$

$$= \sum_{j\neq i} \frac{a_{j}}{w}$$

$$E[\hat{a}_{i}-a_{i}] = E[\sum_{j\neq i} a_{j}X_{j}]$$

$$= \sum_{j\neq i} E[a_{j}X_{j}]$$

$$= \sum_{j\neq i} E[a_{j}X_{j}]$$

$$= \sum_{j\neq i} a_{j}E[X_{j}]$$

$$= \sum_{j\neq i} a_{j}E[X_{j}]$$

$$= \sum_{j\neq i} \frac{a_{j}}{w}$$

$$\leq \frac{\|a\|_{1}}{w}$$

$$\|a\|_{1} = \sum_{i} |a_{i}|$$

 $\boldsymbol{a}_{j}X_{j}]$

$$E[\hat{\boldsymbol{a}}_{i} - \boldsymbol{a}_{i}] = E[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}]$$

$$= \sum_{j \neq i} E[\boldsymbol{a}_{j} X_{j}]$$

$$= \sum_{j \neq i} \boldsymbol{a}_{j} E[X_{j}]$$

$$= \sum_{j \neq i} \frac{\boldsymbol{a}_{j}}{W}$$

$$\leq \frac{\|\boldsymbol{a}\|_{1}}{W}$$

How to Build an Estimator

	Count-Min Sketch
Step One: Build a Simple Estimator	Hash items to counters; add +1 when item seen.
Step Two: Compute Expected Value of Estimator	Sum of indicators; 2-independent hashes have low collision rate.
Step Three: Apply Concentration Inequality	

On Expected Values

- We know that $E[\hat{a}_i a_i] \le ||a||_1 / w$. This means that the expected overestimate is low.
- *Claim:* This fact, in isolation, is not very useful.
- Below is a probability distribution for a random variable whose expected value is 9 that never takes values near 9.
- If this is the sort of distribution we get for \hat{a}_i , then our estimator is not very useful!

On Expected Values

• We're looking for a way to say something like the following:

"Not only is our estimate's expected value pretty close to the real value, our estimate has a high probability of being close to the real value."

• In other words, if the true frequency is 9, we want the distribution of our estimate to kinda sorta look like this:

On Expected Values

- We're looking for a way to say something like the following:
 - "Not only is our estimate's expected value pretty close to the real value, our estimate has a high probability of being close to the real value."
- In other words, if the true frequency is 9, we want the distribution of our estimate to kinda sorta look like this:

- In some applications, we might be okay overshooting by a larger amount (e.g. roughly estimating which restaurants people are visiting).
- In others, it's really bad if we overestimate by too much (e.g. polling for an election).
- **Idea:** Allow the client of the estimator to pick some value ε between 0 and 1 indicating how close they want to be to the true value. The closer ε is to 0, the better the approximation we want.

- In some applications, we might be okay overshooting by a larger amount (e.g. roughly estimating which restaurants people are visiting).
- In others, it's really bad if we overestimate by too much (e.g. polling for an election).
- **Idea:** Allow the client of the estimator to pick some value ε between 0 and 1 indicating how close they want to be to the true value. The closer ε is to 0, the better the approximation we want.

- In some applications, we might be okay overshooting by a larger amount (e.g. roughly estimating which restaurants people are visiting).
- In others, it's really bad if we overestimate by too much (e.g. polling for an election).
- **Idea:** Allow the client of the estimator to pick some value ε between 0 and 1 indicating how close they want to be to the true value. The closer ε is to 0, the better the approximation we want.

- In some applications, we might be okay overshooting by a larger amount (e.g. roughly estimating which restaurants people are visiting).
- In others, it's really bad if we overestimate by too much (e.g. polling for an election).
- **Idea:** Allow the client of the estimator to pick some value ε between 0 and 1 indicating how close they want to be to the true value. The closer ε is to 0, the better the approximation we want.

