
  

Hashing and Sketching
Part One



  

Randomized Data Structures
● Randomization is a powerful tool for 

improving efficiency and solving problems 
under seemingly impossible constraints.

● Over the next three lectures, we’ll explore 
a sampler of data structures that give a 
feel for the breadth of what’s out there.

● You can easily spend an entire academic 
career just exploring this space; take 
CS265 for more on randomized algorithms!



  

Where We’re Going
● Hashing and Sketching (Thursday / 

Tuesday)
● Using hash functions to count without 

counting.
● Cuckoo Hashing (Next Thursday)

● Hashing with worst-case O(1) lookups, along 
with a splash of random hypergraph theory.



  

Outline for Today
● Hash Functions

● Understanding our basic building blocks.
● Frequency Estimation

● Estimating how many times we’ve seen 
something.

● Probabilistic Techniques
● Standard but powerful tools for reasoning 

about randomized data structures.



  

Preliminaries: Hash Functions



  

Hashing in Practice
● Hash functions are used extensively in 

programming and software engineering:
● They make hash tables possible: think C++ 
std::hash, Python’s __hash__, or Java’s 
Object.hashCode().

● They’re used in cryptography: SHA-256, HMAC, 
etc.

● Question: When we’re in Theoryland, what 
do we mean when we say “hash function?”



  

Hashing in Theoryland
● In Theoryland, a hash function is a 

function from some domain called the 
universe (typically denoted 𝒰) to some 
codomain.

● The codomain is usually a set of the form
[m] = {0, 1, 2, 3, …, m – 1}

h :  → [𝒰 m]



  

Hashing in Theoryland
● Intuition: No matter how clever you are with 

designing a specific hash function, that hash 
function isn’t random, and so there will be 
pathological inputs.
● You can formalize this with the pigeonhole 

principle.
● Idea: Rather than finding the One True Hash 

Function, we’ll assume we have a collection of 
hash functions to pick from, and we’ll choose 
which one to use randomly.



  

h

Families of Hash Functions
● A family of hash functions is a set  of ℋ

hash functions with the same domain 
and codomain.

● We can then introduce randomness into 
our data structures by sampling a 
random hash function from ℋ.

● Key Point: The randomness in our data 
structures almost always derives from 
the random choice of hash functions, 
not from the data.

Data is adversarial.
Hash function selection is random.

● Question: What makes a family of hash 
functions  a “good” family of hash ℋ
functions?

ℋ
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random, then h should 
distribute elements 
uniformly randomly.
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Problem: A hash function 
that distributes n elements 
uniformly at random over 
[m] requires Ω(n log m) 
space in the worst case.

Question: Do we actually 
need true randomness? Or 

can we get away with 
something weaker?
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Distribution Property: 
Each element should have 

an equal probability of 
being placed in each slot.

For any x ∈   and random𝒰
h ∈ , the value of ℋ h(x) is 
uniform over its codomain.

Find an “obviously bad” family of 
hash functions that satisfies the 

distribution property.

Answer at
https://pollev.com/cs166spr23

https://pollev.com/cs166spr23
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uA family of hash functions  is called ℋ 2-independent (or 
pairwise independent) if it satisfies the distribution

and independence properties.
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For more on hashing outside of Theoryland, 
check out this Stack Exchange post.

https://softwareengineering.stackexchange.com/questions/49550/


  

Frequency Estimation



  

Frequency Estimators
● A frequency estimator is a data structure 

supporting the following operations:
● increment(x), which increments the number of 

times that x has been seen, and
● estimate(x), which returns an estimate of the 

frequency of x.
● Using BSTs, we can solve this in space Θ(n) 

with worst-case O(log n) costs on the 
operations.

● Using hash tables, we can solve this in space 
Θ(n) with expected O(1) costs on the 
operations.



  

Frequency Estimators
● Frequency estimation has many applications:

● Search engines: Finding frequent search 
queries.

● Network routing: Finding common source and 
destination addresses.

● In these applications, Θ(n) memory can be 
impractical.

● Goal: Get approximate answers to these 
queries in sublinear space.



