Fibonacci Heaps

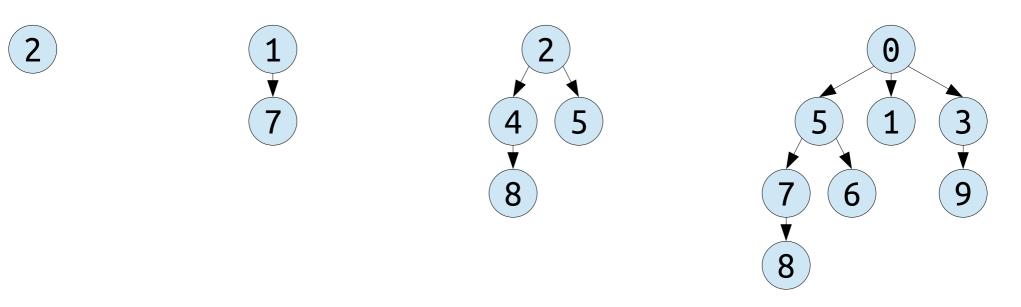
Outline for Today

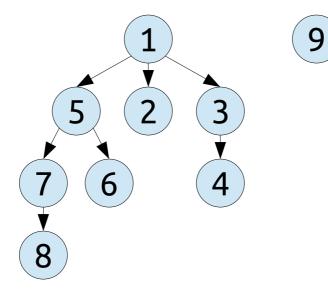
- Recap from Last Time
 - Quick refresher on binomial heaps and lazy binomial heaps.
- The Need for decrease-key
 - An important operation in many graph algorithms.
- Fibonacci Heaps
 - A data structure efficiently supporting *decrease-key*.
- **Representational Issues**
 - Some of the challenges in Fibonacci heaps.

Recap from Last Time

(Lazy) Binomial Heaps

- Last time, we covered the *binomial heap* and a variant called the *lazy binomial heap*.
- These are priority queue structures designed to support efficient *meld*ing.
- Elements are stored in a collection of *binomial trees*.

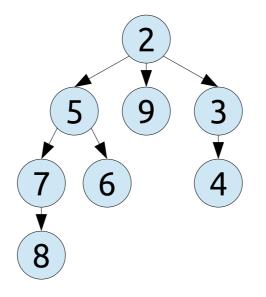




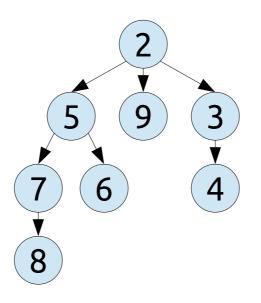
Lazy Binomial Heap

123456789

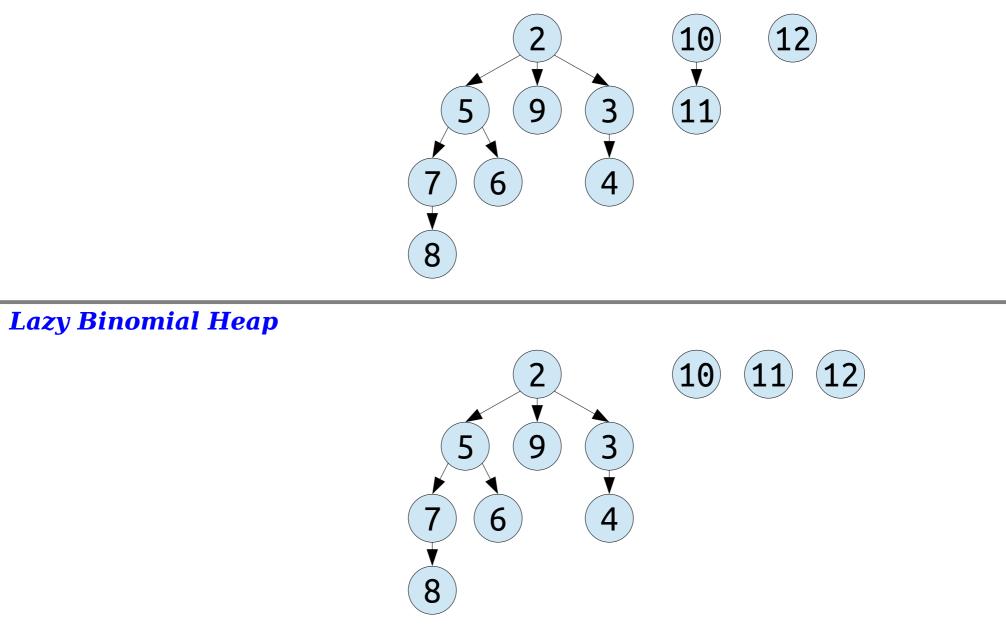
Draw what happens if we *enqueue* the numbers 1, 2, 3, 4, 5, 6, 7, 8, and 9 into each heap.



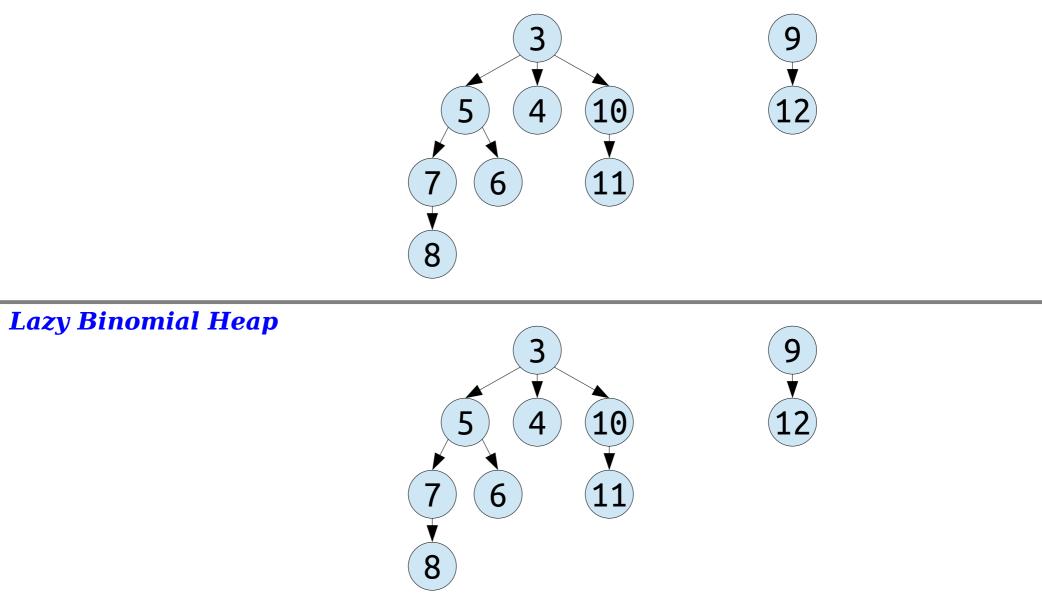
Lazy Binomial Heap



Draw what happens after performing an *extract-min* in each binomial heap.



Let's *enqueue* 10, 11, and 12 into both heaps.



Draw what happens after we do a *extract-min* from both heaps.

Operation Costs

- Eager Binomial Heap:
 - *enqueue*: O(log *n*)
 - *meld*: O(log *n*)
 - *find-min*: O(log *n*)
 - **extract-min**: O(log n)

- Lazy Binomial Heap:
 - *enqueue*: O(1)
 - *meld*: O(1)
 - *find-min*: O(1)
 - **extract-min**: $O(\log n)^*$
- *amortized

Intuition: Each **extract-min** has to do a bunch of cleanup for the earlier **enqueue** operations, but then leaves us with few trees.

New Stuff!

The Need for *decrease-key*

The *decrease-key* Operation

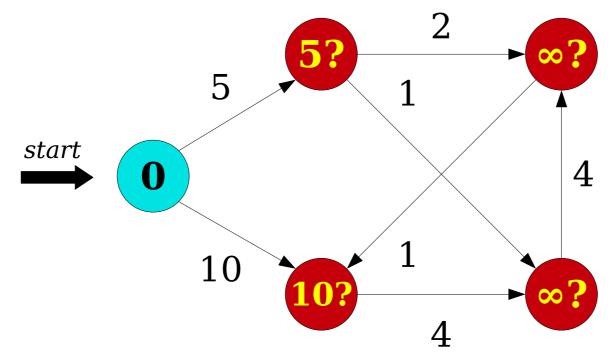
Some priority queues support the operation
 decrease-key(v, k), which works as follows:

Given a pointer to an element v, lower its key (priority) to k. It is assumed that k is less than the current priority of v.

 This operation is crucial in efficient implementations of Dijkstra's algorithm and Prim's MST algorithm.

Dijkstra and *decrease-key*

- Dijkstra's algorithm can be implemented with a priority queue using
 - O(n) total **enqueue**s,
 - O(*n*) total *extract-min*s, and
 - O(m) total *decrease-key*s.



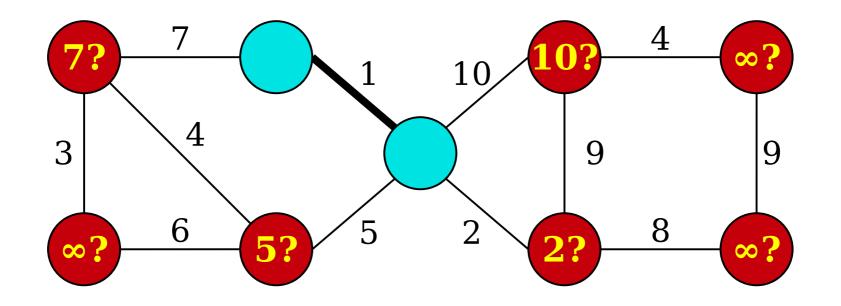
Dijkstra and *decrease-key*

- Dijkstra's algorithm can be implemented with a priority queue using
 - O(n) total **enqueue**s,
 - O(*n*) total *extract-min*s, and
 - O(*m*) total *decrease-key*s.
- Dijkstra's algorithm runtime is

 $O(n T_{enq} + n T_{ext} + m T_{dec})$

Prim and *decrease-key*

- Prim's algorithm can be implemented with a priority queue using
 - O(n) total **enqueue**s,
 - O(*n*) total *extract-min*s, and
 - O(m) total *decrease-key*s.



Prim and *decrease-key*

- Prim's algorithm can be implemented with a priority queue using
 - O(n) total **enqueue**s,
 - O(*n*) total *extract-min*s, and
 - O(m) total *decrease-key*s.
- Prim's algorithm runtime is

 $O(n T_{enq} + n T_{ext} + m T_{dec})$

Standard Approaches

- In a binary heap, *enqueue*, *extract-min*, and *decrease-key* can be made to work in time O(log n) time each.
- Cost of Dijkstra's / Prim's algorithm: $O(n T_{enq} + n T_{ext} + m T_{dec})$ $= O(n \log n + n \log n + m \log n)$ $= O(m \log n)$

Standard Approaches

- In a lazy binomial heap, *enqueue* takes amortized time O(1), and *extract-min* and *decrease-key* take amortized time O(log n).
- Cost of Dijkstra's / Prim's algorithm:

$$O(n T_{enq} + n T_{ext} + m T_{dec})$$

 $= O(n + n \log n + m \log n)$

 $= \mathbf{O}(m \log n)$

Where We're Going

- The *Fibonacci heap* has these amortized runtimes:
 - *enqueue*: O(1)
 - *extract-min*: O(log *n*).
 - *decrease-key*: O(1).
- Cost of Prim's or Dijkstra's algorithm:

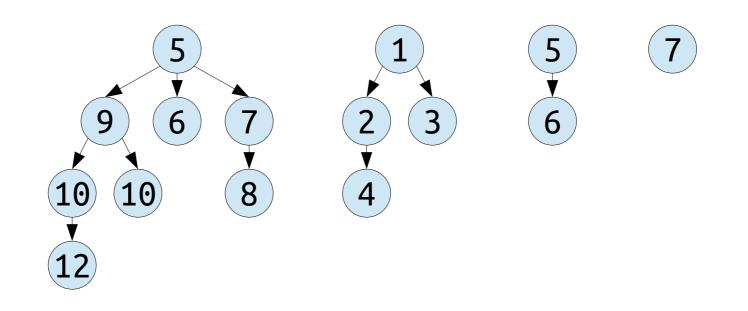
 $O(n T_{enq} + n T_{ext} + m T_{dec})$

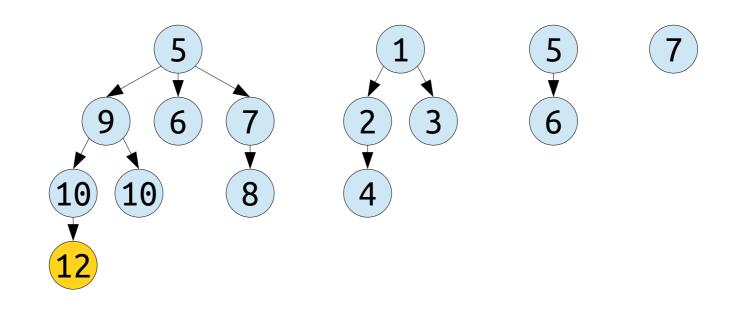
 $= \mathcal{O}(n + n \log n + m)$

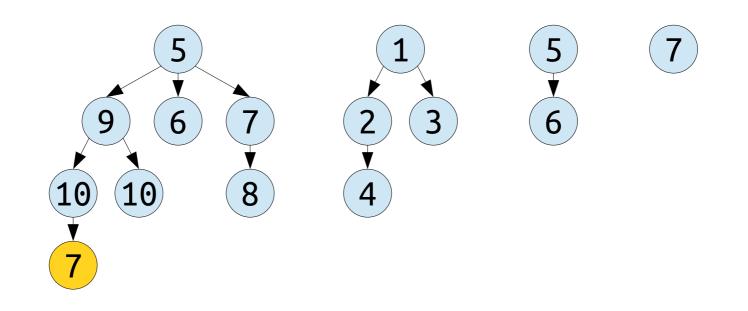
$= \mathbf{O}(m + n \log n)$

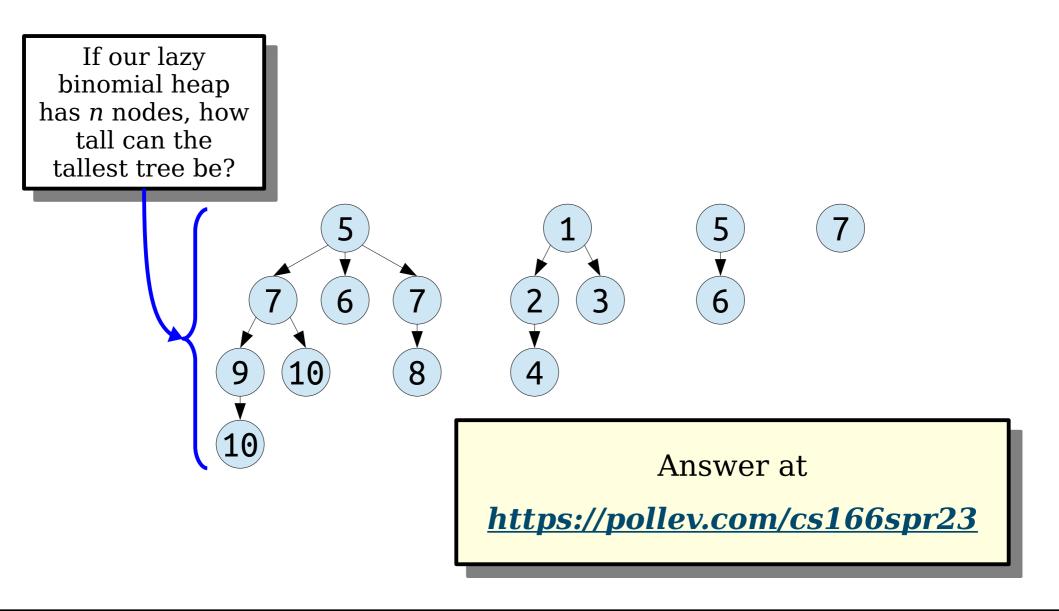
• This is theoretically optimal for a comparison-based priority queue in Dijkstra's or Prim's algorithms.