- Our overestimate is related to $||a||_1$.
- We'll formalize how ε works as follows: we'll say we're okay with any estimate that's within $\varepsilon ||a||_1$ of the true value.
- This is okay for high-frequency elements, but not so great for low-frequency elements. (Why?)
- But that's okay. In practice, we are most interested in finding the high-frequency items.

Making Things Formal

• We know that

$$E[\hat{\boldsymbol{a}}_i - \boldsymbol{a}_i] \leq \frac{\|\boldsymbol{a}\|_1}{W}$$

11

11

- We want to bound this quantity: $\Pr[\hat{a}_{i} - a_{i} > \epsilon ||a||_{1}]$
- Let's run the numbers!

$\Pr[\hat{\boldsymbol{a}}_i - \boldsymbol{a}_i > \varepsilon \|\boldsymbol{a}\|_1]$

$$\Pr\left[\hat{\boldsymbol{a}}_{i} - \boldsymbol{a}_{i}\right] > \varepsilon \|\boldsymbol{a}\|_{1}$$

$$\Pr\left[\hat{\boldsymbol{a}}_{i} - \boldsymbol{a}_{i}\right] > \varepsilon \|\boldsymbol{a}\|_{1}$$

We don't know the exact distribution of this random variable.

However, we have a **one-sided error**: our estimate can never be lower than the true value. This means that $\hat{a}_i - a_i \ge 0$.

Markov's inequality says that if *X* is a nonnegative random variable, then

$$\Pr[X \ge c] \le \frac{\mathrm{E}[X]}{c}$$

$$\Pr\left[\hat{\boldsymbol{a}}_{i} - \boldsymbol{a}_{i}\right] > \varepsilon \|\boldsymbol{a}\|_{1}$$

$$\leq \frac{\operatorname{E}\left[\hat{\boldsymbol{a}}_{i} - \boldsymbol{a}_{i}\right]}{\varepsilon \|\boldsymbol{a}\|_{1}}$$

We don't know the exact distribution of this random variable.

However, we have a **one-sided error**: our estimate can never be lower than the true value. This means that $\hat{a}_i - a_i \ge 0$.

Markov's inequality says that if *X* is a nonnegative random variable, then

$$\Pr[X \ge c] \le \frac{\mathrm{E}[X]}{c}$$

$$\Pr\left[\hat{\boldsymbol{a}}_{i} - \boldsymbol{a}_{i}\right] > \varepsilon \|\boldsymbol{a}\|_{1}$$

$$\leq \frac{\operatorname{E}\left[\hat{\boldsymbol{a}}_{i} - \boldsymbol{a}_{i}\right]}{\varepsilon \|\boldsymbol{a}\|_{1}}$$

$$\Pr\left[\hat{\boldsymbol{a}}_{i} - \boldsymbol{a}_{i} > \varepsilon \|\boldsymbol{a}\|_{1}\right]$$

$$\leq \frac{\operatorname{E}\left[\hat{\boldsymbol{a}}_{i} - \boldsymbol{a}_{i}\right]}{\varepsilon \|\boldsymbol{a}\|_{1}}$$

$$\Pr\left[\hat{\boldsymbol{a}}_{i} - \boldsymbol{a}_{i} > \varepsilon \|\boldsymbol{a}\|_{1}\right]$$

$$\leq \frac{\operatorname{E}\left[\hat{\boldsymbol{a}}_{i} - \boldsymbol{a}_{i}\right]}{\varepsilon \|\boldsymbol{a}\|_{1}}$$

$$E[\hat{\boldsymbol{a}}_i - \boldsymbol{a}_i] \leq \frac{\|\boldsymbol{a}\|_1}{W}$$

$$\Pr\left[\hat{\boldsymbol{a}}_{i} - \boldsymbol{a}_{i} > \boldsymbol{\varepsilon} \|\boldsymbol{a}\|_{1}\right]$$

