Fibonacci Heaps

Outline for Today

- Recap from Last Time
- Quick refresher on binomial heaps and lazy binomial heaps.
- The Need for decrease-key
- An important operation in many graph algorithms.
- Fibonacci Heaps
- A data structure efficiently supporting decreasekey.
- Representational Issues
- Some of the challenges in Fibonacci heaps.

Recap from Last Time

(Lazy) Binomial Heaps

- Last time, we covered the binomial heap and a variant called the lazy binomial heap.
- These are priority queue structures designed to support efficient melding.
- Elements are stored in a collection of binomial trees.

Draw what happens if we enqueue the numbers $1,2,3,4,5,6,7,8$, and 9 into each heap.

Eager Binomial Heap

Draw what happens if we enqueue the numbers $1,2,3,4,5,6,7,8$, and 9 into each heap.

Eager Binomial Heap
1

2

Lazy Binomial Heap

Draw what happens if we enqueue the numbers $1,2,3,4,5,6,7,8$, and 9 into each heap.

Eager Binomial Heap

Lazy Binomial Heap

Draw what happens if we enqueue the numbers $1,2,3,4,5,6,7,8$, and 9 into each heap.

Eager Binomial Heap

Lazy Binomial Heap

Draw what happens if we enqueue the numbers $1,2,3,4,5,6,7,8$, and 9 into each heap.

Eager Binomial Heap

$$
13
$$

Lazy Binomial Heap

Draw what happens if we enqueue the numbers $1,2,3,4,5,6,7,8$, and 9 into each heap.

Eager Binomial Heap

Lazy Binomial Heap

Draw what happens if we enqueue the numbers $1,2,3,4,5,6,7,8$, and 9 into each heap.

Eager Binomial Heap

Lazy Binomial Heap

Draw what happens if we enqueue the numbers $1,2,3,4,5,6,7,8$, and 9 into each heap.

Eager Binomial Heap

Lazy Binomial Heap

Draw what happens if we enqueue the numbers $1,2,3,4,5,6,7,8$, and 9 into each heap.

Eager Binomial Heap

Draw what happens if we enqueue the numbers $1,2,3,4,5,6,7,8$, and 9 into each heap.

Eager Binomial Heap

Draw what happens if we enqueue the numbers $1,2,3,4,5,6,7,8$, and 9 into each heap.

Eager Binomial Heap

Lazy Binomial Heap

Draw what happens if we enqueue the numbers $1,2,3,4,5,6,7,8$, and 9 into each heap.

Eager Binomial Heap

Draw what happens if we enqueue the numbers $1,2,3,4,5,6,7,8$, and 9 into each heap.

Eager Binomial Heap

Draw what happens if we enqueue the numbers $1,2,3,4,5,6,7,8$, and 9 into each heap.

Eager Binomial Heap

Draw what happens if we enqueue the numbers $1,2,3,4,5,6,7,8$, and 9 into each heap.

Eager Binomial Heap

Draw what happens if we enqueue the numbers $1,2,3,4,5,6,7,8$, and 9 into each heap.

Eager Binomial Heap

Draw what happens if we enqueue the numbers $1,2,3,4,5,6,7,8$, and 9 into each heap.

Eager Binomial Heap

Draw what happens if we enqueue the numbers $1,2,3,4,5,6,7,8$, and 9 into each heap.

Eager Binomial Heap

Lazy Binomial Heap

Draw what happens if we enqueue the numbers $1,2,3,4,5,6,7,8$, and 9 into each heap.

Eager Binomial Heap

Draw what happens if we enqueue the numbers $1,2,3,4,5,6,7,8$, and 9 into each heap.

Eager Binomial Heap

Draw what happens if we enqueue the numbers $1,2,3,4,5,6,7,8$, and 9 into each heap.

Eager Binomial Heap

Lazy Binomial Heap

Draw what happens if we enqueue the numbers $1,2,3,4,5,6,7,8$, and 9 into each heap.

Eager Binomial Heap

Lazy Binomial Heap

Draw what happens if we enqueue the numbers $1,2,3,4,5,6,7,8$, and 9 into each heap.

Eager Binomial Heap

Lazy Binomial Heap

$$
\begin{array}{llllllllll}
1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array}
$$

Draw what happens if we enqueue the numbers $1,2,3,4,5,6,7,8$, and 9 into each heap.

Eager Binomial Heap

Lazy Binomial Heap

$$
\begin{array}{llllllllll}
1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array}
$$

Draw what happens after performing an extract-min in each binomial heap.

Eager Binomial Heap

Lazy Binomial Heap

$$
\begin{array}{llllllllll}
1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array}
$$

Draw what happens after performing an extract-min in each binomial heap.

Eager Binomial Heap

Lazy Binomial Heap

$$
\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array} 9
$$

Draw what happens after performing an extract-min in each binomial heap.

Eager Binomial Heap

Lazy Binomial Heap

$$
\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array}
$$

Draw what happens after performing an extract-min in each binomial heap.

Eager Binomial Heap

Lazy Binomial Heap

$$
\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array} 9
$$

Draw what happens after performing an extract-min in each binomial heap.

Eager Binomial Heap

Lazy Binomial Heap

$$
\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array} 9
$$

Draw what happens after performing an extract-min in each binomial heap.

Eager Binomial Heap

Lazy Binomial Heap

$$
\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array} 9
$$

Draw what happens after performing an extract-min in each binomial heap.

Eager Binomial Heap

Lazy Binomial Heap

$$
\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array} 9
$$

Draw what happens after performing an extract-min in each binomial heap.

Eager Binomial Heap

Lazy Binomial Heap

$$
\begin{array}{lllllllll}
1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
$$

Draw what happens after performing an extract-min in each binomial heap.

Eager Binomial Heap

Lazy Binomial Heap

$$
\begin{array}{lllllllll}
1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
$$

Draw what happens after performing an extract-min in each binomial heap.

Eager Binomial Heap

Lazy Binomial Heap

$$
\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array} 9
$$

Draw what happens after performing an extract-min in each binomial heap.

Eager Binomial Heap

Lazy Binomial Heap

$$
\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array} 9
$$

Draw what happens after performing an extract-min in each binomial heap.

Eager Binomial Heap

Lazy Binomial Heap

$$
\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array} 9
$$

Draw what happens after performing an extract-min in each binomial heap.

Eager Binomial Heap

Lazy Binomial Heap

$$
\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array}
$$

Draw what happens after performing an extract-min in each binomial heap.