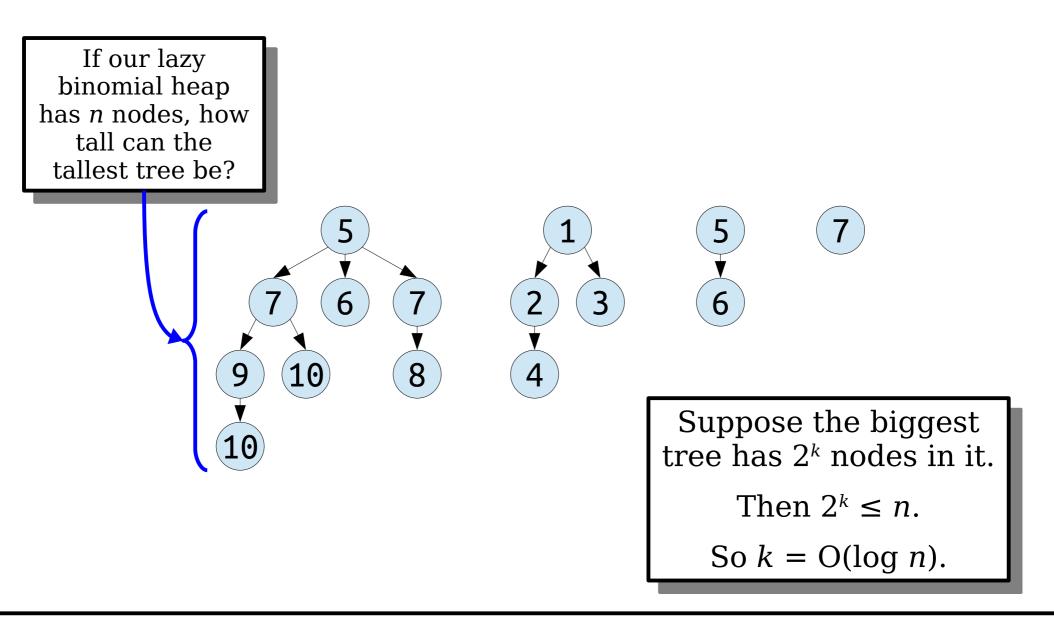
The Challenge of *decrease-key*

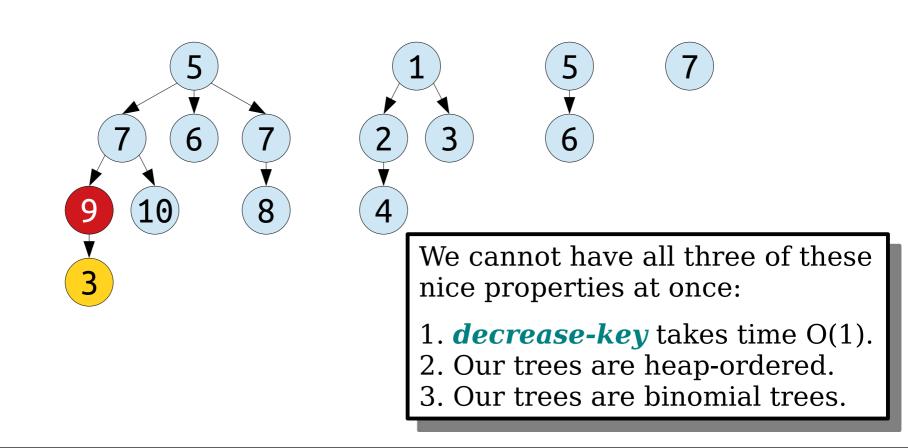


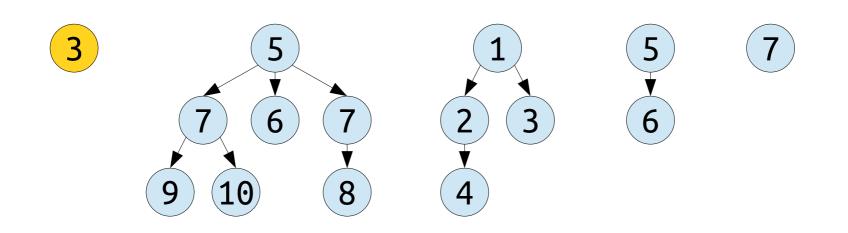


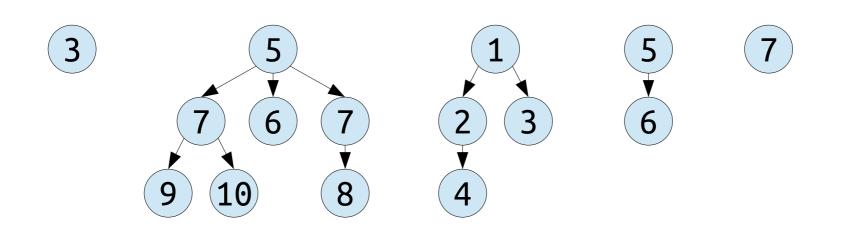


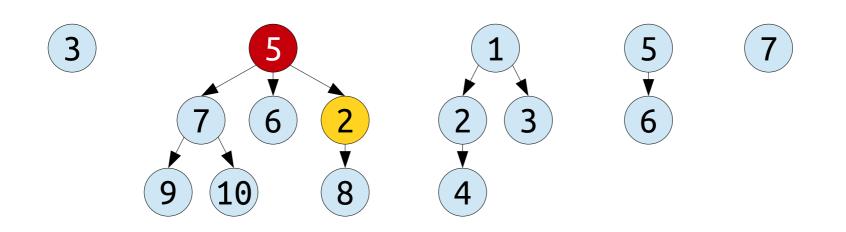


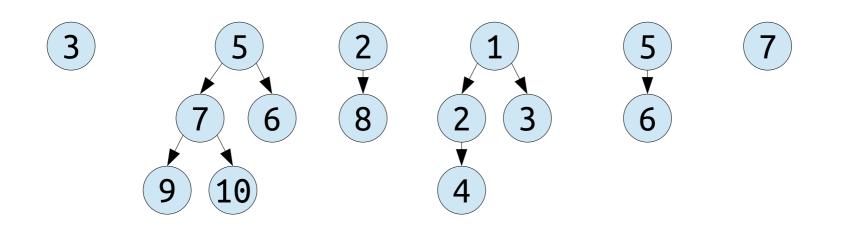


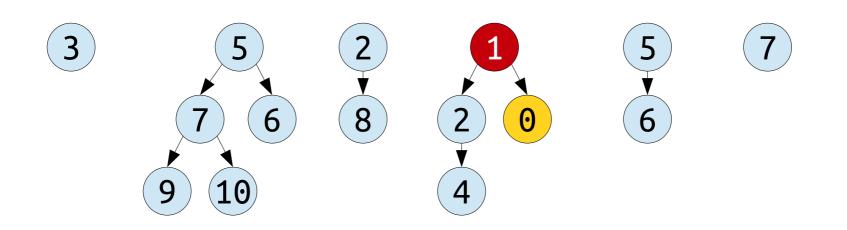


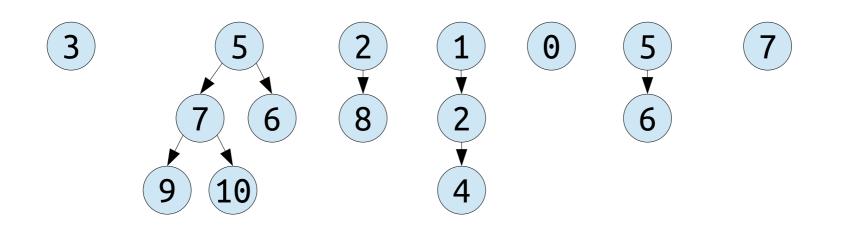


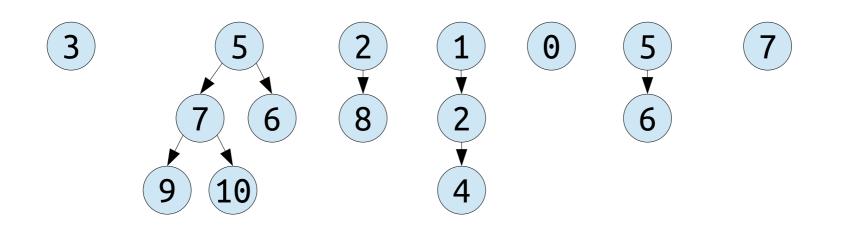


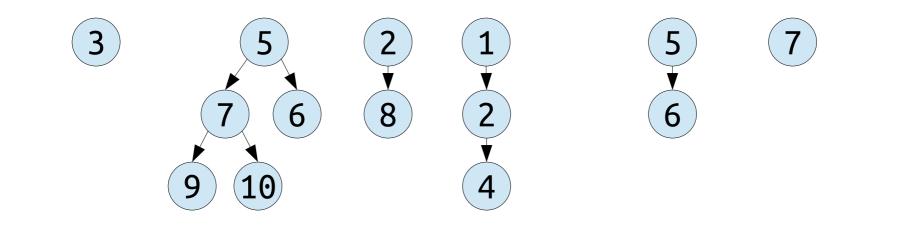


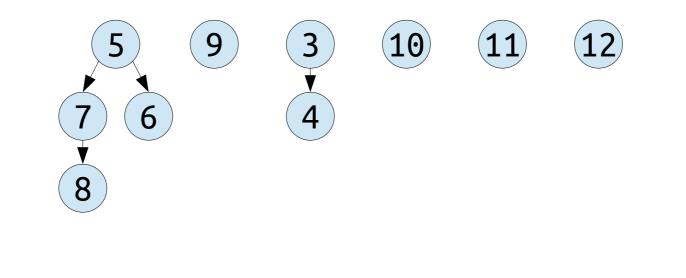




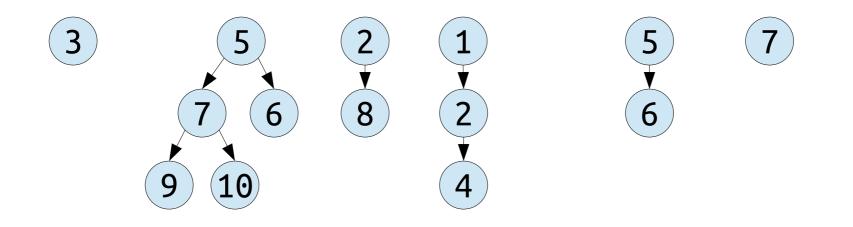


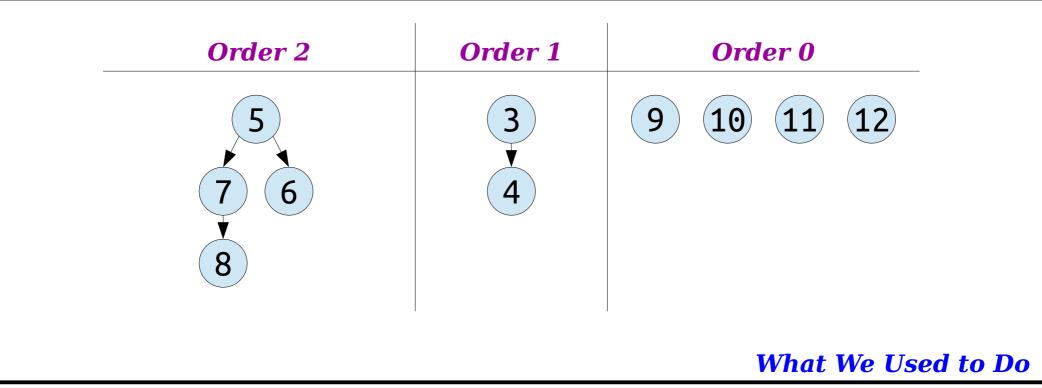


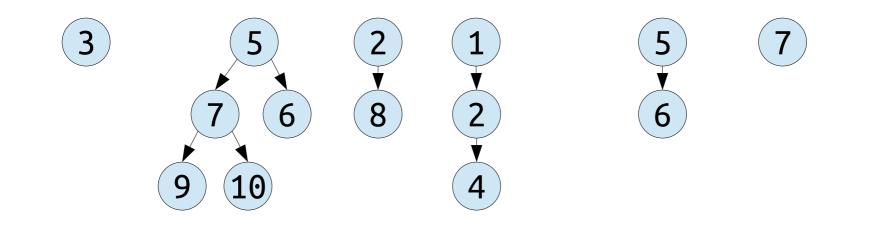


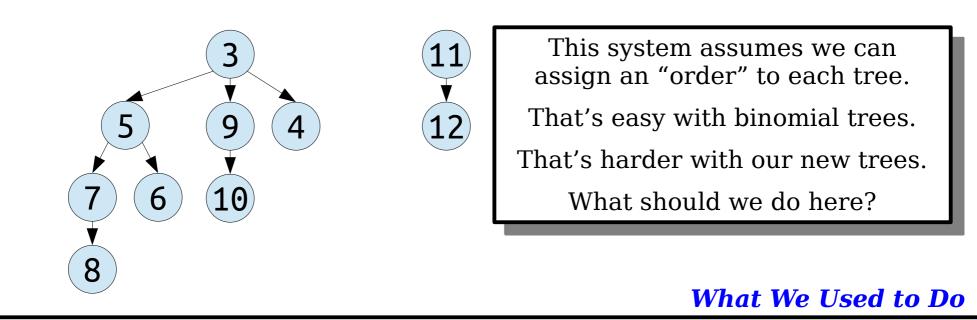


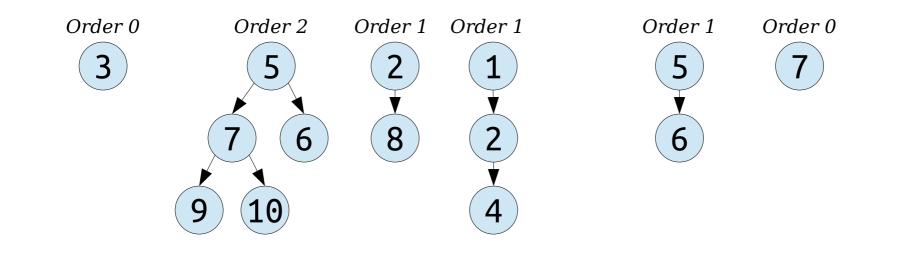
What We Used to Do

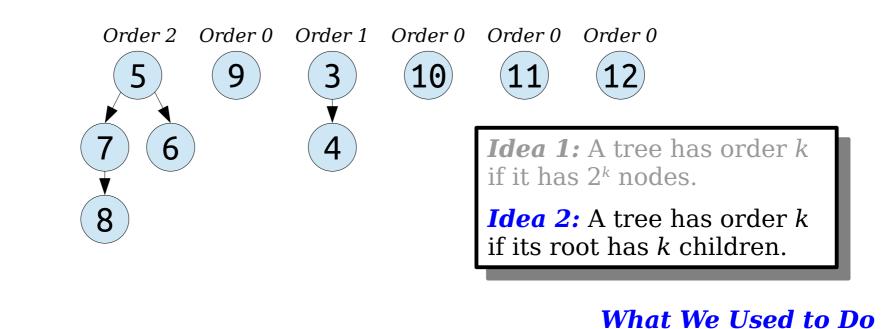




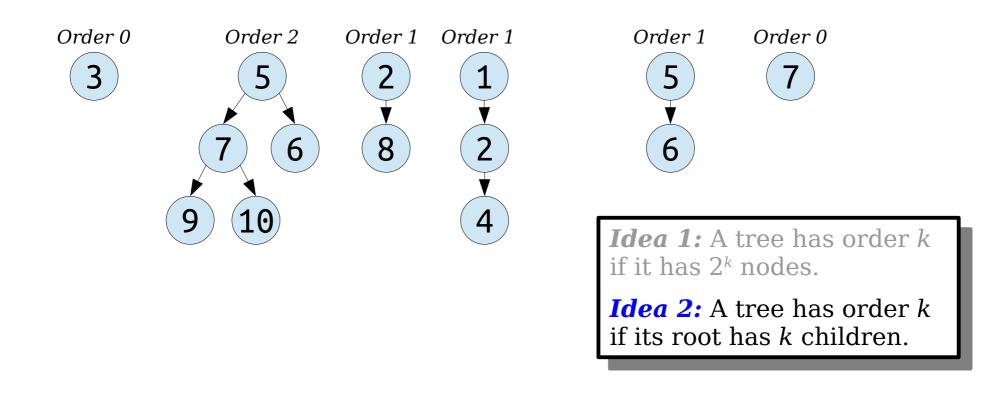




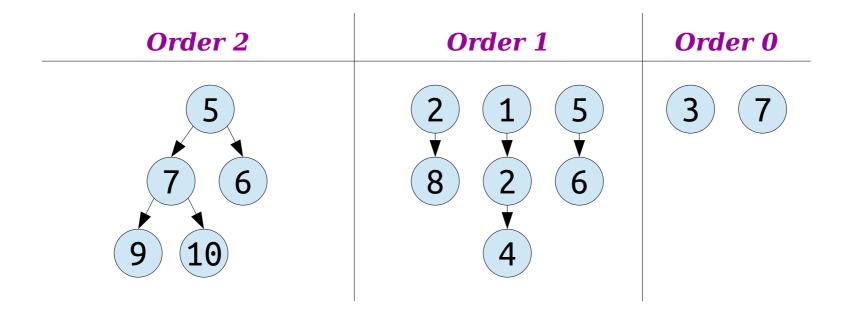




Problem: What do we do in an **extract-min**?

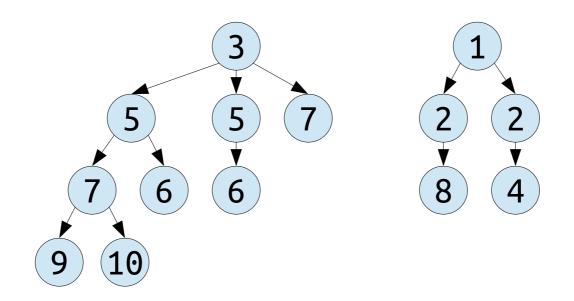


Problem: What do we do in an **extract-min**?



Problem: What do we do in an **extract-min**?

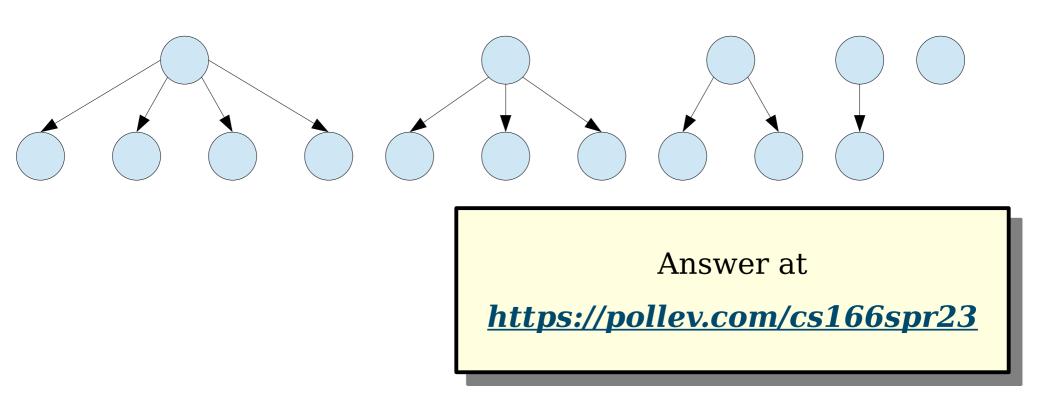
Question: How efficient is this?



(1) To do a *decrease-key*, cut the node from its parent.
(2) Do *extract-min* as usual, using child count as order.

Claim: Our trees can end up with very unusual shapes.

Intuition: extract-min is only fast if it compacts nodes into a few trees. There are $\Theta(n^{1/2})$ trees here. Why?