  

The Count-Min Sketch



  

How to Build an Estimator

Step One:
Build a Simple

Estimator

Count-Min Sketch



  

Revisiting the Exact Solution
● In the exact solution to the frequency estimation 

problem, we maintained a single counter for each 
distinct element. This is too space-inefficient.

● Idea: Store a fixed number of counters and assign a 
counter to each x ∈ . Multiple objects might be 𝒰
assigned to the same counter.

● To increment(x), increment the counter for x.
● To estimate(x), read the value of the counter for x.

11 6 4 7
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distinct element. This is too space-inefficient.

● Idea: Store a fixed number of counters and assign a 
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Our Initial Structure
● Create an array of counters, all initially 0, called count. 

It will have w elements for some w we choose later.
● Choose, from a family of 2-independent hash functions 

, a uniformly-random hash function ℋ h :  → [𝒰 w].
● To increment(x), increment count[h(x)].
● To estimate(x), return count[h(x)].

31 41 59 26 58h

w counters

…

Which 
counter? ꩜
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How to Build an Estimator

Step One:
Build a Simple

Estimator

Step Two:
Compute Expected
Value of Estimator

Hash items to counters;
add +1 when item seen.

Count-Min Sketch



  

Some Notation
● Let x₁, x₂, x₃, … denote the list of distinct items whose 

frequencies are being stored.
● Let a₁, a₂, a₃, … denote the frequencies of those items.

● e.g. aᵢ is the true number of times xᵢ is seen.
● Let â₁, â₂, â₃, … denote the estimate our data structure 

gives for the frequency of each item.
● e.g. âᵢ is our estimate for how many times xᵢ has been seen.
● Important detail: the aᵢ values are not random variables 

(data are chosen adversarially), while the âᵢ values are 
random variables (they depend on a randomly-sampled hash 
function).

● In what follows, imagine we’re querying the frequency of 
some specific element xᵢ. We want to analyze âᵢ.



  

Analyzing our Estimator
● We’re interested in learning more about âᵢ. A good first step 

is to work out E[âᵢ].
● âᵢ will be equal to ai, plus some “noise” terms from colliding 

elements. 
● Each of those elements is very unlikely to collide with us, 

though. (There’s a ¹/w chance of a collision for any one other 
element.)

● Reasonable guess: E[âi] = ai + ∑
j≠i

a j

w
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● Each of those elements is very unlikely to collide with us, 

though. (There’s a ¹/w chance of a collision for any one other 
element.)

● Reasonable guess: E[âi] = ai + ∑
j≠i

a j

w
Frequency of each
other item, scaled

to account for chance
of a collision.



  

Making Things Formal
● Let’s make this more rigorous.
● For each element xⱼ:

● If h(xᵢ) = h(xⱼ), then xⱼ contributes aⱼ to count[h(xᵢ)].
● If h(xᵢ) ≠ h(xⱼ), then xⱼ contributes 0 to count[h(xᵢ)].

● To pin this down precisely, let’s define a set of random 
variables X₁, X₂, …, as follows:

● The value of âᵢ is then given by

X j = {  1 if h(xi)  = h(x j)
  0 otherwise

âi = ∑
j

a j X j = ai + ∑
j≠i

a j X j
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● If h(xᵢ) ≠ h(xⱼ), then xⱼ contributes 0 to count[h(xᵢ)].

● To pin this down precisely, let’s define a set of random 
variables X₁, X₂, …, as follows:

● The value of âᵢ is then given by

X j = {  1 if h(xi)  = h(x j)
  0 otherwise

âi = ∑
j

a j X j = ai + ∑
j≠i

a j X j

Each of these variables is 
called an indicator 

random variable, since 
it “indicates” whether 

some event occurs.



  

Making Things Formal
● Let’s make this more rigorous.
● For each element xⱼ:

● If h(xᵢ) = h(xⱼ), then xⱼ contributes aⱼ to count[h(xᵢ)].
● If h(xᵢ) ≠ h(xⱼ), then xⱼ contributes 0 to count[h(xᵢ)].