$$\leq \frac{\operatorname{E}\left[\hat{\boldsymbol{a}}_{i} - \boldsymbol{a}_{i}\right]}{\boldsymbol{\varepsilon} \|\boldsymbol{a}\|_{1}}$$

$$\leq \frac{\|\boldsymbol{a}\|_{1}}{w} \cdot \frac{1}{\boldsymbol{\varepsilon} \|\boldsymbol{a}\|_{1}}$$

$$E[\hat{\boldsymbol{a}}_i - \boldsymbol{a}_i] \leq \frac{\|\boldsymbol{a}\|_1}{W}$$

$$\Pr\left[\hat{\boldsymbol{a}}_{i} - \boldsymbol{a}_{i} > \boldsymbol{\varepsilon} \|\boldsymbol{a}\|_{1}\right]$$

$$\leq \frac{\operatorname{E}\left[\hat{\boldsymbol{a}}_{i} - \boldsymbol{a}_{i}\right]}{\boldsymbol{\varepsilon} \|\boldsymbol{a}\|_{1}}$$

$$\leq \frac{\|\boldsymbol{a}\|_{1}}{w} \cdot \frac{1}{\boldsymbol{\varepsilon} \|\boldsymbol{a}\|_{1}}$$

$$\Pr \left[\hat{\boldsymbol{a}}_{i} - \boldsymbol{a}_{i} \right] > \varepsilon \|\boldsymbol{a}\|_{1}$$

$$\leq \frac{\operatorname{E} \left[\hat{\boldsymbol{a}}_{i} - \boldsymbol{a}_{i} \right]}{\varepsilon \|\boldsymbol{a}\|_{1}}$$

$$\leq \frac{\|\boldsymbol{a}\|_{1}}{w} \cdot \frac{1}{\varepsilon \|\boldsymbol{a}\|_{1}}$$

$$= \frac{1}{\varepsilon w}$$

]

Interpreting this Result

• Here's what we just proved:

$$\Pr\left[\hat{\boldsymbol{a}}_{i} - \boldsymbol{a}_{i} > \varepsilon \|\boldsymbol{a}\|_{1}\right] \leq \frac{1}{\varepsilon w}$$

- What does this tell us?
 - Increasing *w* decreases the chance of an overestimate. Decreasing *w* increases the chance of an overestimate.
 - As the user decreases ε , we have to proportionally increase w for this bound to tell us anything useful.
- **Idea:** Choose $w = e \cdot \varepsilon^{-1}$.
 - The choice of *e* is "somewhat" arbitrary in that any constant will work – but I peeked ahead and there's a good reason to choose *e* here.

Interpreting this Result

• Here's what we just proved:

$$\Pr\left[\hat{\boldsymbol{a}}_{i} - \boldsymbol{a}_{i} > \varepsilon \|\boldsymbol{a}\|_{1}\right] \leq e^{-1}$$

- What does this tell us?
 - Increasing *w* decreases the chance of an overestimate. Decreasing *w* increases the chance of an overestimate.
 - As the user decreases ε , we have to proportionally increase w for this bound to tell us anything useful.
- **Idea:** Choose $w = e \cdot \varepsilon^{-1}$.
 - The choice of *e* is "somewhat" arbitrary in that any constant will work but I peeked ahead and there's a good reason to choose *e* here.

The Story So Far

- The user chooses a value $\varepsilon \in (0, 1)$. We pick $w = e \cdot \varepsilon^{-1}$.
- Create an array **count** of *w* counters, each initially zero.
- Choose, from a family of 2-independent hash functions \mathcal{H} , a uniformly-random hash function $h : \mathcal{U} \to [w]$.
- To *increment*(x), increment count[h(x)].
- To *estimate*(*x*), return *count*[*h*(*x*)].
- With probability at least $1 \frac{1}{e}$, the estimate for the frequency of item x_i is within $\varepsilon \cdot ||\boldsymbol{a}||_1$ of the true frequency.