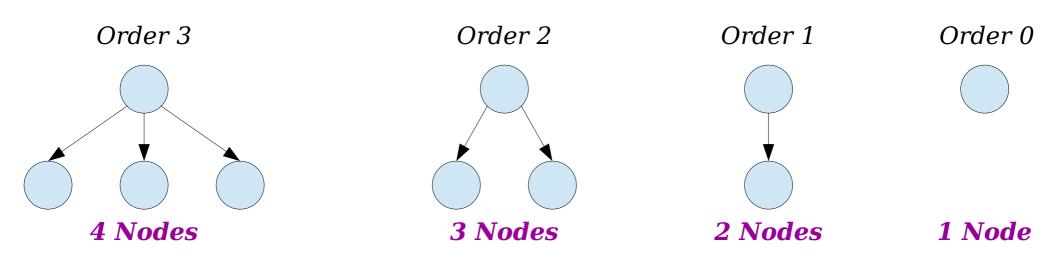
Claim: Because tree shapes aren't well-constrained, we can force **extract-min** to take amortized time $\Omega(n^{1/2})$.

Intuition: extract-min is only fast if it compacts nodes into a few trees. There are $\Theta(n^{1/2})$ trees here.

What happens if we repeatedly *enqueue* and *extract-min* a small value?

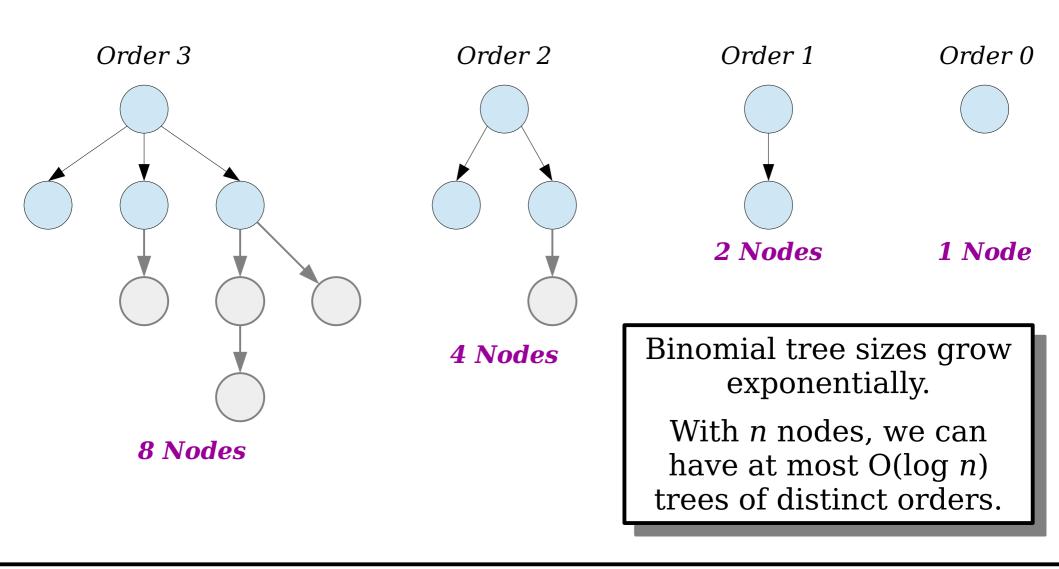
Each operation does $\Theta(n^{1/2})$ work, and doesn't make any future operations any better.

Claim: Because tree shapes aren't well-constrained, we can force **extract-min** to take amortized time $\Omega(n^{1/2})$.



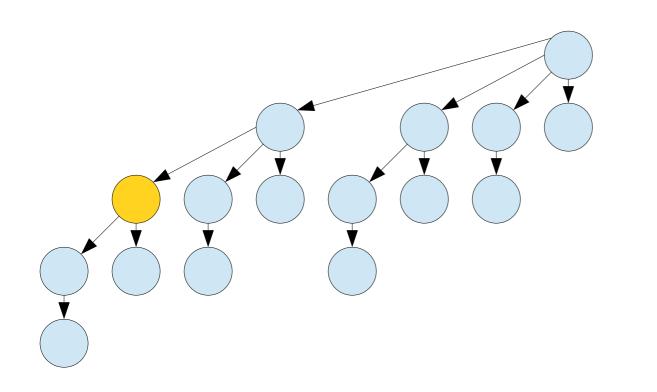
With n nodes, it's possible to have $\Omega(n^{1/2})$ trees of distinct orders.

Question: Why didn't this happen before?

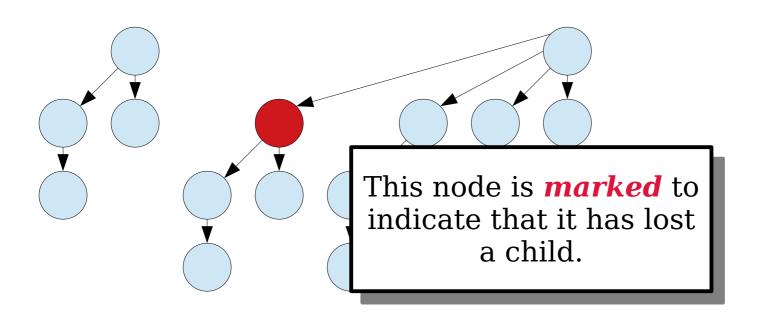


Question: Why didn't this happen before?

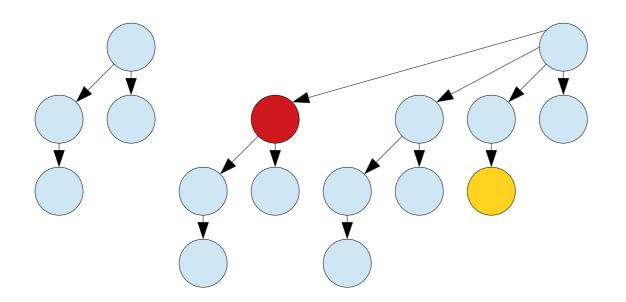
Rule: Nodes can lose at most one child. If a node loses two children, cut it from its parent.



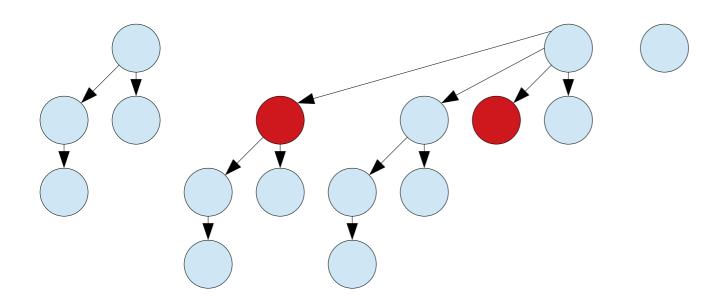
Rule: Nodes can lose at most one child. If a node loses two children, cut it from its parent.



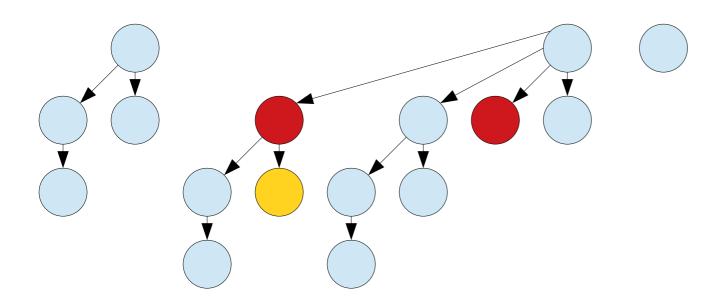
Rule: Nodes can lose at most one child. If a node loses two children, cut it from its parent.



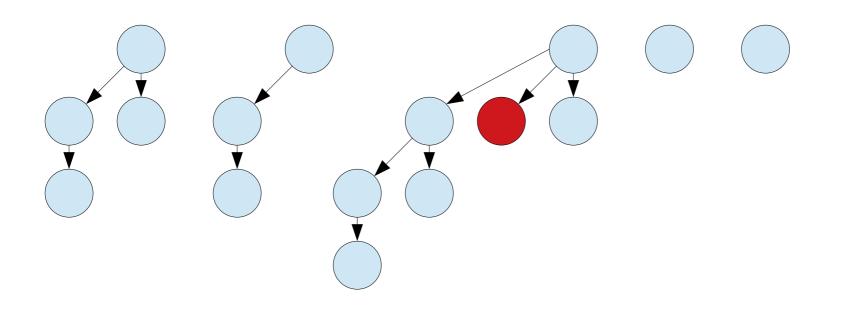
Rule: Nodes can lose at most one child. If a node loses two children, cut it from its parent.