Eager Binomial Heap

Lazy Binomial Heap

$$
\begin{array}{llllllll}
2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array}
$$

Draw what happens after performing an extract-min in each binomial heap.

Eager Binomial Heap

Lazy Binomial Heap

Draw what happens after performing an extract-min in each binomial heap.

Eager Binomial Heap

Lazy Binomial Heap

Draw what happens after performing an extract-min in each binomial heap.

Eager Binomial Heap

Lazy Binomial Heap Order 2	Order 1			
		2	3	
		4		

Draw what happens after performing an extract-min in each binomial heap.

Eager Binomial Heap

Lazy Binomial Heap

Order 2	Order 1	Order 0	
	3	2	5

Draw what happens after performing an extract-min in each binomial heap.

Eager Binomial Heap

Lazy Binomial Heap

Order 2	Order 1	Order 0	
	2	2	5

Draw what happens after performing an extract-min in each binomial heap.

Eager Binomial Heap

Lazy Binomial Heap

Order 2	Order 1	Order 0	
	2	2	5

Draw what happens after performing an extract-min in each binomial heap.

Eager Binomial Heap

Lazy Binomial Heap Order 2

Order 1		Order 0
3	2	6
4		

Draw what happens after performing an extract-min in each binomial heap.

Eager Binomial Heap

Lazy Binomial Heap Order 2	Order 1	Order 0
	3	2
	8	

Draw what happens after performing an extract-min in each binomial heap.

Eager Binomial Heap

Lazy Binomial Heap Order 2	Order 1	Order 0
	3	2
	8	

Draw what happens after performing an extract-min in each binomial heap.

Eager Binomial Heap

Lazy Binomial Heap Order 2	Order 1	Order 0
	3	2
	8	

Draw what happens after performing an extract-min in each binomial heap.

Eager Binomial Heap

Lazy Binomial Heap Order 2	Order 1	Order 0	
	3	7	5
	8		

Draw what happens after performing an extract-min in each binomial heap.

Eager Binomial Heap

Lazy Binomial Heap Order 2	Order 1		Order 0
	3	7	5
	4	8	2

Draw what happens after performing an extract-min in each binomial heap.

Eager Binomial Heap

Lazy Binomial Heap Order 2	Order 1		Order 0	
	$\begin{array}{lll} 3 & 7 & 5 \\ 1 & 1 & 1 \\ 4 & 8 & 6 \end{array}$	2		(9)

Draw what happens after performing an extract-min in each binomial heap.

Eager Binomial Heap

Lazy Binomial Heap Order 2	Order 1		Order 0	
	$\begin{array}{lll} 3 & 7 & 5 \\ 1 & 1 & 1 \\ 4 & 8 & 6 \end{array}$	2		(9)

Draw what happens after performing an extract-min in each binomial heap.

Eager Binomial Heap

Lazy Binomial Heap Order 2			
	Order 1		
	3	7	5
Order 0			
	4	8	6

Draw what happens after performing an extract-min in each binomial heap.

Eager Binomial Heap

Lazy Binomial Heap
Order $2 \quad$ Order $1 \quad$ Order 0

$$
\begin{array}{lllll}
3 & 7 & 5 & 2 \\
1 & 1 & 1 & 1 \\
4 & 8 & 6 & 9
\end{array}
$$

Draw what happens after performing an extract-min in each binomial heap.

Eager Binomial Heap

Lazy Binomial Heap
Order 2 Order 1 \quad Order 0

$$
\begin{array}{lllll}
3 & 7 & 5 & 2 \\
1 & 1 & 1 & 1 \\
4 & 8 & 6 & 9
\end{array}
$$

Draw what happens after performing an extract-min in each binomial heap.

Eager Binomial Heap

Lazy Binomial Heap
Order 2 Order 1 \quad Order 0

Draw what happens after performing an extract-min in each binomial heap.

Eager Binomial Heap

Lazy Binomial Heap

Order 2	Order 1		Order 0
5	3	(2)	
76	$\begin{aligned} & 1 \\ & 4 \end{aligned}$	$\begin{aligned} & 1 \\ & 9 \end{aligned}$	

Draw what happens after performing an extract-min in each binomial heap.

Eager Binomial Heap

Lazy Binomial Heap

Order 2		Order 1	Order 0
5	3	2	
7	6	2	

Draw what happens after performing an extract-min in each binomial heap.

Eager Binomial Heap

Lazy Binomial Heap

Order 2		Order 1
5	3	2
7	6	

Draw what happens after performing an extract-min in each binomial heap.

Eager Binomial Heap

Lazy Binomial Heap

Order 2	Order 1	Order 0
5	2	
7	2	
8	4	

Draw what happens after performing an extract-min in each binomial heap.

Eager Binomial Heap

Lazy Binomial Heap

Order 2 \quad Order $1 \quad$| |
| :--- |
| 2 |

Draw what happens after performing an extract-min in each binomial heap.

Eager Binomial Heap

Lazy Binomial Heap

Order 2 \quad Order $1 \quad$| |
| :--- |
| 2 |

Draw what happens after performing an extract-min in each binomial heap.

Eager Binomial Heap

Lazy Binomial Heap

Order 2 \quad Order $1 \quad$| |
| :--- |
| 2 |

Draw what happens after performing an extract-min in each binomial heap.

Eager Binomial Heap

Lazy Binomial Heap

Draw what happens after performing an extract-min in each binomial heap.

Eager Binomial Heap

Lazy Binomial Heap

Let's enqueue 10, 11, and 12 into both heaps.

Eager Binomial Heap

Lazy Binomial Heap

Let's enqueue 10, 11, and 12 into both heaps.

Eager Binomial Heap

Lazy Binomial Heap

Let's enqueue 10, 11, and 12 into both heaps.

Eager Binomial Heap

Lazy Binomial Heap

Let's enqueue 10, 11, and 12 into both heaps.

Eager Binomial Heap

Lazy Binomial Heap

Let's enqueue 10, 11, and 12 into both heaps.

Eager Binomial Heap

Lazy Binomial Heap

Let's enqueue 10, 11, and 12 into both heaps.

Eager Binomial Heap

Lazy Binomial Heap

Let's enqueue 10, 11, and 12 into both heaps.

Eager Binomial Heap

Lazy Binomial Heap

Draw what happens after we do a extract-min from both heaps.

Eager Binomial Heap

Lazy Binomial Heap

Draw what happens after we do a extract-min from both heaps.

Eager Binomial Heap

Lazy Binomial Heap

Draw what happens after we do a extract-min from both heaps.