How to Build an Estimator

	Count-Min Sketch
Step One: Build a Simple Estimator	Hash items to counters; add +1 when item seen.
Step Two: Compute Expected Value of Estimator	Sum of indicators; 2-independent hashes have low collision rate.
Step Three: Apply Concentration Inequality	One-sided error; use expected value and Markov's inequality.
Step Four: Boost Confidence	

The Story So Far

• We now have a simple estimator where

 $\Pr\left[\boldsymbol{\hat{a}}_{i} - \boldsymbol{a}_{i} > \varepsilon \|\boldsymbol{a}\|_{1}\right] \leq e^{-1}$

- This means we have a decent chance of getting an estimate we're happy with.
- **Problem:** We probably want to be more confident than this.
 - In some applications, maybe it's okay to have a 63% success rate.
 - In others (say, election polling) we'll need to be a lot more confident than this.
- **Question:** How do you define "confident enough"?

The Parameter $\boldsymbol{\delta}$

- The user already can select a parameter ϵ tuning the *accuracy* of the estimator: how close we want to be to the true value.
- Let's have them also select a parameter δ tuning the ${\it confidence}$ of the estimator: how likely it is that we achieve this goal.
- δ ranges from 0 to 1. Lower δ means a higher chance of getting a good estimate.

- The user already can select a parameter ϵ tuning the *accuracy* of the estimator: how close we want to be to the true value.
- Let's have them also select a parameter δ tuning the ${\it confidence}$ of the estimator: how likely it is that we achieve this goal.
- δ ranges from 0 to 1. Lower δ means a higher chance of getting a good estimate.

- The user already can select a parameter ϵ tuning the *accuracy* of the estimator: how close we want to be to the true value.
- Let's have them also select a parameter δ tuning the ${\it confidence}$ of the estimator: how likely it is that we achieve this goal.
- δ ranges from 0 to 1. Lower δ means a higher chance of getting a good estimate.

- The user already can select a parameter ϵ tuning the *accuracy* of the estimator: how close we want to be to the true value.
- Let's have them also select a parameter δ tuning the ${\it confidence}$ of the estimator: how likely it is that we achieve this goal.
- δ ranges from 0 to 1. Lower δ means a higher chance of getting a good estimate.

- The user already can select a parameter ϵ tuning the *accuracy* of the estimator: how close we want to be to the true value.
- Let's have them also select a parameter δ tuning the ${\it confidence}$ of the estimator: how likely it is that we achieve this goal.
- δ ranges from 0 to 1. Lower δ means a higher chance of getting a good estimate.

Our Goal

• Right now, we have this statement: $\Pr[\hat{a} - a > \varepsilon ||a||_{1}] < e^{-1}$

$$\Pr\left[\hat{\boldsymbol{a}}_{i} - \boldsymbol{a}_{i} > \varepsilon \|\boldsymbol{a}\|_{1}\right] \leq e^{-1}$$

- We want to get to this one: $\Pr[\hat{\boldsymbol{a}}_i - \boldsymbol{a}_i > \epsilon \|\boldsymbol{a}\|_1] \leq \delta$
- How might we achieve this?

A Key Technique

It's *super unlikely* that you'll miss the center of the target every single time!

- Let's run *d* copies of our data structure in parallel with one another.
- Each row has its hash function sampled uniformly at random from our hash family.
- Each time we *increment* an item, we perform the corresponding *increment* operation on each row.

$$h_1$$
 31 41 59 26 53 \dots 58 h_2 27 18 28 18 28 \dots 45 h_3 16 18 3 39 88 \dots 75 \dots 69 31 47 18 5 \dots 59

$$w = [e \cdot \varepsilon^{-1}]$$

- Let's run *d* copies of our data structure in parallel with one another.
- Each row has its hash function sampled uniformly at random from our hash family.
- Each time we *increment* an item, we perform the corresponding *increment* operation on each row.