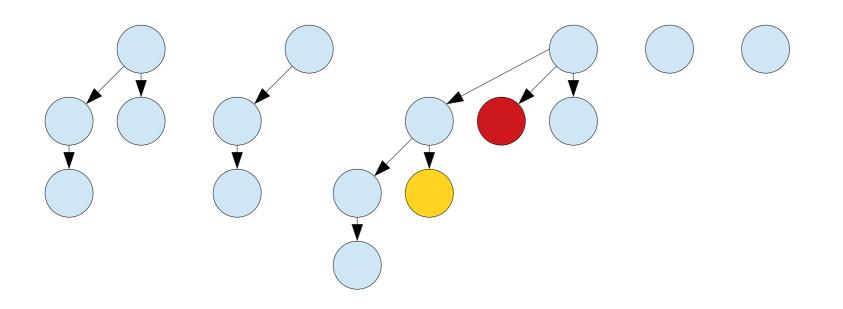
Rule: Nodes can lose at most one child. If a node loses two children, cut it from its parent.



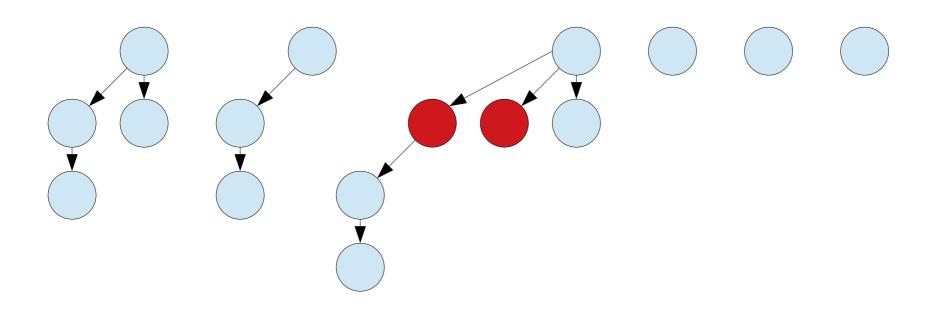
Rule: Nodes can lose at most one child. If a node loses two children, cut it from its parent.



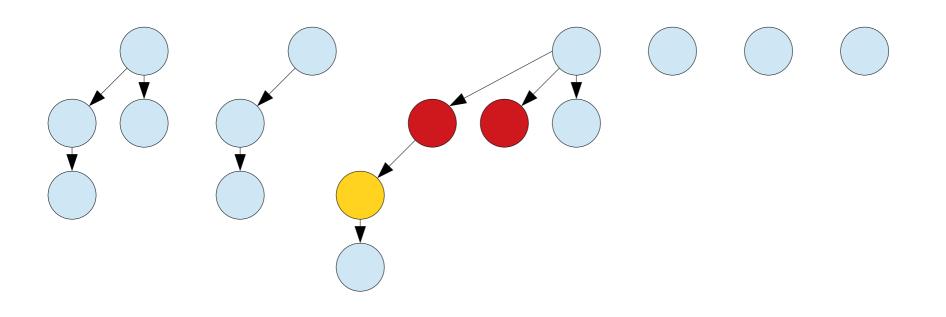
Rule: Nodes can lose at most one child. If a node loses two children, cut it from its parent.



Rule: Nodes can lose at most one child. If a node loses two children, cut it from its parent.



Rule: Nodes can lose at most one child. If a node loses two children, cut it from its parent.

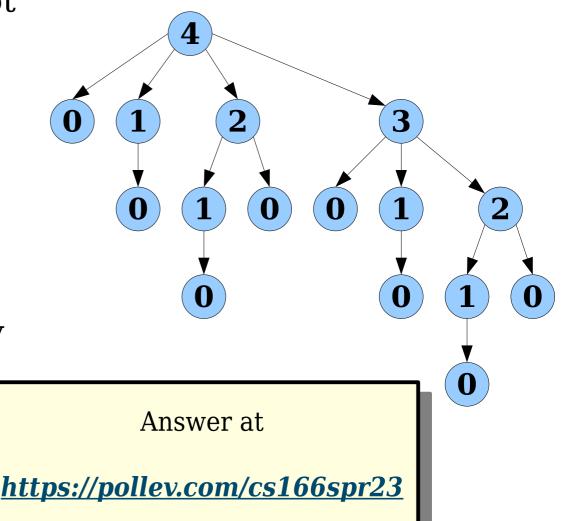


Rule: Nodes can lose at most one child. If a node loses two children, cut it from its parent.

Rule: Nodes can lose at most one child. If a node loses two children, cut it from its parent.

Question: Does this guarantee exponential tree size?

- Here's a binomial tree of order 4. That is, the root has four children.
- Question: Using our marking scheme, how many nodes can we remove without changing the order of the tree?
- Equivalently: how many nodes can we remove without removing any direct children of the root?



We can't cut any nodes from this tree without making the root node have order 0.

0

We can't cut any of the root's children without decreasing its order.

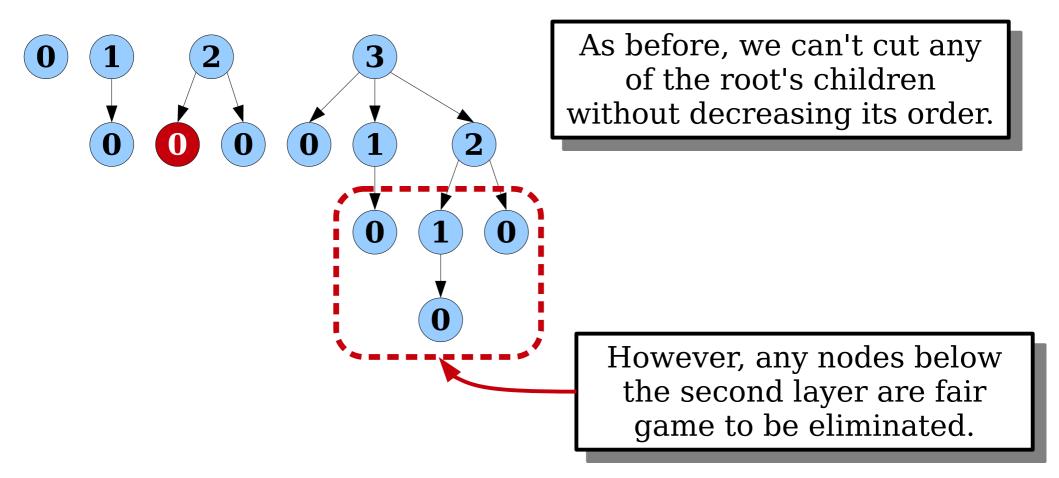
2

0

0

0

However, we can cut this node, leaving the root node with two children.



3

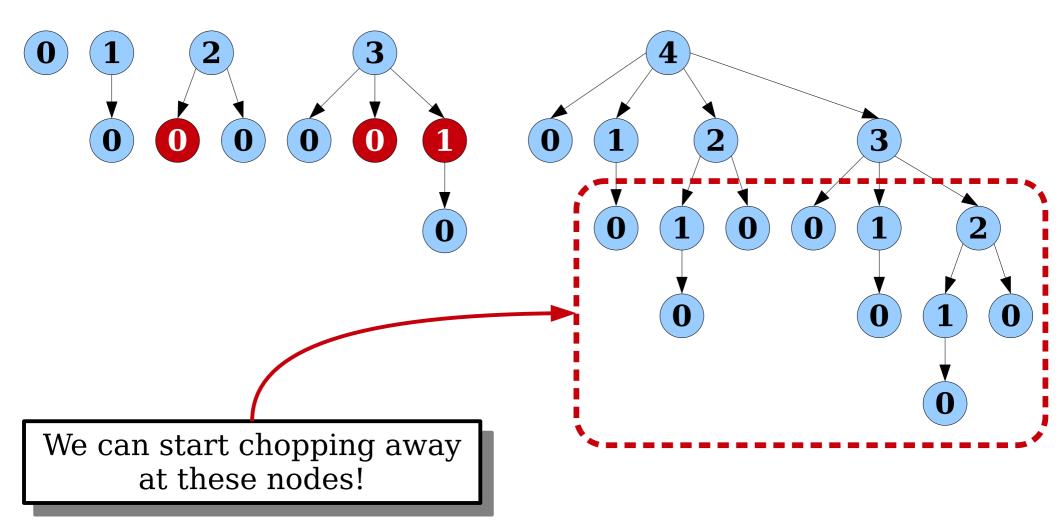
2

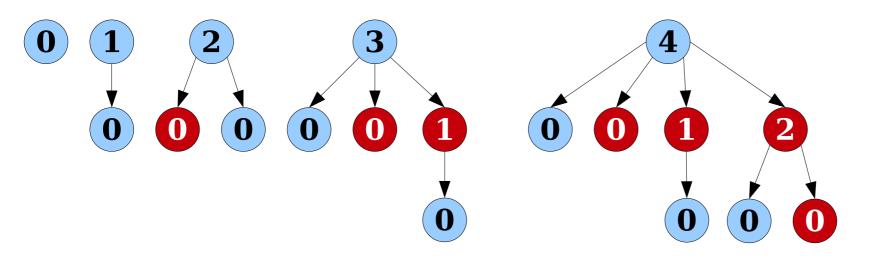
 $\mathbf{0}$

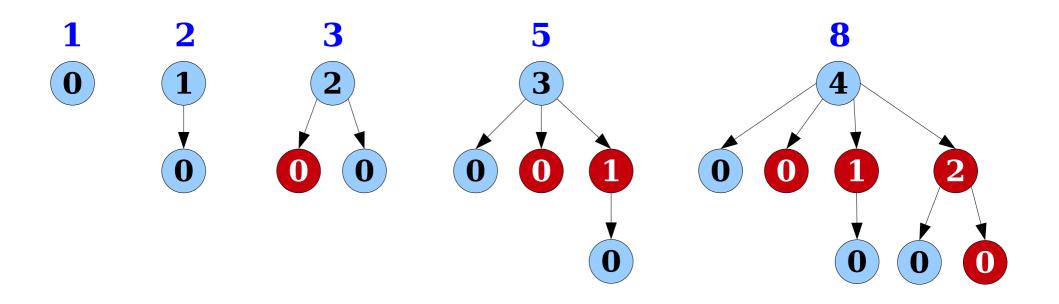
U

0

We can't cut this node without triggering a cascading cut, so we're done.







Claim: The minimum number of nodes in a tree of order k is F_{k+2}

These trees are the base cases for our inductive line of reasoning.

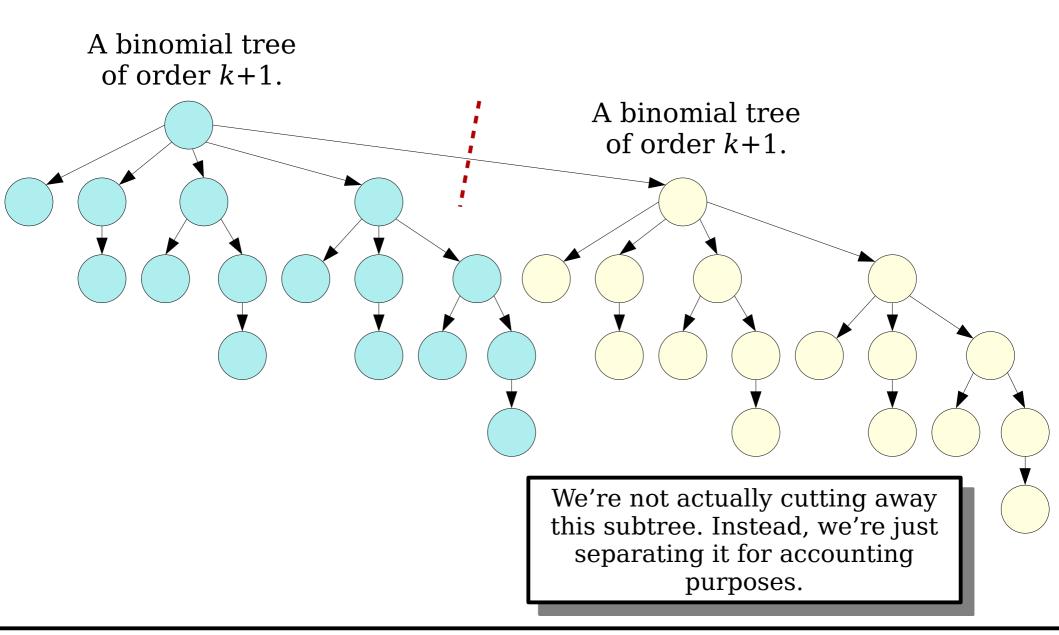
Theorem: The minimum number of nodes in a tree of order k is F_{k+2} .