Eager Binomial Heap

Lazy Binomial Heap

Draw what happens after we do a extract-min from both heaps.

Eager Binomial Heap

Lazy Binomial Heap

Draw what happens after we do a extract-min from both heaps.

Eager Binomial Heap

Lazy Binomial Heap

Draw what happens after we do a extract-min from both heaps.

Eager Binomial Heap

Lazy Binomial Heap

Draw what happens after we do a extract-min from both heaps.

Eager Binomial Heap

Lazy Binomial Heap

Draw what happens after we do a extract-min from both heaps.

Eager Binomial Heap

Lazy Binomial Heap

Draw what happens after we do a extract-min from both heaps.

Eager Binomial Heap

Lazy Binomial Heap

Draw what happens after we do a extract-min from both heaps.

Eager Binomial Heap

Lazy Binomial Heap

Draw what happens after we do a extract-min from both heaps.

Eager Binomial Heap

Lazy Binomial Heap

Draw what happens after we do a extract-min from both heaps.

Eager Binomial Heap

Lazy Binomial Heap

Draw what happens after we do a extract-min from both heaps.

Eager Binomial Heap

Lazy Binomial Heap

Draw what happens after we do a extract-min from both heaps.

Eager Binomial Heap

Lazy Binomial Heap

Draw what happens after we do a extract-min from both heaps.

Eager Binomial Heap

Lazy Binomial Heap

Draw what happens after we do a extract-min from both heaps.

Eager Binomial Heap

Lazy Binomial Heap
$10 \quad 11 \quad 12$

Draw what happens after we do a extract-min from both heaps.

Eager Binomial Heap

Lazy Binomial Heap

Draw what happens after we do a extract-min from both heaps.

Eager Binomial Heap

Lazy Binomial Heap

Order 2	Order 1	Order 0		
	5	3	10	
7	4			
8				

Draw what happens after we do a extract-min from both heaps.

Eager Binomial Heap

Lazy Binomial Heap

Order 2	Order 1	Order 0
$\begin{array}{ll} 5 \\ 8 & 6 \\ 8 & 6 \\ 8 & \\ \hline \end{array}$	$\begin{aligned} & 3 \\ & 1 \\ & 4 \end{aligned}$	(9) 101112

Draw what happens after we do a extract-min from both heaps.

Eager Binomial Heap

Lazy Binomial Heap

12

Draw what happens after we do a extract-min from both heaps.

Eager Binomial Heap

Lazy Binomial Heap

Order 2	Order 1	Order 0
5 7 8 8	$\begin{array}{cc} 10 & 3 \\ 1 & 1 \\ 11 & 4 \end{array}$	(9) 12

Draw what happens after we do a extract-min from both heaps.

Eager Binomial Heap

Lazy Binomial Heap

Order 2	Order 1	Order 0
8	$\begin{array}{cc} 10 & 3 \\ 1 & 1 \\ 11 & 4 \end{array}$	(9) 12

Draw what happens after we do a extract-min from both heaps.

Eager Binomial Heap

Lazy Binomial Heap

Order 2	Order 1		Order 0
5 7 8	$\begin{array}{cc} 10 & 3 \\ 1 & 1 \\ 11 & 4 \end{array}$	$\begin{aligned} & 9 \\ & 1 \\ & 12 \end{aligned}$	

Draw what happens after we do a extract-min from both heaps.

Eager Binomial Heap

Lazy Binomial Heap

Order 2	Order 1	Order 0
$\begin{array}{ll}2 \\ 7 & 6 \\ 8 & 6 \\ 8 & \\ 8\end{array}$	$\begin{array}{ccc} 10 & 3 & 9 \\ 1 & 7 & 7 \\ 11 & 4 & 12 \end{array}$	

Draw what happens after we do a extract-min from both heaps.

Eager Binomial Heap

Lazy Binomial Heap

Draw what happens after we do a extract-min from both heaps.

Eager Binomial Heap

Lazy Binomial Heap

Order 2	Order 1	Order 0
$\begin{gathered} 5 \\ 7 \\ 8 \\ 8 \end{gathered}$	$\begin{array}{ccc}3 & 9 \\ 10 & 4 & 12 \\ 11 & & \end{array}$	

Draw what happens after we do a extract-min from both heaps.

Eager Binomial Heap

Lazy Binomial Heap

Order 2		Order 1	Order O
3	5	9	
10	4	6	12
11	8		

Draw what happens after we do a extract-min from both heaps.

Eager Binomial Heap

Lazy Binomial Heap

Order 2		Order 1	Order O
3	5	9	
10	4	7	12
11	8		

Draw what happens after we do a extract-min from both heaps.

Eager Binomial Heap

Lazy Binomial Heap

Draw what happens after we do a extract-min from both heaps.

Eager Binomial Heap

Lazy Binomial Heap

Draw what happens after we do a extract-min from both heaps.

Eager Binomial Heap

Lazy Binomial Heap

Draw what happens after we do a extract-min from both heaps.

Operation Costs

- Eager Binomial Heap:
- enqueue: $\mathrm{O}(\log n)$
- meld: O(log n)
- find-min: $\mathrm{O}(\log n)$
- extract-min: $\mathrm{O}(\log n)$
- Lazy Binomial Heap:
- enqueue: $\mathrm{O}(1)$
- meld: O(1)
- find-min: $\mathrm{O}(1)$
- extract-min: O(log $n)^{*}$
- *amortized

Intuition: Each extract-min has to do a bunch of cleanup for the earlier enqueue operations, but then leaves us with few trees.

New Stuff!

The Need for decrease-key

The decrease-key Operation

- Some priority queues support the operation decrease-key (v, k), which works as follows: Given a pointer to an element v, lower its key (priority) to k. It is assumed that k is less than the current priority of v.
- This operation is crucial in efficient implementations of Dijkstra's algorithm and Prim's MST algorithm.

Dijkstra and decrease-key

- Dijkstra's algorithm can be implemented with a priority queue using
- O(n) total enqueues,
- $\mathrm{O}(n)$ total extract-mins, and
- $\mathrm{O}(m)$ total decrease-keys.

Dijkstra and decrease-key

- Dijkstra's algorithm can be implemented with a priority queue using
- O(n) total enqueues,
- $\mathrm{O}(n)$ total extract-mins, and
- $\mathrm{O}(m)$ total decrease-keys.

Dijkstra and decrease-key

- Dijkstra's algorithm can be implemented with a priority queue using
- O(n) total enqueues,
- $\mathrm{O}(n)$ total extract-mins, and
- $\mathrm{O}(m)$ total decrease-keys.