$$h_1$$
 31 41 59 26 53 \dots 58 h_2 27 18 28 18 28 \dots 45 h_3 16 18 3 39 88 \dots 75 \dots \dots \dots \dots \dots \dots \dots h_d 69 31 47 18 5 \dots 59

$$w = [e \cdot \varepsilon^{-1}]$$

- Let's run *d* copies of our data structure in parallel with one another.
- Each row has its hash function sampled uniformly at random from our hash family.
- Each time we *increment* an item, we perform the corresponding *increment* operation on each row.

$$h_1$$
 32 41 59 26 53 \dots 58 h_2 27 18 29 18 28 \dots 45 h_3 16 18 3 40 88 \dots 75 \dots \dots \dots \dots \dots \dots n_1 n_2 h_d 69 31 47 18 5 \dots 60

$$w = [e \cdot \varepsilon^{-1}]$$

- Let's run *d* copies of our data structure in parallel with one another.
- Each row has its hash function sampled uniformly at random from our hash family.
- Each time we *increment* an item, we perform the corresponding *increment* operation on each row.

$$h_1$$
 32 41 59 26 53 \dots 58 h_2 27 18 29 18 28 \dots 45 h_3 16 18 3 40 88 \dots 75 \dots 69 31 47 18 5 \dots 60

$$w = [e \cdot \varepsilon^{-1}]$$

- Imagine we call *estimate*(*x*) on each of our estimators and get back these estimates.
- We need to give back a single number.
- *Question:* How should we aggregate these numbers into a single estimate?

- Imagine we call *estimate*(*x*) on each of our estimators and get back these estimates.
- We need to give back a single number.
- *Question:* How should we aggregate these numbers into a single estimate?

- Imagine we call *estimate*(*x*) on each of our estimators and get back these estimates.
- We need to give back a single number.
- *Question:* How should we aggregate these numbers into a single estimate?

- Imagine we call *estimate*(*x*) on each of our estimators and get back these estimates.
- We need to give back a single number.
- *Question:* How should we aggr *Intuition* into a single estimate?

Intuition: The smallest estimate returned has the least "noise," and that's the best guess for the frequency.

Estimator 1:
137Estimator 2:
271Estimator 3:
166Estimator 4:
103Estimator 5:
261

Pr [min { \hat{a}_{ij} } - a_i > ε $||a||_1$]

Pr[min { \hat{a}_{ij} } - a_i > ε $||a||_1$]

$\Pr[\min\{ \, \hat{a}_{ij} \,\} - a_i \, > \, \epsilon \, \|a\|_1]$

The only way the minimum estimate is inaccurate is if *every* estimate is inaccurate.

$$\Pr\left[\min\left\{ \hat{a}_{ij} \right\} - a_{i} > \varepsilon \|a\|_{1} \right]$$
$$\Pr\left[\bigwedge_{j=1}^{d} \left(\hat{a}_{ij} - a_{i} > \varepsilon \|a\|_{1} \right) \right]$$
$$\text{The only way the minimum estimate is inaccurate is if every estimate is inaccurate.}$$

$$\Pr\left[\min\left\{\hat{\boldsymbol{a}}_{ij}\right\} - \boldsymbol{a}_{i} > \varepsilon \|\boldsymbol{a}\|_{1}\right]$$
$$= \Pr\left[\bigwedge_{j=1}^{d} \left(\hat{\boldsymbol{a}}_{ij} - \boldsymbol{a}_{i} > \varepsilon \|\boldsymbol{a}\|_{1}\right)\right]$$

$$\Pr\left[\min\left\{\hat{\boldsymbol{a}}_{ij}\right\} - \boldsymbol{a}_{i} > \varepsilon \|\boldsymbol{a}\|_{1}\right]$$
$$= \Pr\left[\bigwedge_{j=1}^{d} \left(\hat{\boldsymbol{a}}_{ij} - \boldsymbol{a}_{i} > \varepsilon \|\boldsymbol{a}\|_{1}\right)\right]$$