● To pin this down precisely, let’s define a set of random 
variables X₁, X₂, …, as follows:

● The value of âᵢ – aᵢ is then given by

X j = {  1 if h(xi)  = h(x j)
  0 otherwise

âi−ai = ∑
j≠ i

a j X j



  

E [âi−ai] = E[∑
j≠i

a j X j]

= ∑
j≠i

E[a j X j]

= ∑
j≠i

a jE[ X j]

= ∑
j≠i

a j

w

≤
‖a‖1

w



  

E [âi−ai] = E[∑
j≠i

a j X j]

= ∑
j≠i

E[a j X j]

= ∑
j≠i

a jE[ X j]

= ∑
j≠i

a j

w

≤
‖a‖1

w



  

E [âi−ai] = E[∑
j≠i

a j X j]

= ∑
j≠i

E[a j X j]

= ∑
j≠i

a jE[ X j]

= ∑
j≠i

a j

w

≤
‖a‖1

w

This follows from linearity 
of expectation. We’ll use 
this property extensively 
over the next few days.



  

E [âi−ai] = E[∑
j≠i

a j X j]

= ∑
j≠i

E[a j X j]

= ∑
j≠i

a jE[ X j]

= ∑
j≠i

a j

w

≤
‖a‖1

w



  

E [âi−ai] = E[∑
j≠i

a j X j]

= ∑
j≠i

E[a j X j]

= ∑
j≠i

a jE[ X j]

= ∑
j≠i

a j

w

≤
‖a‖1

w

The values of aⱼ are not 
random. The randomness 
comes from our choice of 

hash function.
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Idea: Think of our 
element frequencies

a₁, a₂, a₃, … as a vector
 

a = [a₁, a₂, a₃, … ]

The total number of 
objects is the sum of 
the vector entries.

‖a‖1 = ∑
i

|ai|

This is called the
L₁ norm of a, and is 

denoted ║a║₁:
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How to Build an Estimator

Step One:
Build a Simple

Estimator

Step Two:
Compute Expected
Value of Estimator

Step Three:
Apply Concentration

Inequality

Hash items to counters;
add +1 when item seen.

Sum of indicators;
2-independent hashes
have low collision rate.

Count-Min Sketch



  

On Expected Values
● We know that E[âᵢ – aᵢ] ≤ ||a||₁ / w. This means that the 

expected overestimate is low.
● Claim: This fact, in isolation, is not very useful.
● Below is a probability distribution for a random variable whose 

expected value is 9 that never takes values near 9.
● If this is the sort of distribution we get for âᵢ, then our estimator 

is not very useful!

0 189



  

On Expected Values
● We’re looking for a way to say something like the 

following:
“Not only is our estimate’s expected value pretty 
close to the real value, our estimate has a high 

probability of being close to the real value.”
● In other words, if the true frequency is 9, we want the 

distribution of our estimate to kinda sorta look like this:

0 189

If the true frequency is 9, why isn’t
there any probability mass below 9?

Answer at
https://pollev.com/cs166spr23

https://pollev.com/cs166spr23
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How Close is Close?
● In some applications, we might be okay overshooting by a larger 

amount (e.g. roughly estimating which restaurants people are 
visiting).

● In others, it’s really bad if we overestimate by too much (e.g. 
polling for an election).

● Idea: Allow the client of the estimator to pick some value ε 
between 0 and 1 indicating how close they want to be to the true 
value. The closer ε is to 0, the better the approximation we want.
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How Close is Close?
● Our overestimate is related to ||a||₁.
● We’ll formalize how ε works as follows: we’ll say we’re okay 

with any estimate that’s within ε||a||₁ of the true value.
● This is okay for high-frequency elements, but not so great 

for low-frequency elements. (Why?)
● But that’s okay. In practice, we are most interested in 

finding the high-frequency items.

0 189



  

Making Things Formal
● We know that

● We want to bound this quantity:

● Let’s run the numbers!

0 189

Pr [âi −ai > ε‖a‖1]

E[âi−ai] ≤
‖a‖1

w
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≤
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ε‖a‖1
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ε w

We don’t know the exact distribution of 
this random variable.