Dijkstra and decrease-key

- Dijkstra's algorithm can be implemented with a priority queue using
- O(n) total enqueues,
- $\mathrm{O}(n)$ total extract-mins, and
- $\mathrm{O}(m)$ total decrease-keys.

Dijkstra and decrease-key

- Dijkstra's algorithm can be implemented with a priority queue using
- O(n) total enqueues,
- $\mathrm{O}(n)$ total extract-mins, and
- $\mathrm{O}(m)$ total decrease-keys.

Dijkstra and decrease-key

- Dijkstra's algorithm can be implemented with a priority queue using
- O(n) total enqueues,
- $\mathrm{O}(n)$ total extract-mins, and
- $\mathrm{O}(m)$ total decrease-keys.

Dijkstra and decrease-key

- Dijkstra's algorithm can be implemented with a priority queue using
- O(n) total enqueues,
- $\mathrm{O}(n)$ total extract-mins, and
- $\mathrm{O}(m)$ total decrease-keys.

Dijkstra and decrease-key

- Dijkstra's algorithm can be implemented with a priority queue using
- O(n) total enqueues,
- $\mathrm{O}(n)$ total extract-mins, and
- $\mathrm{O}(m)$ total decrease-keys.

Dijkstra and decrease-key

- Dijkstra's algorithm can be implemented with a priority queue using
- O(n) total enqueues,
- $\mathrm{O}(n)$ total extract-mins, and
- $\mathrm{O}(m)$ total decrease-keys.

Dijkstra and decrease-key

- Dijkstra's algorithm can be implemented with a priority queue using
- O(n) total enqueues,
- $\mathrm{O}(n)$ total extract-mins, and
- $O(m)$ total decrease-keys.

Dijkstra and decrease-key

- Dijkstra's algorithm can be implemented with a priority queue using
- O(n) total enqueues,
- $\mathrm{O}(n)$ total extract-mins, and
- $\mathrm{O}(m)$ total decrease-keys.
- Dijkstra's algorithm runtime is

$$
\mathrm{O}\left(n \mathrm{~T}_{\mathrm{enq}}+n \mathrm{~T}_{\mathrm{ext}}+m \mathrm{~T}_{\mathrm{dec}}\right)
$$

Prim and decrease-key

- Prim's algorithm can be implemented with a priority queue using
- O(n) total enqueues,
- $\mathrm{O}(n)$ total extract-mins, and
- $\mathrm{O}(m)$ total decrease-keys.

Prim and decrease-key

- Prim's algorithm can be implemented with a priority queue using
- O(n) total enqueues,
- $\mathrm{O}(n)$ total extract-mins, and
- $\mathrm{O}(m)$ total decrease-keys.

Prim and decrease-key

- Prim's algorithm can be implemented with a priority queue using
- O(n) total enqueues,
- $\mathrm{O}(n)$ total extract-mins, and
- $\mathrm{O}(m)$ total decrease-keys.

Prim and decrease-key

- Prim's algorithm can be implemented with a priority queue using
- $O(n)$ total enqueues,
- $\mathrm{O}(n)$ total extract-mins, and
- $\mathrm{O}(m)$ total decrease-keys.

Prim and decrease-key

- Prim's algorithm can be implemented with a priority queue using
- O(n) total enqueues,
- $\mathrm{O}(n)$ total extract-mins, and
- $\mathrm{O}(m)$ total decrease-keys.

Prim and decrease-key

- Prim's algorithm can be implemented with a priority queue using
- O(n) total enqueues,
- $\mathrm{O}(n)$ total extract-mins, and
- $\mathrm{O}(m)$ total decrease-keys.

Prim and decrease-key

- Prim's algorithm can be implemented with a priority queue using
- O(n) total enqueues,
- $\mathrm{O}(n)$ total extract-mins, and
- $\mathrm{O}(m)$ total decrease-keys.

Prim and decrease-key

- Prim's algorithm can be implemented with a priority queue using
- O(n) total enqueues,
- $\mathrm{O}(n)$ total extract-mins, and
- $\mathrm{O}(m)$ total decrease-keys.

Prim and decrease-key

- Prim's algorithm can be implemented with a priority queue using
- O(n) total enqueues,
- $\mathrm{O}(n)$ total extract-mins, and
- $\mathrm{O}(m)$ total decrease-keys.

Prim and decrease-key

- Prim's algorithm can be implemented with a priority queue using
- O(n) total enqueues,
- $\mathrm{O}(n)$ total extract-mins, and
- $\mathrm{O}(m)$ total decrease-keys.

Prim and decrease-key

- Prim's algorithm can be implemented with a priority queue using
- O(n) total enqueues,
- $\mathrm{O}(n)$ total extract-mins, and
- $\mathrm{O}(m)$ total decrease-keys.

Prim and decrease-key

- Prim's algorithm can be implemented with a priority queue using
- O(n) total enqueues,
- $\mathrm{O}(n)$ total extract-mins, and
- $\mathrm{O}(m)$ total decrease-keys.

Prim and decrease-key

- Prim's algorithm can be implemented with a priority queue using
- O(n) total enqueues,
- $\mathrm{O}(n)$ total extract-mins, and
- $\mathrm{O}(m)$ total decrease-keys.

Prim and decrease-key

- Prim's algorithm can be implemented with a priority queue using
- O(n) total enqueues,
- $\mathrm{O}(n)$ total extract-mins, and
- $\mathrm{O}(m)$ total decrease-keys.

Prim and decrease-key

- Prim's algorithm can be implemented with a priority queue using
- O(n) total enqueues,
- $\mathrm{O}(n)$ total extract-mins, and
- $\mathrm{O}(m)$ total decrease-keys.

Prim and decrease-key

- Prim's algorithm can be implemented with a priority queue using
- O(n) total enqueues,
- $\mathrm{O}(n)$ total extract-mins, and
- $\mathrm{O}(m)$ total decrease-keys.

Prim and decrease-key

- Prim's algorithm can be implemented with a priority queue using
- O(n) total enqueues,
- $\mathrm{O}(n)$ total extract-mins, and
- $\mathrm{O}(m)$ total decrease-keys.