Each copy of the data structure is independent of the others.

$$\Pr\left[\min\left\{\hat{\boldsymbol{a}}_{ij}\right\} - \boldsymbol{a}_{i} > \varepsilon \|\boldsymbol{a}\|_{1}\right]$$
$$= \Pr\left[\bigwedge_{j=1}^{d} \left(\hat{\boldsymbol{a}}_{ij} - \boldsymbol{a}_{i} > \varepsilon \|\boldsymbol{a}\|_{1}\right)\right]$$
$$= \prod_{j=1}^{d} \Pr\left[\hat{\boldsymbol{a}}_{ij} - \boldsymbol{a}_{i} > \varepsilon \|\boldsymbol{a}\|_{1}\right]$$

Each copy of the data structure is independent of the others.

$$\Pr\left[\min\left\{\hat{a}_{ij}\right\} - a_{i} > \varepsilon \|a\|_{1}\right]$$
$$= \Pr\left[\bigwedge_{j=1}^{d} \left(\hat{a}_{ij} - a_{i} > \varepsilon \|a\|_{1}\right)\right]$$
$$= \prod_{i=1}^{d} \Pr\left[\hat{a}_{ij} - a_{i} > \varepsilon \|a\|_{1}\right]$$

$$\Pr\left[\min\left\{\hat{a}_{ij}\right\} - a_{i} > \varepsilon \|a\|_{1}\right]$$
$$= \Pr\left[\bigwedge_{j=1}^{d} \left(\hat{a}_{ij} - a_{i} > \varepsilon \|a\|_{1}\right)\right]$$
$$= \prod_{i=1}^{d} \Pr\left[\hat{a}_{ij} - a_{i} > \varepsilon \|a\|_{1}\right]$$

$$\Pr[\hat{\boldsymbol{a}}_i - \boldsymbol{a}_i \geq \varepsilon \|\boldsymbol{a}\|_1] \leq e^{-1}$$

$$\Pr\left[\min\left\{\hat{a}_{ij}\right\} - a_{i} > \varepsilon \|a\|_{1}\right]$$
$$= \Pr\left[\bigwedge_{j=1}^{d} \left(\hat{a}_{ij} - a_{i} > \varepsilon \|a\|_{1}\right)\right]$$

$$= \prod_{j=1}^{n} \Pr[\hat{\boldsymbol{a}}_{ij} - \boldsymbol{a}_i > \varepsilon ||\boldsymbol{a}||_1]$$

$$\leq \prod_{j=1}^d e^{-1}$$

$$\Pr[\hat{\boldsymbol{a}}_i - \boldsymbol{a}_i \geq \varepsilon \|\boldsymbol{a}\|_1] \leq e^{-1}$$

$$\Pr\left[\min\left\{\hat{a}_{ij}\right\} - a_{i} > \varepsilon \|a\|_{1}\right]$$

$$= \Pr\left[\bigwedge_{j=1}^{d} \left(\hat{a}_{ij} - a_{i} > \varepsilon \|a\|_{1}\right)\right]$$

$$= \prod_{j=1}^{d} \Pr\left[\hat{a}_{ij} - a_{i} > \varepsilon \|a\|_{1}\right]$$

$$\leq \prod_{j=1}^{d} e^{-1}$$

$$\Pr\left[\min\left\{\hat{a}_{ij}\right\} - a_{i} > \varepsilon \|a\|_{1}\right]$$

$$= \Pr\left[\bigwedge_{j=1}^{d} \left(\hat{a}_{ij} - a_{i} > \varepsilon \|a\|_{1}\right)\right]$$

$$= \prod_{j=1}^{d} \Pr\left[\hat{a}_{ij} - a_{i} > \varepsilon \|a\|_{1}\right]$$

$$\leq \prod_{j=1}^{d} e^{-1}$$

$$= e^{-d}$$

$$\overset{\text{Let } \hat{a}_{ij} \text{ be the estimate from the } ij \text{ th copy of the data structure.}}$$

Our final estimate is min $\{\hat{a}_{ij}\}$

data

Finishing Touches

• We now see that

$$\Pr\left[\boldsymbol{\hat{a}}_{i} - \boldsymbol{a}_{i} > \varepsilon \|\boldsymbol{a}\|_{1}\right] \leq e^{-d}$$

- We want to reach this goal: $\Pr[\hat{a}_i - a_i > \epsilon ||a||_1] \leq \delta$
- So set $d = \ln \delta^{-1}$.