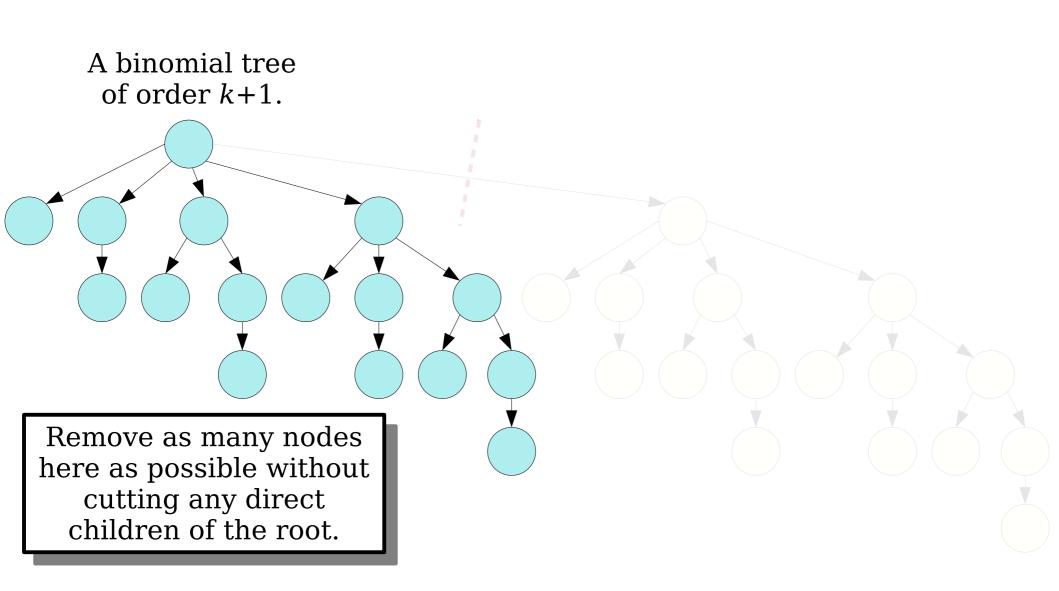
2

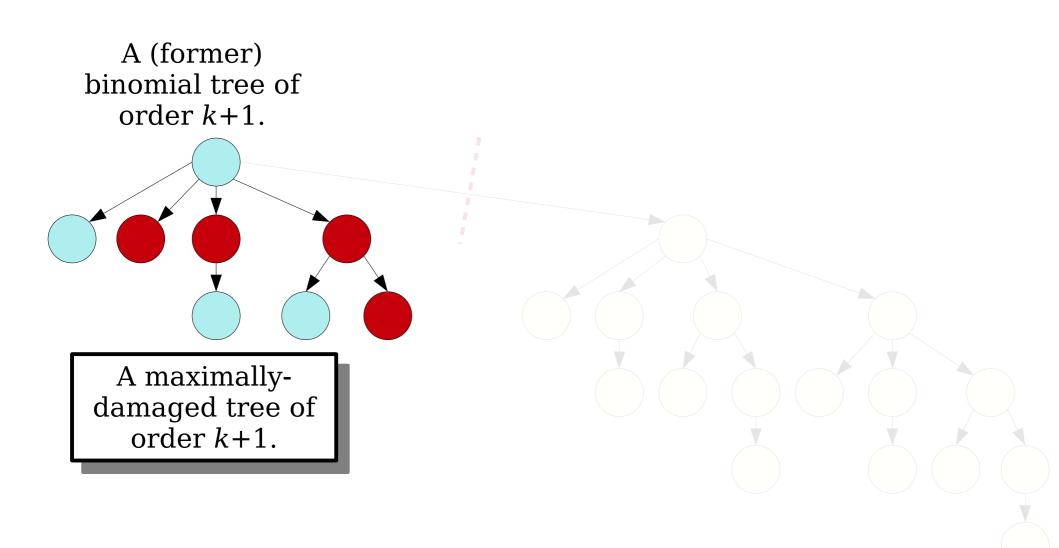
A binomial tree of order k+2.

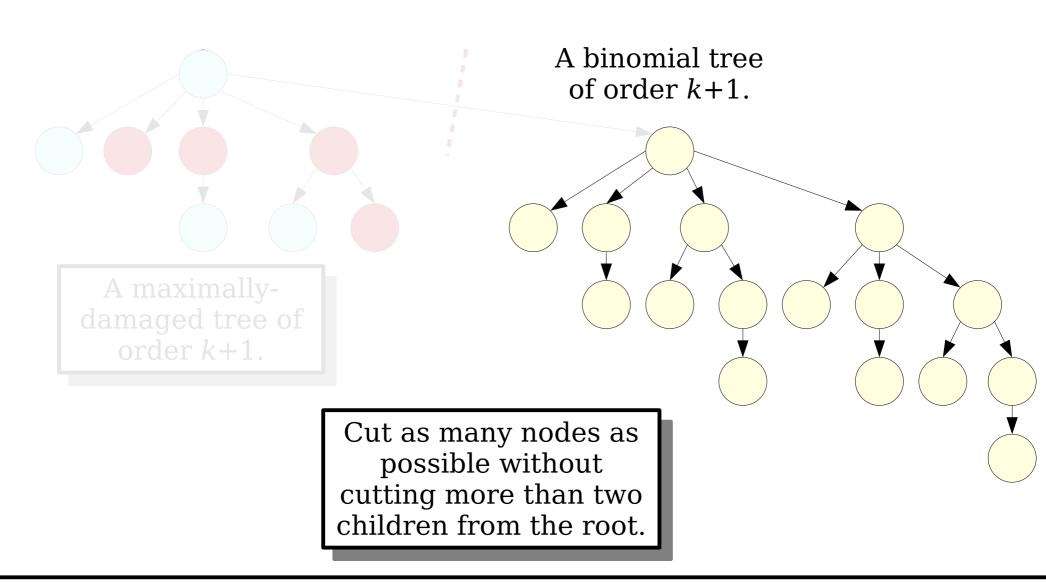
What's the maximum amount of damage we can do to this tree without cutting any of the direct children of the root?

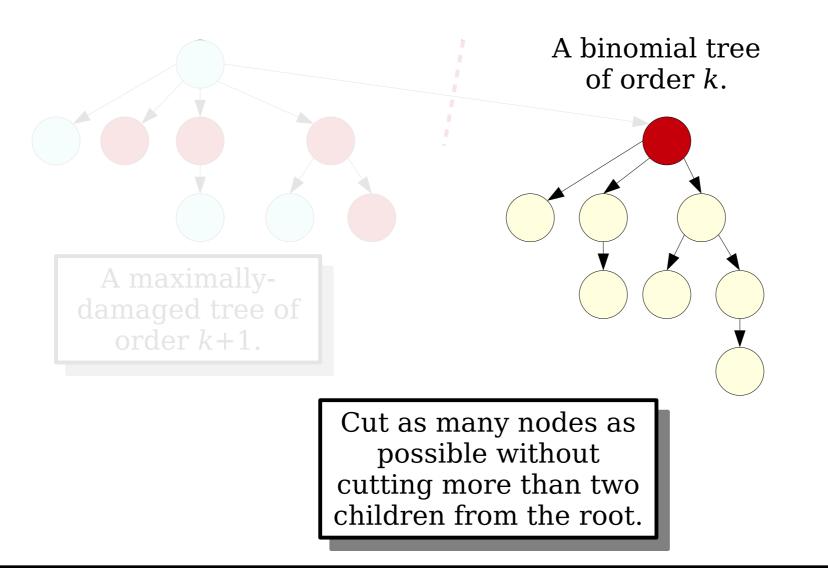
Theorem: The minimum number of nodes in a tree of order k is F_{k+2} .

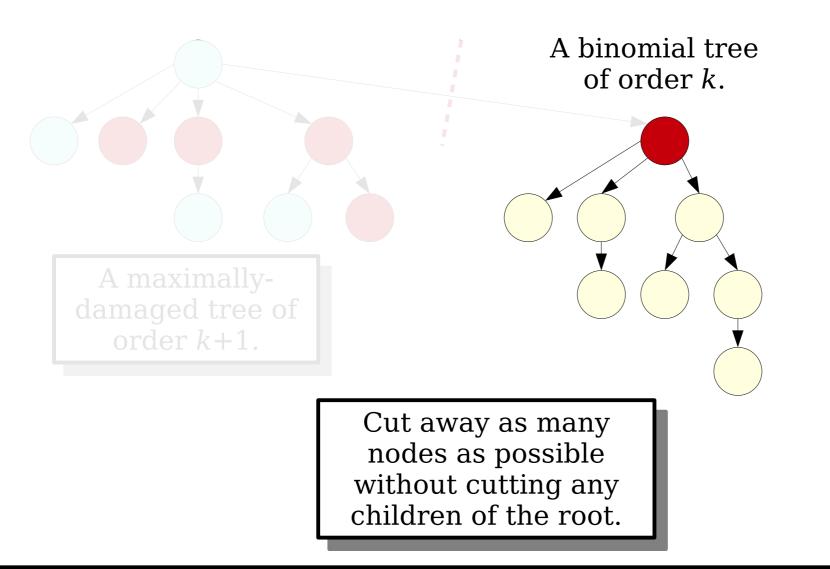


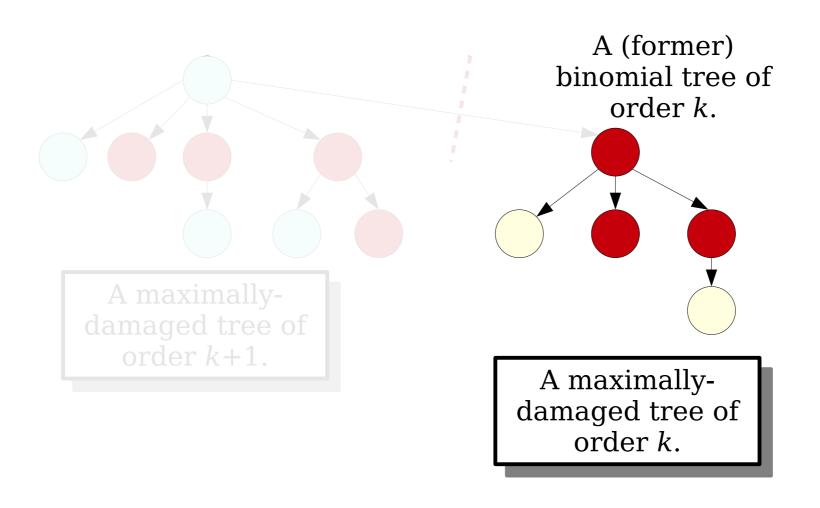






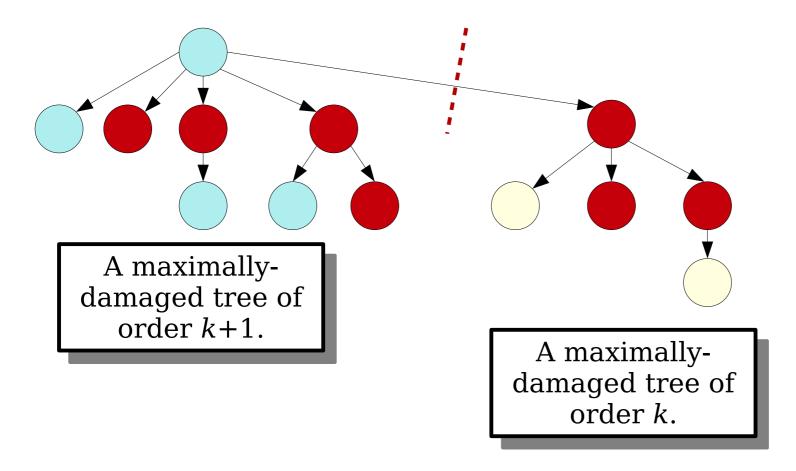






Theorem: The minimum number of nodes in a tree of order k is F_{k+2} .

Thanks to former CS166ers Kevin Tan and Max Arseneault for this proof approach!



Theorem: The minimum number of nodes in a tree of order k is F_{k+2} .

Thanks to former CS166ers Kevin Tan and Max Arseneault for this proof approach!

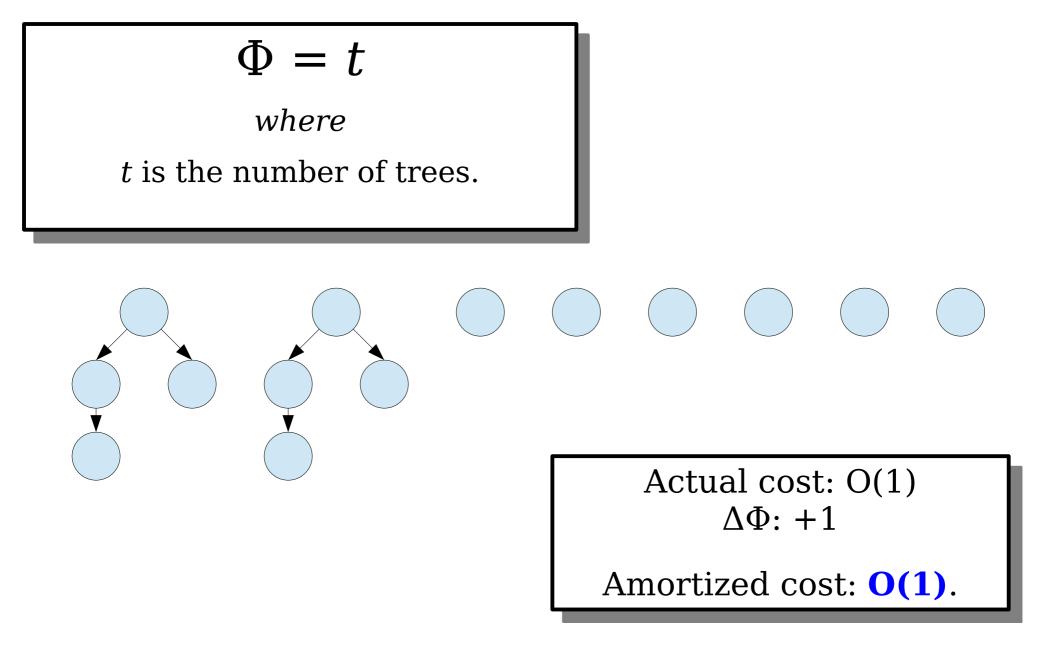
Fact:
$$F_k = \Theta(\varphi^k)$$
, where
 $\varphi = \frac{1+\sqrt{5}}{2}$
is the golden ratio.
Corollary: The number of
nodes in a tree of order *k*
grows exponentially with
k (approximately 1.61^{*k*}
versus our previous 2^{*k*}).

Theorem: The minimum number of nodes in a tree of order k is F_{k+2} .

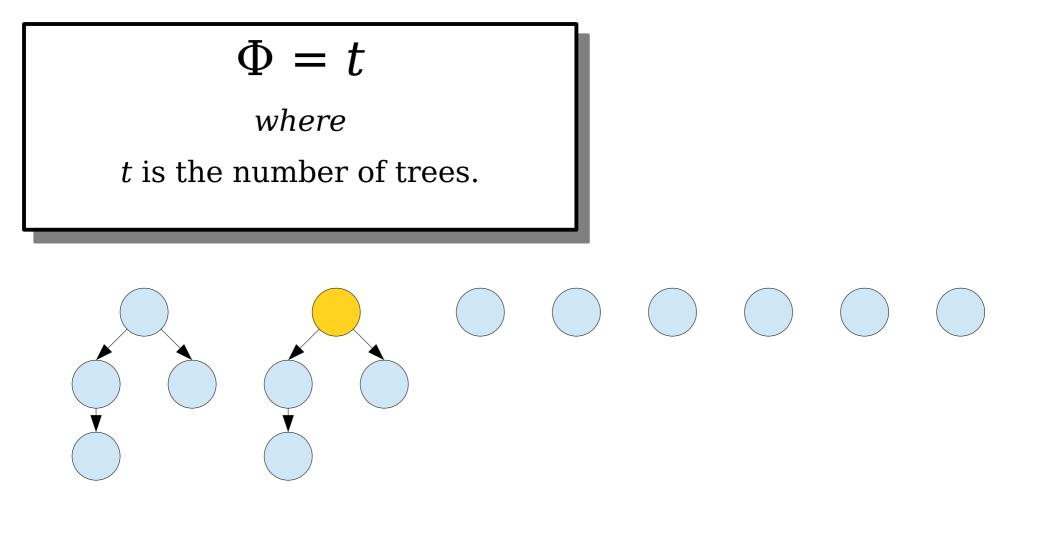
Thanks to former CS166ers Kevin Tan and Max Arseneault for this proof approach!