Prim and decrease-key

- Prim's algorithm can be implemented with a priority queue using
- O(n) total enqueues,
- O(n) total extract-mins, and
- $\mathrm{O}(m)$ total decrease-keys.
- Prim's algorithm runtime is

$$
\mathrm{O}\left(n \mathrm{~T}_{\mathrm{enq}}+n \mathrm{~T}_{\mathrm{ext}}+m \mathrm{~T}_{\mathrm{dec}}\right)
$$

Standard Approaches

- In a binary heap, enqueue, extract-min, and decrease-key can be made to work in time $\mathrm{O}(\log n)$ time each.
- Cost of Dijkstra's / Prim's algorithm:

$$
\begin{aligned}
& \mathrm{O}\left(n \mathrm{~T}_{\mathrm{enq}}+n \mathrm{~T}_{\mathrm{ext}}+m \mathrm{~T}_{\mathrm{dec}}\right) \\
= & \mathrm{O}(n \log n+n \log n+m \log n) \\
= & \mathbf{O}(\boldsymbol{m} \log \boldsymbol{n})
\end{aligned}
$$

Standard Approaches

- In a lazy binomial heap, enqueue takes amortized time $\mathrm{O}(1)$, and extract-min and decrease-key take amortized time O(log n).
- Cost of Dijkstra's / Prim's algorithm:

$$
\begin{aligned}
& \mathrm{O}\left(n \mathrm{~T}_{\mathrm{enq}}+n \mathrm{~T}_{\mathrm{ext}}+m \mathrm{~T}_{\mathrm{dec}}\right) \\
= & \mathrm{O}(n+n \log n+m \log n) \\
= & \mathbf{O}(\boldsymbol{m} \log \boldsymbol{n})
\end{aligned}
$$

Where We're Going

- The Fibonacci heap has these amortized runtimes:
- enqueue: $\mathrm{O}(1)$
- extract-min: O(log n).
- decrease-key: O(1).
- Cost of Prim's or Dijkstra's algorithm:

$$
\begin{aligned}
& \mathrm{O}\left(n \mathrm{~T}_{\mathrm{enq}}+n \mathrm{~T}_{\mathrm{ext}}+m \mathrm{~T}_{\mathrm{dec}}\right) \\
= & \mathrm{O}(n+n \log n+m) \\
= & \mathbf{O}(\boldsymbol{m}+\boldsymbol{n} \log \boldsymbol{n})
\end{aligned}
$$

- This is theoretically optimal for a comparison-based priority queue in Dijkstra's or Prim's algorithms.

The Challenge of decrease-key

How might we implement decrease-key in a lazy binomial heap?

How might we implement decrease-key in a lazy binomial heap?

How might we implement decrease-key in a lazy binomial heap?

How might we implement decrease-key in a lazy binomial heap?

How might we implement decrease-key in a lazy binomial heap?

How might we implement decrease-key in a lazy binomial heap?

How might we implement decrease-key in a lazy binomial heap?

How might we implement decrease-key in a lazy binomial heap?

How might we implement decrease-key in a lazy binomial heap?

How might we implement decrease-key in a lazy binomial heap?

Challenge: Support decrease-key in (amortized) time $\mathrm{O}(1)$.

Challenge: Support decrease-key in (amortized) time $O(1)$.

Challenge: Support decrease-key in (amortized) time $\mathrm{O}(1)$.

Challenge: Support decrease-key in (amortized) time $\mathrm{O}(1)$.

Challenge: Support decrease-key in (amortized) time $O(1)$.

Challenge: Support decrease-key in (amortized) time $\mathrm{O}(1)$.

Challenge: Support decrease-key in (amortized) time $\mathrm{O}(1)$.

Problem: What do we do in an extract-min?

Problem: What do we do in an extract-min?

Problem: What do we do in an extract-min?

What We Used to Do
Problem: What do we do in an extract-min?

3	5	2	1	5
	- 1	1	1	1
	76	8	2	6
	- 1		1	
	910		4	

Order 2	Order 1	Order 0		
	5	3	9	10
	11	12		
	6	4		
8				

What We Used to Do

Problem: What do we do in an extract-min?

Order 2	Order 1	Order 0		
	5	3	9	10
	11	12		
	6	4		
8				

What We Used to Do

Problem: What do we do in an extract-min?

What We Used to Do
Problem: What do we do in an extract-min?

Order 2	Order 1		Order O	
	5	3	11	9
	10	1	1	
1	6	12		
8				

What We Used to Do
Problem: What do we do in an extract-min?

Order 2	Order 1		Order O
	5	3	11
	1	9	10
	1	1	
8			

What We Used to Do
Problem: What do we do in an extract-min?

Order 2	Order 1		Order O	
	5	3	11	9
	10	1	1	
1	6	12		
8				

What We Used to Do
Problem: What do we do in an extract-min?

Order 2	Order 1		Order O
	5	3	11
	1	9	
1	6	4	12
			10

What We Used to Do
Problem: What do we do in an extract-min?

Order 2	Order 1		Order 0
	5	3	9
	11		
1	6	4	10
1	12		

What We Used to Do

Problem: What do we do in an extract-min?

Order 2	Order 1	Order 0	
	5	3	9
	11		
1	6	4	10
1	12		

What We Used to Do

Problem: What do we do in an extract-min?

Order 2	Order 1		Order 0
	5	3	9
	11		
1	6	4	10
1	12		
8			

What We Used to Do
Problem: What do we do in an extract-min?

Order 2	Order 1		Order O
	5	3	11
	6	9	4
1	12		
8	10		

What We Used to Do
Problem: What do we do in an extract-min?

What We Used to Do
Problem: What do we do in an extract-min?

What We Used to Do
Problem: What do we do in an extract-min?

Problem: What do we do in an extract-min?

Order 2	Order 1	Order 0
3	11	
41	1	
$5 \quad 9 \quad 4$	12	
111		
7610		
1		
8		

Problem: What do we do in an extract-min?

11 This system assumes we can
That's easy with binomial trees.
That's harder with our new trees.
What should we do here?

What We Used to Do
Problem: What do we do in an extract-min?

What We Used to Do
Problem: What do we do in an extract-min?

Order 2	Order 0	Order 1	Order O
Order O	Order 0		
7	6	3	10

What We Used to Do
Problem: What do we do in an extract-min?

What We Used to Do
Problem: What do we do in an extract-min?

Order 2	Order 0	Order 1	Order O
Order 0	Order O		
7	6	10	Idea $1:$ A tree has order k if it has 2^{k} nodes.
Idea 2: A tree has order k			
if its root has k children.			

What We Used to Do
Problem: What do we do in an extract-min?

Order 1 Order 0

7

Idea 1: A tree has order k if it has 2^{k} nodes.
Idea 2: A tree has order k if its root has k children.

Problem: What do we do in an extract-min?