 

Pr [ X ≥ c ] ≤ E[ X ]
c .

However, we have a one-sided error: 
our estimate can never be lower than the 

true value. This means that âᵢ – aᵢ ≥ 0.

Markov’s inequality says that if X is a 
nonnegative random variable, then



  

Pr [âi − ai > ε‖a‖1]

≤
E [âi − ai]

ε‖a‖1

≤
‖a‖1

w ⋅ 1
ε‖a‖1

= 1
ε w

We don’t know the exact distribution of 
this random variable.

 

Pr [ X ≥ c ] ≤ E[ X ]
c .

However, we have a one-sided error: 
our estimate can never be lower than the 

true value. This means that âᵢ – aᵢ ≥ 0.

Markov’s inequality says that if X is a 
nonnegative random variable, then



  

Pr [âi − ai > ε‖a‖1]

≤
E [âi − ai]

ε‖a‖1

≤
‖a‖1

w ⋅ 1
ε‖a‖1

= 1
ε w



  

Pr [âi − ai > ε‖a‖1]

≤
E [âi − ai]

ε‖a‖1

≤
‖a‖1

w ⋅ 1
ε‖a‖1

= 1
ε w



  

Pr [âi − ai > ε‖a‖1]

≤
E [âi − ai]

ε‖a‖1

≤
‖a‖1

w ⋅ 1
ε‖a‖1

= 1
ε w

E[âi−ai] ≤
‖a‖1

w



  

Pr [âi − ai > ε‖a‖1]

≤
E [âi − ai]

ε‖a‖1

≤
‖a‖1

w ⋅ 1
ε‖a‖1

= 1
ε w

E[âi−ai] ≤
‖a‖1

w



  

Pr [âi − ai > ε‖a‖1]

≤
E [âi − ai]

ε‖a‖1

≤
‖a‖1

w ⋅ 1
ε‖a‖1

= 1
ε w



  

Pr [âi − ai > ε‖a‖1]

≤
E [âi − ai]

ε‖a‖1

≤
‖a‖1

w ⋅ 1
ε‖a‖1

= 1
ε w



  

Interpreting this Result
● Here’s what we just proved:

 
● What does this tell us?

● Increasing w decreases the chance of an overestimate. 
Decreasing w increases the chance of an overestimate.

● As the user decreases ε, we have to proportionally 
increase w for this bound to tell us anything useful.

● Idea: Choose w = e · ε-1.
● The choice of e is “somewhat” arbitrary in that any 

constant will work – but I peeked ahead and there’s a 
good reason to choose e here. 😃

Pr [âi − ai > ε‖a‖1] ≤ 1
ε w
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increase w for this bound to tell us anything useful.

● Idea: Choose w = e · ε-1.
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The Story So Far
● The user chooses a value ε ∈ (0, 1). We pick w = e · ε-1.
● Create an array count of w counters, each initially zero.
● Choose, from a family of 2-independent hash functions 

, a uniformly-random hash function ℋ h :  → [𝒰 w].
● To increment(x), increment count[h(x)].
● To estimate(x), return count[h(x)].
● With probability at least 1 – ¹/ₑ, the estimate for the 

frequency of item xᵢ is within ε · ||a||₁ of the true 
frequency.

31 41 59 26 58h

w = O(ε -1) counters

…



  

How to Build an Estimator

Step One:
Build a Simple

Estimator

Step Two:
Compute Expected
Value of Estimator

Step Three:
Apply Concentration

Inequality

Step Four:
Boost Confidence

Hash items to counters;
add +1 when item seen.

Sum of indicators;
2-independent hashes
have low collision rate.

One-sided error; use
expected value and
Markov’s inequality.

Count-Min Sketch



  

The Story So Far
● We now have a simple estimator where

● This means we have a decent chance of getting an 
estimate we’re happy with.

● Problem: We probably want to be more confident 
than this.
● In some applications, maybe it’s okay to have a 63% 

success rate.
● In others (say, election polling) we’ll need to be a lot more 

confident than this.
● Question: How do you define “confident enough”?