A **Fibonacci heap** is a lazy binomial heap with **decrease-key** implemented using the "lose at most one child" marking scheme.

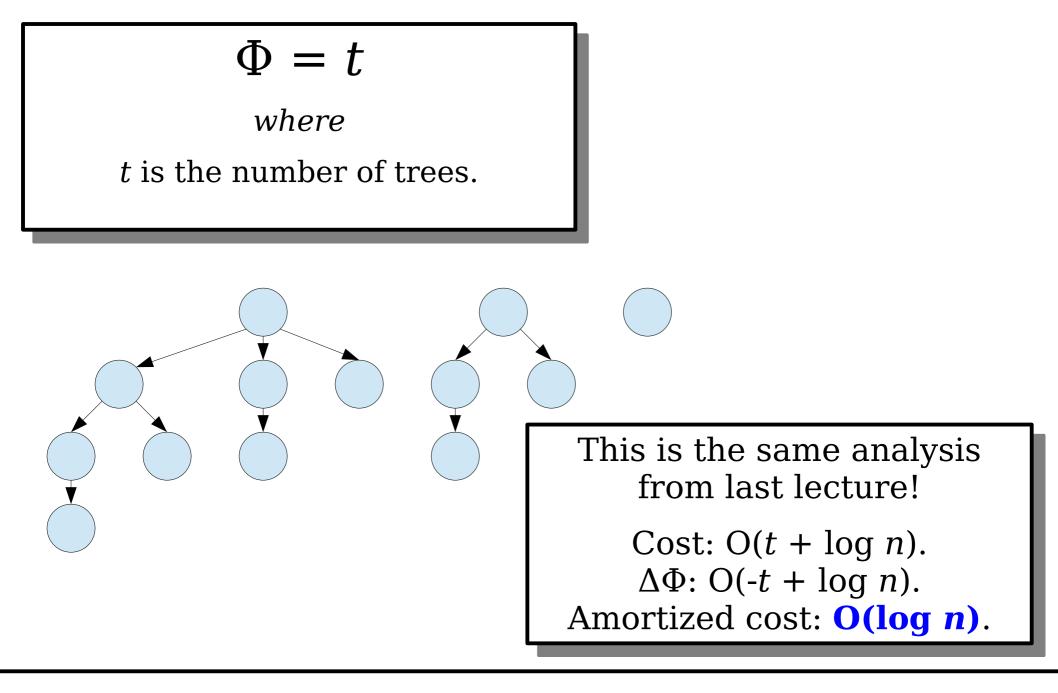
How fast are the operations on Fibonacci heaps?



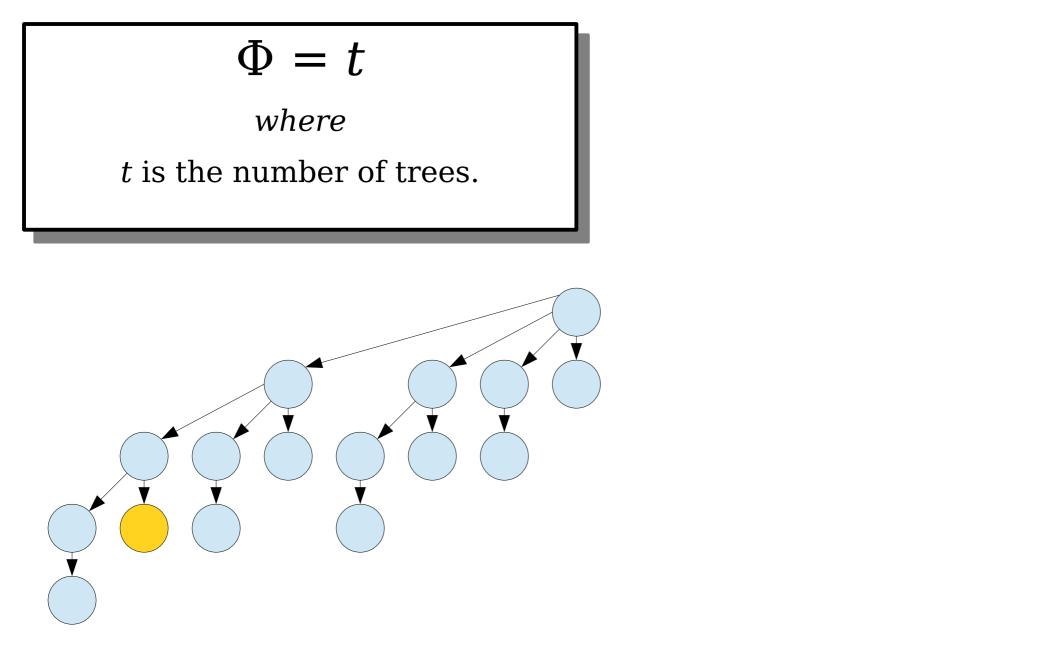
Each *enqueue* slowly introduces trees. Each *extract-min* rapidly cleans them up.

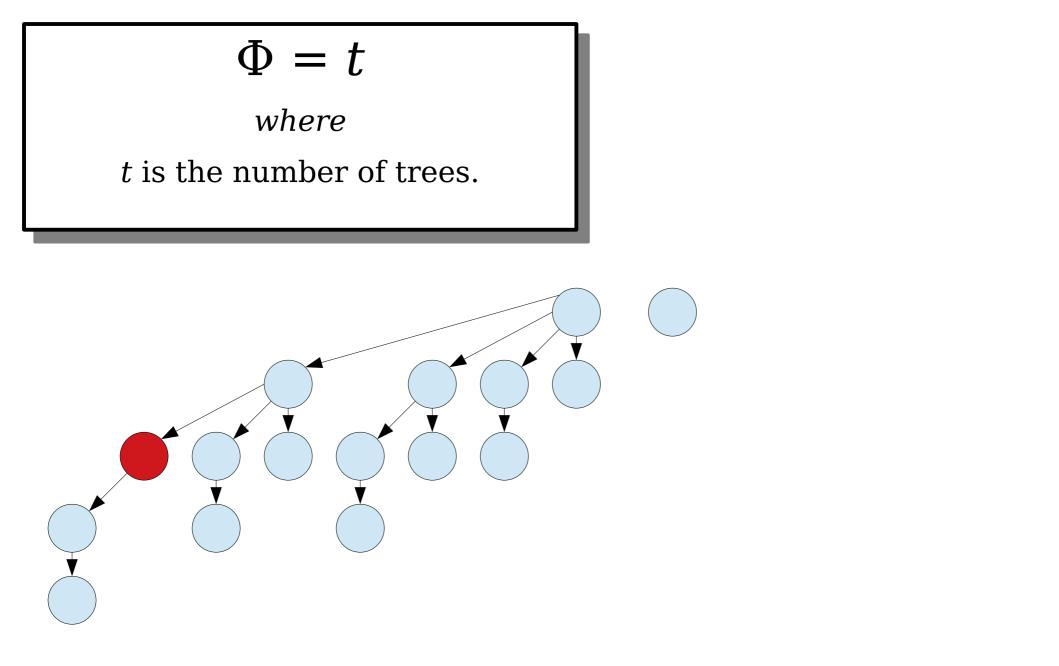


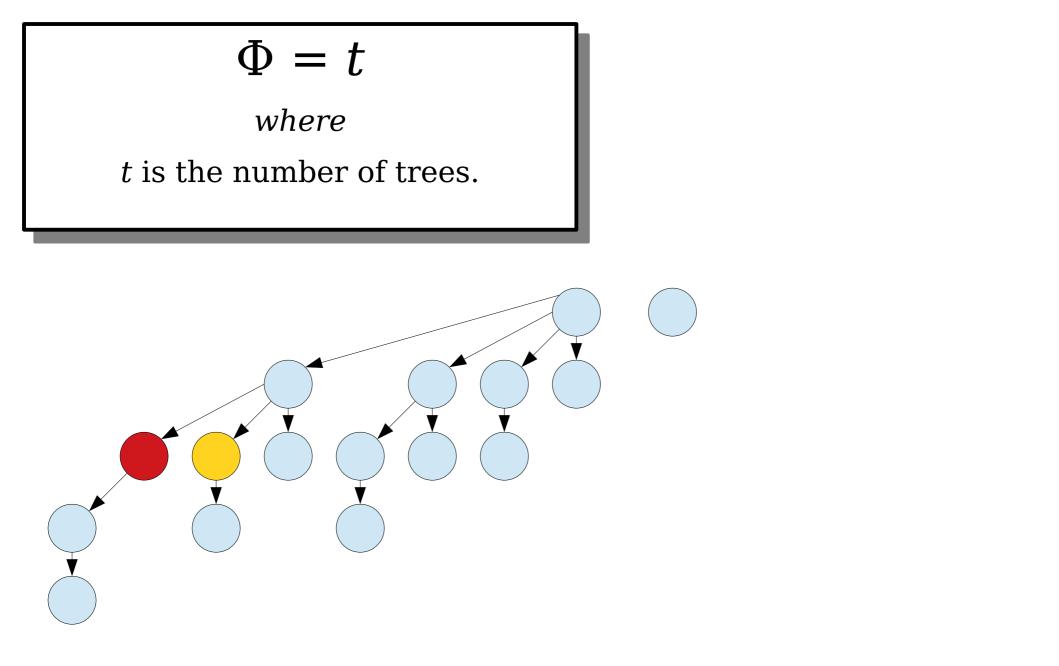
Each *enqueue* slowly introduces trees. Each *extract-min* rapidly cleans them up.

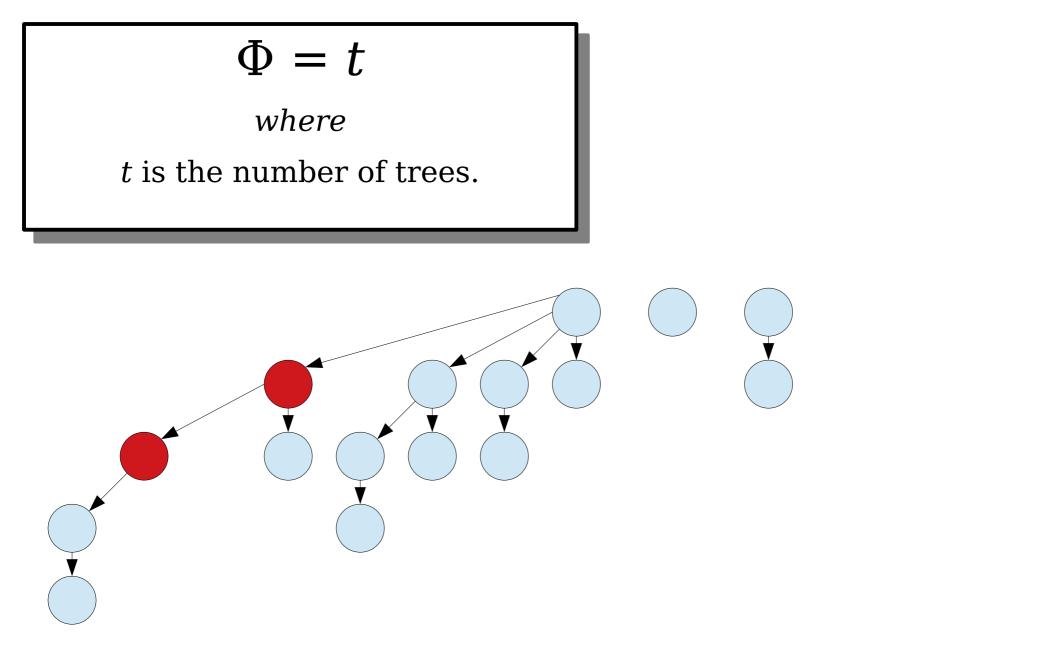


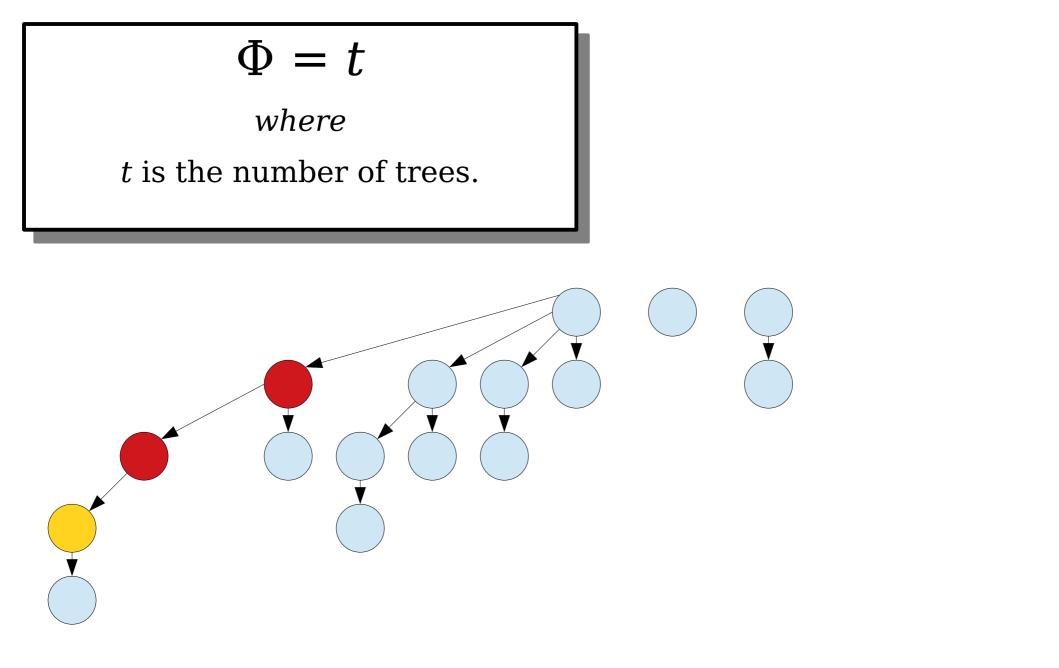
Each *enqueue* slowly introduces trees. Each *extract-min* rapidly cleans them up.