Order 2	Order 1		Order 0
	5	2	1
	5	3	
	6	8	2
	10	6	

Problem: What do we do in an extract-min?

Problem: What do we do in an extract-min?

Order 2	Order 1		Order O
	5	2	1
	5	3	
	6	8	2
	10	1	7

Problem: What do we do in an extract-min?

Order 2	Order 1	Order 0
	$\begin{array}{llll} 2 & 1 & 5 & 3 \\ 1 & 1 & 1 & 1 \\ 8 & 2 & 6 & 7 \\ & 1 & & \\ 4 & & \end{array}$	

Problem: What do we do in an extract-min?

Problem: What do we do in an extract-min?

Order 2	Order 1
3 5	(2) 1
$11+1$	11
5776	(8) 2
$1>1$	1
$6 \quad 910$	4

Problem: What do we do in an extract-min?

Problem: What do we do in an extract-min?

Problem: What do we do in an extract-min?

Problem: What do we do in an extract-min?

Order 3	Order 2		
	$\begin{array}{ll} 1 \\ 2 & 2 \\ 8 & 1 \\ 8 & 1 \end{array}$	$\begin{aligned} & 3 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{array}{r} 5 \\ 9 \\ 9 \end{array}$

Problem: What do we do in an extract-min?

Order 3	Order 2		
	$\begin{array}{ll} 1 \\ 2 & 2 \\ 8 & 1 \\ 8 & 4 \end{array}$	$\begin{aligned} & 3 \\ & 5 \\ & 5 \\ & 6 \end{aligned}$	$\begin{array}{r} 5 \\ 9 \\ \hline 10 \end{array}$

Problem: What do we do in an extract-min?

Problem: What do we do in an extract-min?

(1) To do a decrease-key, cut the node from its parent. (2) Do extract-min as usual, using child count as order.

Question: How efficient is this?

(1) To do a decrease-key, cut the node from its parent.
(2) Do extract-min as usual, using child count as order.

Claim: Our trees can end up with very unusual shapes.

Intuition: extract-min is only fast if it compacts nodes into a few trees.

There are $\Theta\left(n^{1 / 2}\right)$ trees here.
Why?

Answer at
https://pollev.com/cs166spr23

Claim: Because tree shapes aren't well-constrained, we can force extract-min to take amortized time $\Omega\left(n^{1 / 2}\right)$.

Intuition: extract-min is only fast if it compacts nodes into a few trees.

There are $\Theta\left(n^{1 / 2}\right)$ trees here.
What happens if we repeatedly enqueue and extract-min a small value?

Claim: Because tree shapes aren't well-constrained, we can force extract-min to take amortized time $\Omega\left(n^{1 / 2}\right)$.

Intuition: extract-min is only fast if it compacts nodes into a few trees.

There are $\Theta\left(n^{1 / 2}\right)$ trees here.
What happens if we repeatedly enqueue and extract-min a small value?

Claim: Because tree shapes aren't well-constrained, we can force extract-min to take amortized time $\Omega\left(n^{1 / 2}\right)$.

Intuition: extract-min is only fast if it compacts nodes into a few trees.

There are $\Theta\left(n^{1 / 2}\right)$ trees here.
What happens if we repeatedly enqueue and extract-min a small value?

(Do a bunch of work to compact the trees, which doesn't accomplish anything.)

Claim: Because tree shapes aren't well-constrained, we can force extract-min to take amortized time $\Omega\left(n^{1 / 2}\right)$.

Intuition: extract-min is only fast if it compacts nodes into a few trees.

There are $\Theta\left(n^{1 / 2}\right)$ trees here.
What happens if we repeatedly enqueue and extract-min a small value?

Claim: Because tree shapes aren't well-constrained, we can force extract-min to take amortized time $\Omega\left(n^{1 / 2}\right)$.

Intuition: extract-min is only fast if it compacts nodes into a few trees.

There are $\Theta\left(n^{1 / 2}\right)$ trees here.
What happens if we repeatedly enqueue and extract-min a small value?

Claim: Because tree shapes aren't well-constrained, we can force extract-min to take amortized time $\Omega\left(n^{1 / 2}\right)$.

Intuition: extract-min is only fast if it compacts nodes into a few trees.

There are $\Theta\left(n^{1 / 2}\right)$ trees here.
What happens if we repeatedly enqueue and extract-min a small value?

(Do a bunch of work to compact the trees, which doesn't accomplish anything.)

Claim: Because tree shapes aren't well-constrained, we can force extract-min to take amortized time $\Omega\left(n^{1 / 2}\right)$.

Intuition: extract-min

 is only fast if it compacts nodes into a few trees.There are $\Theta\left(n^{1 / 2}\right)$ trees here.
What happens if we repeatedly enqueue and extract-min a small value?

Each operation does
$\Theta\left(n^{1 / 2}\right)$ work, and doesn't make any future operations any better.

Claim: Because tree shapes aren't well-constrained, we can force extract-min to take amortized time $\Omega\left(n^{1 / 2}\right)$.

With n nodes, it's possible to have $\Omega\left(n^{1 / 2}\right)$ trees of distinct orders.

Question: Why didn't this happen before?

Question: Why didn't this happen before?

Intuition: Allow trees to get somewhat imbalanced, slowly propagating information to the root.

Rule: Nodes can lose at most one child. If a node loses two children, cut it from its parent.

Goal: Make tree sizes grow exponentially with order, but still allow for subtrees to be cut out quickly.

Intuition: Allow trees to get somewhat imbalanced, slowly propagating information to the root.

Rule: Nodes can lose at most one child. If a node loses two children, cut it from its parent.

Goal: Make tree sizes grow exponentially with order, but still allow for subtrees to be cut out quickly.

Intuition: Allow trees to get somewhat imbalanced, slowly propagating information to the root.

Rule: Nodes can lose at most one child. If a node loses two children, cut it from its parent.

Goal: Make tree sizes grow exponentially with order, but still allow for subtrees to be cut out quickly.

Intuition: Allow trees to get somewhat imbalanced, slowly propagating information to the root.

Rule: Nodes can lose at most one child. If a node loses two children, cut it from its parent.

Goal: Make tree sizes grow exponentially with order, but still allow for subtrees to be cut out quickly.

Intuition: Allow trees to get somewhat imbalanced, slowly propagating information to the root.

Rule: Nodes can lose at most one child. If a node loses two children, cut it from its parent.

This node is marked to indicate that it has lost a child.

Goal: Make tree sizes grow exponentially with order, but still allow for subtrees to be cut out quickly.