 $w = [e \cdot \varepsilon^{-1}]$

Sampled uniformly and independently from a 2-independent family of hash functions

h_1	31	41	59	26	53	•••	58
h_2	27	18	28	18	28	•••	45
hз	16	18	3	39	88	•••	75
• • •				•••			
h_{d}	69	31	47	18	5	•••	59

h_1	31	41	59	26	53	•••	58
h_2	27	18	28	18	28	•••	45
hз	16	18	3	39	88	•••	75
• • •				•••			
h_{d}	69	31	47	18	5	•••	59

h_1	32	41	59	26	53	•••	58
h_2	27	18	28	19	28	•••	45
hз	16	19	3	39	88	•••	75
• • •				•••			
h_{d}	69	31	47	18	5	•••	60

h_1	32	41	59	26	53	•••	58
h_2	27	18	28	19	28	•••	45
hз	16	19	3	39	88	•••	75
• • •				•••			
h_{d}	69	31	47	18	5	•••	60

h_1	32	41	59	26	53	•••	58
h_2	27	18	28	19	28	•••	45
hз	16	19	3	39	88	•••	75
• • •				•••			
h_{d}	69	31	47	18	5	•••	60

```
estimate(x):
    result = ∞
    for i = 1 ... d:
        result = min(result, count[i][hi(x)])
        return result
```

h_1	32	41	59	26	53	•••	58
h_2	27	18	28	19	28	•••	45
hз	16	19	3	39	88	•••	75
• • •				•••			
h_{d}	69	31	47	18	5	•••	60

```
estimate(x):
    result = ∞
    for i = 1 ... d:
        result = min(result, count[i][hi(x)])
        return result
```
The Count-Min Sketch

- Update and query times are $\Theta(\log \delta^{-1})$.
 - That's the number of replicated copies, and we do $\mathrm{O}(1)$ work at each.
- Space usage: $\Theta(\epsilon^{-1} \cdot \log \delta^{-1})$ counters.
 - Each individual estimator has $\Theta(\epsilon^{-1})$ counters, and we run $\Theta(\log \delta^{-1})$ copies in parallel.
- Provides an estimate to within $\varepsilon \| \boldsymbol{a} \|_1$ with probability at least 1δ .
- This can be *significantly* better than just storing a raw frequency count especially if your goal is to find items that appear very frequently.

How to Build an Estimator

	Count-Min Sketch
Step One: Build a Simple Estimator	Hash items to counters; add +1 when item seen.
Step Two: Compute Expected Value of Estimator	Sum of indicators; 2-independent hashes have low collision rate.
Step Three: Apply Concentration Inequality	One-sided error; use expected value and Markov's inequality.
Step Four: Replicate to Boost Confidence	Take min; only fails if all estimates are bad.

Major Ideas From Today

- **2-independent hash families** are useful when we want to keep collisions low.
- A "good" approximation of some quantity should have tunable *confidence* and *accuracy* parameters.
- **Sums of indicator variables** are useful for deriving expected values of estimators.
- Concentration inequalities like Markov's inequality are useful for showing estimators don't stay too much from their expected values.
- Good estimators can be built from *multiple parallel copies* of weaker estimators.

Next Time

- Count Sketches
 - An alternative frequency estimator with different time/space bounds.
- Cardinality Estimation
 - Estimating how many different items you've seen in a data stream.