Pr [âi− ai > ε ‖a‖1] ≤ e−1



  

The Parameter δ
● The user already can select a parameter ε tuning the accuracy 

of the estimator: how close we want to be to the true value.
● Let’s have them also select a parameter δ tuning the 

confidence of the estimator: how likely it is that we achieve 
this goal.

● δ ranges from 0 to 1. Lower δ means a higher chance of getting 
a good estimate.

0 189
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Our Goal
● Right now, we have this statement:

 
● We want to get to this one:

 
● How might we achieve this?

Pr [âi−ai > ε‖a‖1] ≤ e−1

Pr [âi−ai > ε‖a‖1] ≤ δ



  

A Key Technique



  

It’s super unlikely that
you’ll miss the center

of the target every
single time!



  

Running in Parallel
● Let’s run d copies of our data structure in parallel with 

one another.
● Each row has its hash function sampled uniformly at 

random from our hash family.
● Each time we increment an item, we perform the 

corresponding increment operation on each row.

w = ⌈e · ε-1⌉

d =
 ??

h₂
h₃

hd

…

27 18 28 18 28 … 45

16 18 3 39 88 … 75

69 31 47 18 5 … 59

...

h₁ 31 41 59 26 53 58…
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Running in Parallel
● Imagine we call estimate(x) on each of our estimators 

and get back these estimates.
● We need to give back a single number.
● Question: How should we aggregate these numbers 

into a single estimate?

Estimator 1:

137
Estimator 2:

271
Estimator 3:

166
Estimator 4:

103
Estimator 5:

261

Answer at
https://pollev.com/cs166spr23

https://pollev.com/cs166spr23
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Intuition: The smallest 
estimate returned has 
the least “noise,” and 

that’s the best guess for 
the frequency.
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The only way the 
minimum estimate 
is inaccurate is if 
every estimate is 

inaccurate.
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independent of the 
others.
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Finishing Touches
● We now see that

● We want to reach this goal:
 

● So set d = ln δ-1.

Pr [âi−ai > ε‖a‖1] ≤ e− d

Pr [âi−ai > ε‖a‖1] ≤ δ



  

The Count-Min Sketch

31 41 59 26 53 58h₁
27 18 28 18 28 … 45h₂
16 18 3 39 88 … 75h₃

69 31 47 18 5 … 59hd

...…

w = ⌈e · ε-1⌉
d =

 ⌈ln δ
-1⌉

…

Sampled uniformly and 
independently from a
2-independent family 

of hash functions
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   for i = 1 … d:
      count[i][h (x)]++ᵢ
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The Count-Min Sketch
● Update and query times are Θ(log δ-1).

● That’s the number of replicated copies, and we do O(1) work 
at each.

● Space usage: Θ(ε-1 · log δ-1) counters.
● Each individual estimator has Θ(ε-1) counters, and we run 

Θ(log δ-1) copies in parallel.
● Provides an estimate to within ε║a║₁ with probability at 

least 1 – δ.
● This can be significantly better than just storing a raw 

frequency count – especially if your goal is to find items 
that appear very frequently.



  

How to Build an Estimator

Step One:
Build a Simple

Estimator

Step Two:
Compute Expected
Value of Estimator

Step Three:
Apply Concentration

Inequality

Step Four:
Replicate to Boost

Confidence

Hash items to counters;
add +1 when item seen.

Sum of indicators;
2-independent hashes
have low collision rate.

One-sided error; use
expected value and
Markov’s inequality.

Take min; only fails if all
estimates are bad.

Count-Min Sketch



  

Major Ideas From Today
● 2-independent hash families are useful when we 

want to keep collisions low.
● A “good” approximation of some quantity should 

have tunable confidence and accuracy parameters.
● Sums of indicator variables are useful for deriving 

expected values of estimators.
● Concentration inequalities like Markov’s 

inequality are useful for showing estimators don’t 
stay too much from their expected values.

● Good estimators can be built from multiple parallel 
copies of weaker estimators.



  

Next Time
● Count Sketches

● An alternative frequency estimator with 
different time/space bounds.

● Cardinality Estimation
● Estimating how many different items you’ve 

seen in a data stream.
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