Intuition: Allow trees to get somewhat imbalanced, slowly propagating information to the root.

Rule: Nodes can lose at most one child. If a node loses two children, cut it from its parent.

Goal: Make tree sizes grow exponentially with order, but still allow for subtrees to be cut out quickly.

Intuition: Allow trees to get somewhat imbalanced, slowly propagating information to the root.

Rule: Nodes can lose at most one child. If a node loses two children, cut it from its parent.

Goal: Make tree sizes grow exponentially with order, but still allow for subtrees to be cut out quickly.

Intuition: Allow trees to get somewhat imbalanced, slowly propagating information to the root.

Rule: Nodes can lose at most one child. If a node loses two children, cut it from its parent.

Goal: Make tree sizes grow exponentially with order, but still allow for subtrees to be cut out quickly.

Intuition: Allow trees to get somewhat imbalanced, slowly propagating information to the root.

Rule: Nodes can lose at most one child. If a node loses two children, cut it from its parent.

Goal: Make tree sizes grow exponentially with order, but still allow for subtrees to be cut out quickly.

Intuition: Allow trees to get somewhat imbalanced, slowly propagating information to the root.

Rule: Nodes can lose at most one child. If a node loses two children, cut it from its parent.

Goal: Make tree sizes grow exponentially with order, but still allow for subtrees to be cut out quickly.

Intuition: Allow trees to get somewhat imbalanced, slowly propagating information to the root.

Rule: Nodes can lose at most one child. If a node loses two children, cut it from its parent.

Goal: Make tree sizes grow exponentially with order, but still allow for subtrees to be cut out quickly.

Intuition: Allow trees to get somewhat imbalanced, slowly propagating information to the root.

Rule: Nodes can lose at most one child. If a node loses two children, cut it from its parent.

Goal: Make tree sizes grow exponentially with order, but still allow for subtrees to be cut out quickly.

Intuition: Allow trees to get somewhat imbalanced, slowly propagating information to the root.

Rule: Nodes can lose at most one child. If a node loses two children, cut it from its parent.

Goal: Make tree sizes grow exponentially with order, but still allow for subtrees to be cut out quickly.

Intuition: Allow trees to get somewhat imbalanced, slowly propagating information to the root.

Rule: Nodes can lose at most one child. If a node loses two children, cut it from its parent.

Goal: Make tree sizes grow exponentially with order, but still allow for subtrees to be cut out quickly.

Intuition: Allow trees to get somewhat imbalanced, slowly propagating information to the root.

Rule: Nodes can lose at most one child. If a node loses two children, cut it from its parent.

Goal: Make tree sizes grow exponentially with order, but still allow for subtrees to be cut out quickly.

Intuition: Allow trees to get somewhat imbalanced, slowly propagating information to the root.

Rule: Nodes can lose at most one child. If a node loses two children, cut it from its parent.

Goal: Make tree sizes grow exponentially with order, but still allow for subtrees to be cut out quickly.

Intuition: Allow trees to get somewhat imbalanced, slowly propagating information to the root.

Rule: Nodes can lose at most one child. If a node loses two children, cut it from its parent.

Goal: Make tree sizes grow exponentially with order, but still allow for subtrees to be cut out quickly.

Intuition: Allow trees to get somewhat imbalanced, slowly propagating information to the root.

Rule: Nodes can lose at most one child. If a node loses two children, cut it from its parent.

Goal: Make tree sizes grow exponentially with order, but still allow for subtrees to be cut out quickly.

Intuition: Allow trees to get somewhat imbalanced, slowly propagating information to the root.

Rule: Nodes can lose at most one child. If a node loses two children, cut it from its parent.

Goal: Make tree sizes grow exponentially with order, but still allow for subtrees to be cut out quickly.

Intuition: Allow trees to get somewhat imbalanced, slowly propagating information to the root.

Rule: Nodes can lose at most one child. If a node loses two children, cut it from its parent.

Goal: Make tree sizes grow exponentially with order, but still allow for subtrees to be cut out quickly.

Intuition: Allow trees to get somewhat imbalanced, slowly propagating information to the root.

Rule: Nodes can lose at most one child. If a node loses two children, cut it from its parent.

Goal: Make tree sizes grow exponentially with order, but still allow for subtrees to be cut out quickly.

Intuition: Allow trees to get somewhat imbalanced, slowly propagating information to the root.

Rule: Nodes can lose at most one child. If a node loses two children, cut it from its parent.

Goal: Make tree sizes grow exponentially with order, but still allow for subtrees to be cut out quickly.

Intuition: Allow trees to get somewhat imbalanced, slowly propagating information to the root.

Rule: Nodes can lose at most one child. If a node loses two children, cut it from its parent.

Goal: Make tree sizes grow exponentially with order, but still allow for subtrees to be cut out quickly.

Intuition: Allow trees to get somewhat imbalanced, slowly propagating information to the root.

Rule: Nodes can lose at most one child. If a node loses two children, cut it from its parent.

Goal: Make tree sizes grow exponentially with order, but still allow for subtrees to be cut out quickly.

Intuition: Allow trees to get somewhat imbalanced, slowly propagating information to the root.

Rule: Nodes can lose at most one child. If a node loses two children, cut it from its parent.

Question: Does this guarantee exponential tree size?

Maximally-Damaged Trees

- Here's a binomial tree of order 4. That is, the root has four children.
- Question: Using our marking scheme, how many nodes can we remove without changing the order of the tree?
- Equivalently: how many nodes can we remove without removing any direct children of the root?

Maximally-Damaged Trees

Maximally-Damaged Trees

Maximally-Damaged Trees

Maximally-Damaged Trees

We can't cut any nodes from this tree without making the root node have order 0 .

Maximally-Damaged Trees

Maximally-Damaged Trees

We can't cut any of the root's children without decreasing its order.

Maximally-Damaged Trees

Maximally-Damaged Trees

(1) 2
 $\begin{array}{llll}1 & 1 & 1 \\ 1 & 0 & 0\end{array}$

Maximally-Damaged Trees

Maximally-Damaged Trees

As before, we can't cut any of the root's children without decreasing its order.

Maximally-Damaged Trees

Claim: The minimum number of nodes in a tree of order k is $\boldsymbol{F}_{\boldsymbol{k}+\mathbf{2}}$

These trees are the base cases for our inductive line of reasoning.

Theorem: The minimum number of nodes in a tree of order k is $\boldsymbol{F}_{\boldsymbol{k}+\boldsymbol{2}}$.

> A binomial tree of order $k+2$.