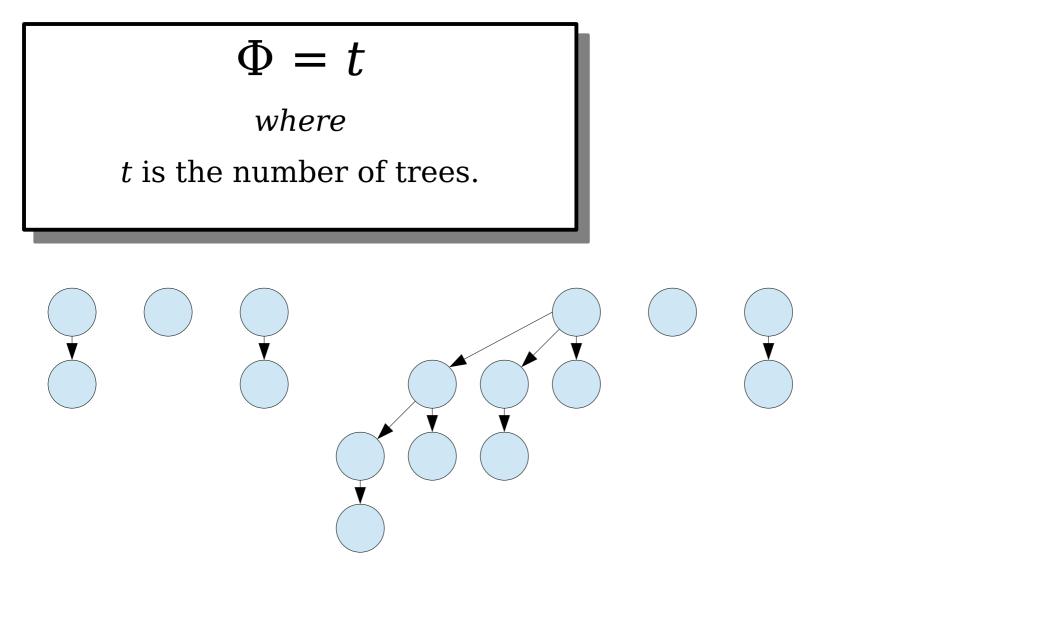








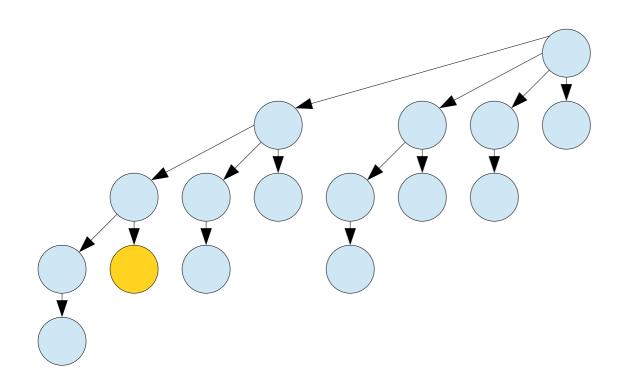


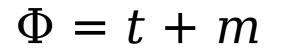


$\Phi = t + m$

where

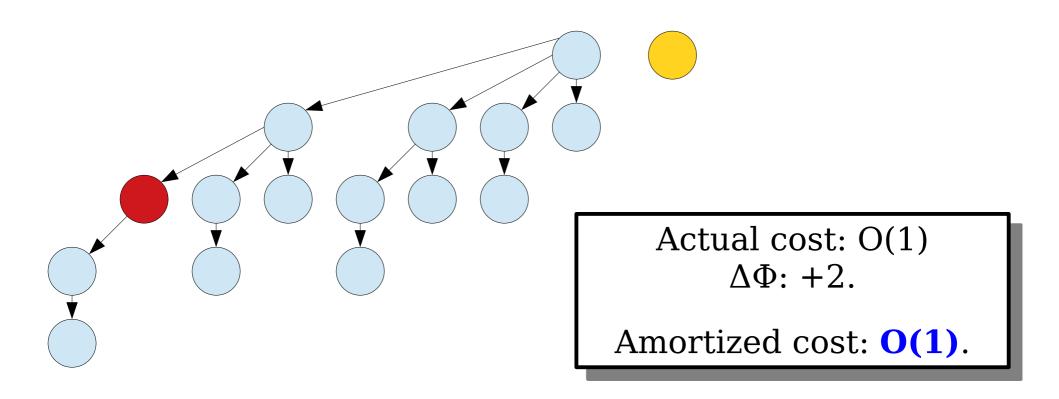
t is the number of trees and m is the number of marked nodes.





where

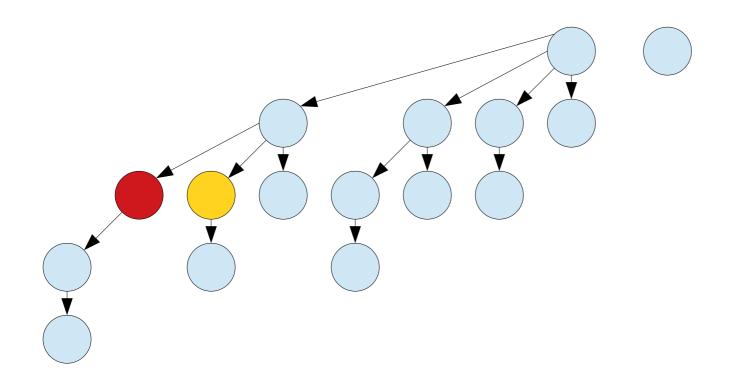
t is the number of trees and m is the number of marked nodes.

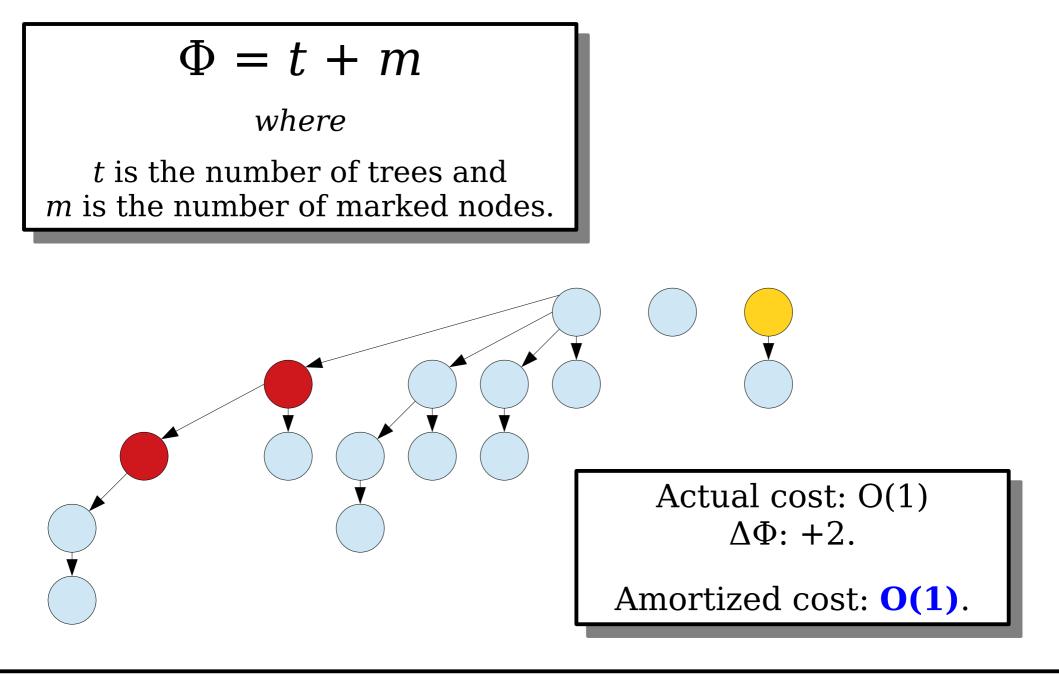


$\Phi = t + m$

where

t is the number of trees and m is the number of marked nodes.

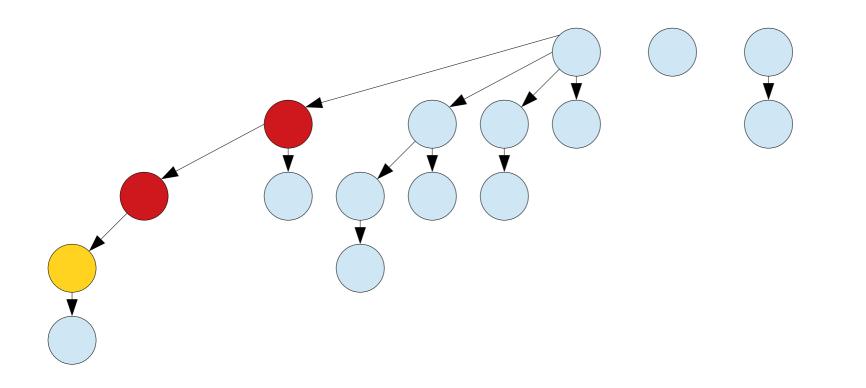


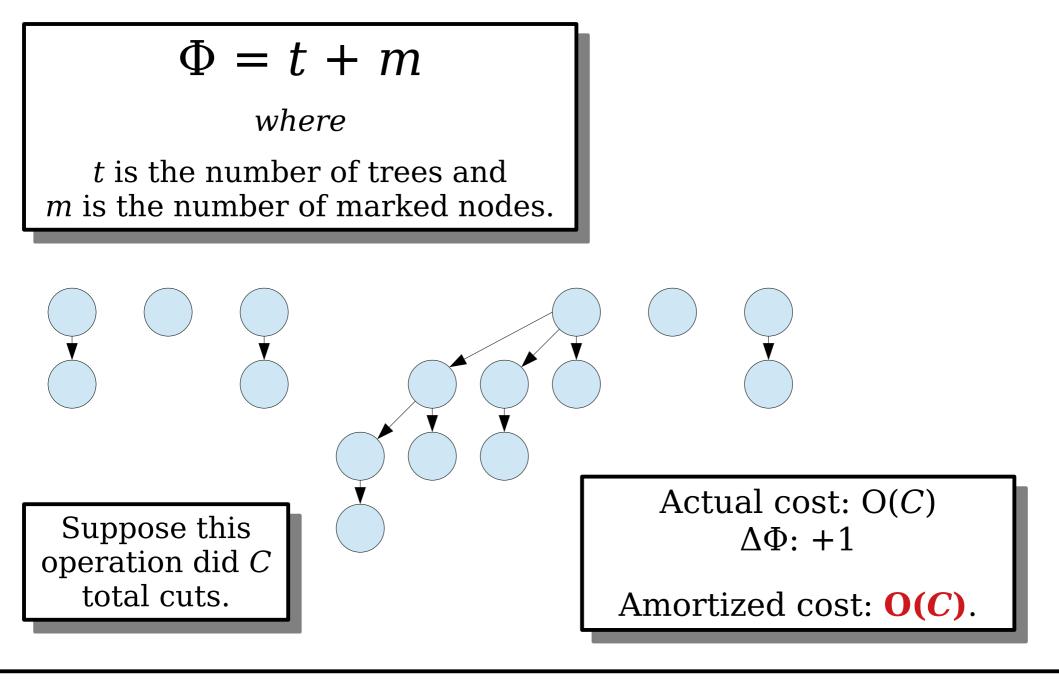


$\Phi = t + m$

where

t is the number of trees and m is the number of marked nodes.

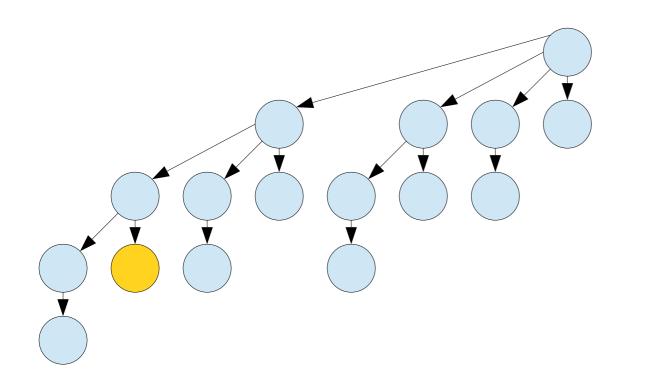


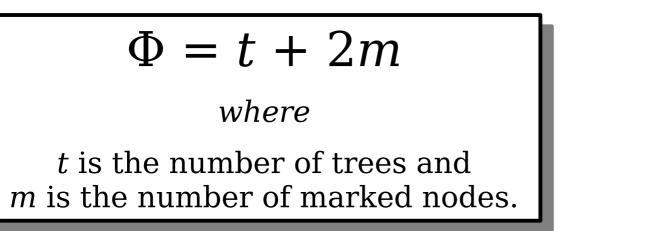


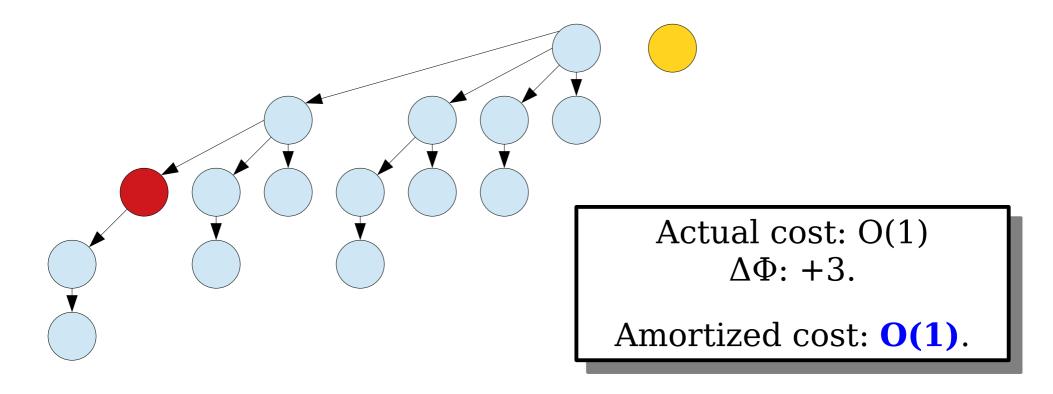
$\Phi = t + 2m$

where

t is the number of trees and m is the number of marked nodes.



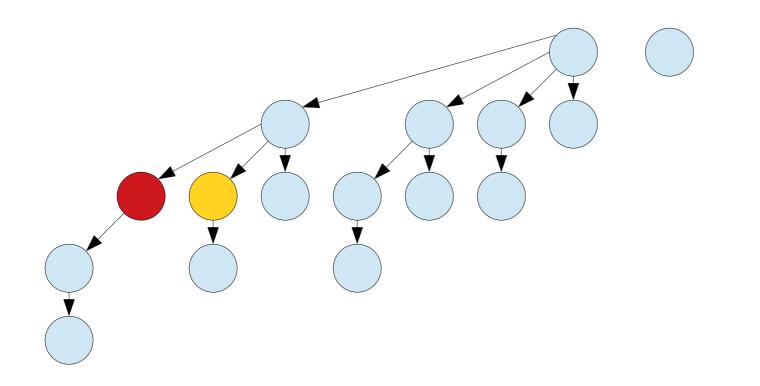


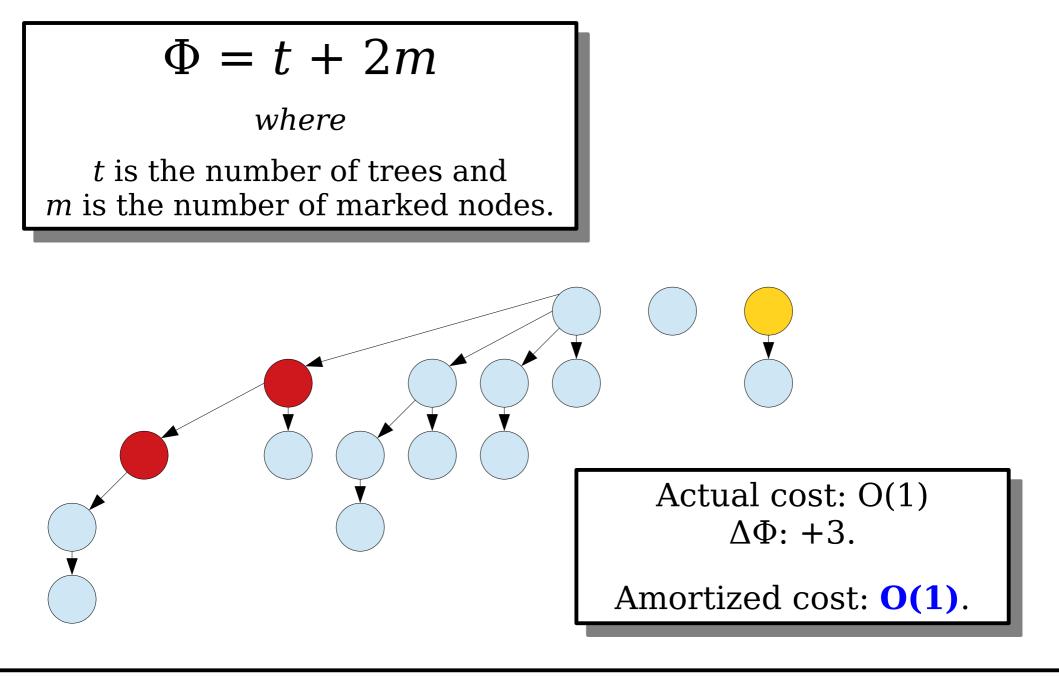


$\Phi = t + 2m$

where

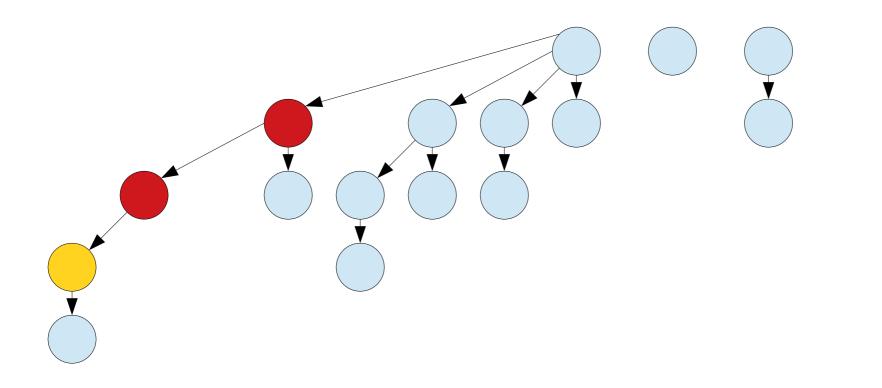
t is the number of trees and m is the number of marked nodes.

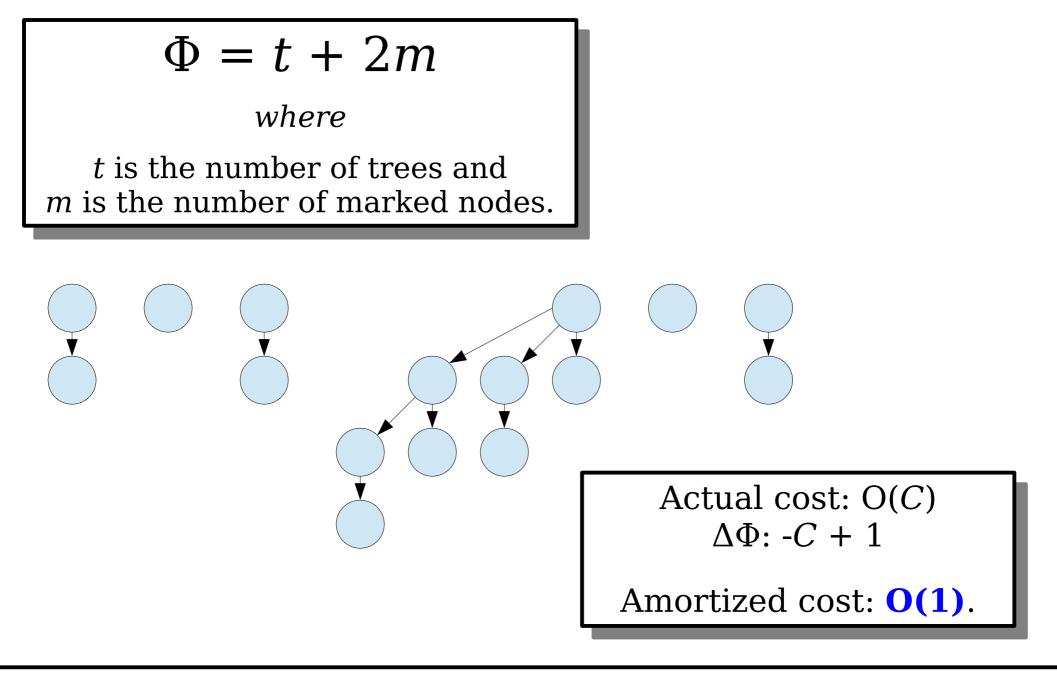




where

t is the number of trees and m is the number of marked nodes.





The Overall Analysis

- Here's the final scorecard for the Fibonacci heap.
- These are excellent theoretical runtimes. There's minimal room for improvement!
- Later work made all these operations *worst-case efficient* at a significant increase in both runtime and intellectual complexity.

enqueue: O(1)
find-min: O(1)
meld: O(1)
extract-min: O(log n)*
decrease-key: O(1)*

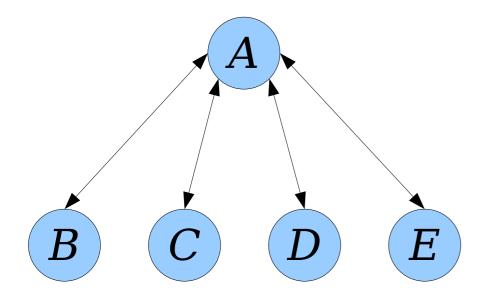
*amortized

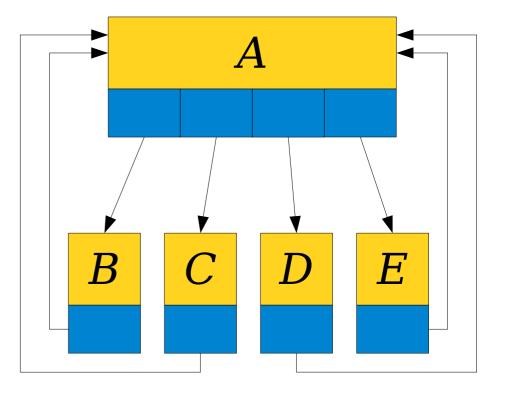
Representation Issues

Representing Trees

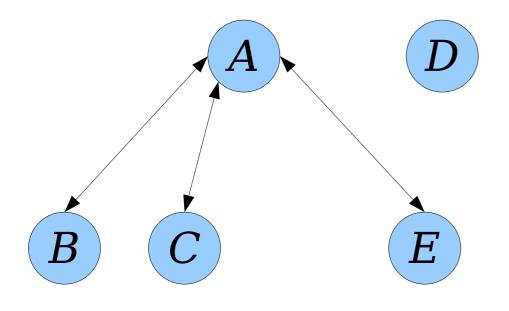
- The trees in a Fibonacci heap must be able to do the following:
 - During a merge: Add one tree as a child of the root of another tree.
 - During a cut: Cut a node from its parent in time O(1).
- *Claim:* This is trickier than it looks.

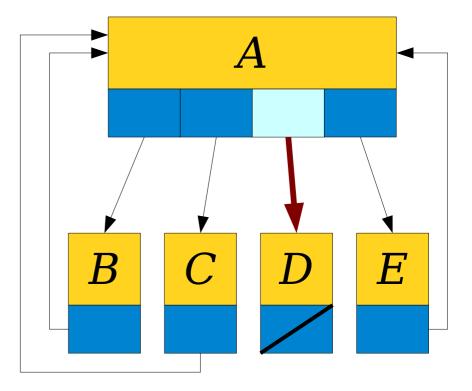
Representing Trees





Representing Trees





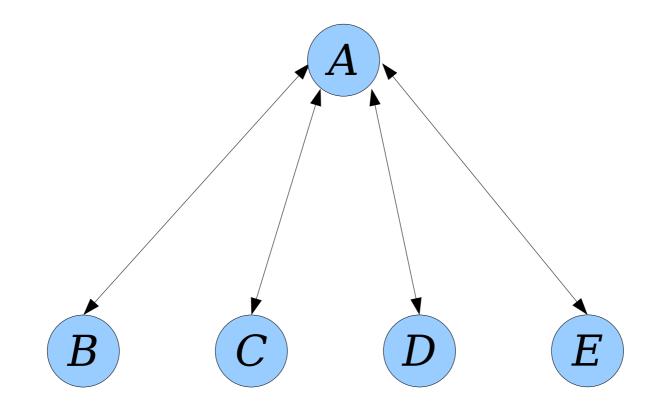
Finding this pointer might take time $\Theta(\log n)!$

The Solution

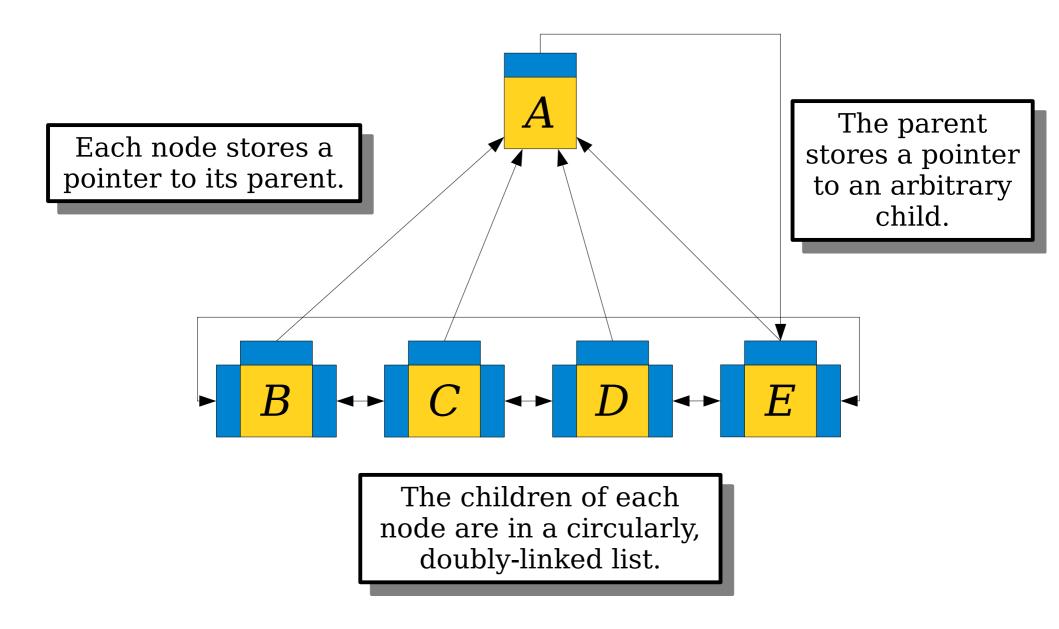
This is going to be weird.

Sorry.

The Solution



The Solution



Awful Linked Lists

- Trees are stored as follows:
 - Each node stores a pointer to *some* child.
 - Each node stores a pointer to its parent.
 - Each node is in a circularly-linked list of its siblings.
- The following possible are now possible in time O(1):
 - Cut a node from its parent.
 - Add another child node to a node.

Fibonacci Heap Nodes

- Each node in a Fibonacci heap stores
 - A pointer to its parent.
 - A pointer to the next sibling.
 - A pointer to the previous sibling.
 - A pointer to an arbitrary child.
 - A bit for whether it's marked.
 - Its order.
 - Its key.
 - Its element.

In Practice

- In practice, the constant factors on Fibonacci heaps make it slower than other heaps, except on huge graphs or workflows with tons of *decrease-keys*.
- Why?
 - Huge memory requirements per node.
 - High constant factors on all operations.
 - Poor locality of reference and caching.

In Theory

- That said, Fibonacci heaps are worth knowing about for several reasons:
 - Clever use of a two-tiered potential function shows up in lots of data structures.
 - Implementation of *decrease-key* forms the basis for many other advanced priority queues.
 - Gives the theoretically optimal comparisonbased implementation of Prim's and Dijkstra's algorithms.

More to Explore

- Since the development of Fibonacci heaps, there have been a number of other priority queues with similar runtimes.
 - In 1986, a powerhouse team (Fredman, Sedgewick, Sleator, and Tarjan) invented the *pairing heap*. It's much simpler than a Fibonacci heap, is fast in practice, but its runtime bounds are unknown!
 - In 2012, Brodal et al. invented the *strict Fibonacci heap*. It has the same time bounds as a Fibonacci heap, but in a *worst-case* rather than *amortized* sense.
 - In 2013, Chan invented the *quake heap*. It matches the asymptotic bounds of a Fibonacci heap but uses a totally different strategy.
- Also interesting to explore: if the weights on the edges in a graph are chosen from a continuous distribution, the expected number of *decrease-key*s in Dijkstra's algorithm is O(n log (m / n)). That might counsel another heap structure!
- Also interesting to explore: binary heaps generalize to *b*-ary heaps, where each node has *b* children. Picking $b = \log (2 + m/n)$ makes Dijkstra and Prim run in time $O(m \log n / \log m/n)$, which is O(m) if $m = \Theta(n^{1+\varepsilon})$ for any $\varepsilon > 0$.

Next Time

- Randomized Data Structures
 - Doing well on average, broadly speaking.
- Frequency Estimation
 - Counting in sublinear space.
- Count-Min Sketches
 - A simple, elegant, fast, and widely-used data structure.