What's the maximum amount of damage we can do to this tree without cutting any of the direct children of the root?

Theorem: The minimum number of nodes in a tree of order k is $\boldsymbol{F}_{\boldsymbol{k}+\boldsymbol{2}}$.

A binomial tree of order $k+2$.

Theorem: The minimum number of nodes in a tree of order k is $\boldsymbol{F}_{\boldsymbol{k}+\mathbf{2}}$.

A binomial tree of order $k+1$.

Theorem: The minimum number of nodes in a tree of order k is $\boldsymbol{F}_{\boldsymbol{k}+\boldsymbol{2}}$.

A binomial tree of order $k+1$.

Remove as many nodes here as possible without cutting any direct children of the root.

Theorem: The minimum number of nodes in a tree of order k is $\boldsymbol{F}_{\boldsymbol{k}+\mathbf{2}}$.

A (former)
binomial tree of order $k+1$.

Remove as many nodes here as possible without cutting any direct children of the root.

Theorem: The minimum number of nodes in a tree of order k is $\boldsymbol{F}_{\boldsymbol{k}+\mathbf{2}}$.

$$
\begin{aligned}
& \text { A (former) } \\
& \text { binomial tree of } \\
& \text { order } k+1 \text {. } \\
& \hline \text { Remove as many nodes } \\
& \text { here as possible without } \\
& \text { cutting any direct } \\
& \text { children of the root. } \\
& \hline
\end{aligned}
$$

Theorem: The minimum number of nodes in a tree of order k is $\boldsymbol{F}_{\boldsymbol{k}+\mathbf{2}}$.

A (former)
binomial tree of
order $k+1$.

A maximallydamaged tree of order $k+1$.

Theorem: The minimum number of nodes in a tree of order k is $\boldsymbol{F}_{\boldsymbol{k}+\mathbf{2}}$.

A binomial tree of order $k+1$.

> Cut as many nodes as possible without cutting more than two children from the root.

Theorem: The minimum number of nodes in a tree of order k is $\boldsymbol{F}_{\boldsymbol{k}+\boldsymbol{2}}$.

Theorem: The minimum number of nodes in a tree of order k is $\boldsymbol{F}_{\boldsymbol{k}+2}$.

A binomial tree of order k.

> Cut as many nodes as possible without cutting more than two children from the root.

Theorem: The minimum number of nodes in a tree of order k is $\boldsymbol{F}_{\boldsymbol{k}+\boldsymbol{2}}$.

A binomial tree of order k.

Cut away as many nodes as possible without cutting any children of the root.

Theorem: The minimum number of nodes in a tree of order k is $\boldsymbol{F}_{\boldsymbol{k}+\boldsymbol{2}}$.

> Cut away as many nodes as possible without cutting any children of the root.

Theorem: The minimum number of nodes in a tree of order k is $\boldsymbol{F}_{\boldsymbol{k}+\boldsymbol{2}}$.

Cut away as many nodes as possible without cutting any children of the root.

Theorem: The minimum number of nodes in a tree of order k is $\boldsymbol{F}_{\boldsymbol{k}+\boldsymbol{2}}$.

Theorem: The minimum number of nodes in a tree of order k is $\boldsymbol{F}_{\boldsymbol{k}+\boldsymbol{2}}$.

Theorem: The minimum number of nodes in a tree of order k is $\boldsymbol{F}_{\boldsymbol{k}+\boldsymbol{2}}$.

$$
\text { Fact: } \begin{aligned}
F_{k} & =\Theta\left(\varphi^{k}\right), \text { where } \\
\varphi & =\frac{1+\sqrt{5}}{2}
\end{aligned}
$$

is the golden ratio.
Corollary: The number of nodes in a tree of order k grows exponentially with k (approximately 1.61^{k} versus our previous 2^{k}).

Theorem: The minimum number of nodes in a tree of order k is $\boldsymbol{F}_{\boldsymbol{k}+\boldsymbol{2}}$.

A Fibonacci heap is a lazy binomial heap with decrease-key implemented using the "lose at most one child" marking scheme.

How fast are the operations on Fibonacci heaps?

$\Phi=t$

where
t is the number of trees.

$$
\begin{aligned}
& \text { Actual cost: } \mathrm{O}(1) \\
& \Delta \Phi:+1
\end{aligned}
$$

Amortized cost: O(1).

Each enqueue slowly introduces trees. Each extract-min rapidly cleans them up.

$\Phi=t$

where
t is the number of trees.

Each enqueue slowly introduces trees. Each extract-min rapidly cleans them up.

$\Phi=t$

where
t is the number of trees.

Each enqueue slowly introduces trees. Each extract-min rapidly cleans them up.

$\Phi=t$

where
t is the number of trees.

Each enqueue slowly introduces trees. Each extract-min rapidly cleans them up.

$\Phi=t$

where
t is the number of trees.

Each enqueue slowly introduces trees. Each extract-min rapidly cleans them up.

$\Phi=t$

where
t is the number of trees.

Each enqueue slowly introduces trees. Each extract-min rapidly cleans them up.

$\Phi=t$

where
t is the number of trees.

Each enqueue slowly introduces trees. Each extract-min rapidly cleans them up.

$\Phi=t$

where
t is the number of trees.

Each enqueue slowly introduces trees. Each extract-min rapidly cleans them up.

$\Phi=t$

where
t is the number of trees.

Each enqueue slowly introduces trees. Each extract-min rapidly cleans them up.

$\Phi=t$

where
t is the number of trees.

Each enqueue slowly introduces trees. Each extract-min rapidly cleans them up.

$\Phi=t$

where
t is the number of trees.

Each enqueue slowly introduces trees. Each extract-min rapidly cleans them up.

$\Phi=t$

where
t is the number of trees.

Each enqueue slowly introduces trees. Each extract-min rapidly cleans them up.

$\Phi=t$

where
t is the number of trees.

Each enqueue slowly introduces trees. Each extract-min rapidly cleans them up.

$\Phi=t$

where
t is the number of trees.

Each enqueue slowly introduces trees. Each extract-min rapidly cleans them up.

$\Phi=t$

where
t is the number of trees.

Each enqueue slowly introduces trees. Each extract-min rapidly cleans them up.

$\Phi=t$

where
t is the number of trees.

Each enqueue slowly introduces trees. Each extract-min rapidly cleans them up.

$\Phi=t$

where
t is the number of trees.

Each enqueue slowly introduces trees. Each extract-min rapidly cleans them up.

$\Phi=t$

where
t is the number of trees.

Each enqueue slowly introduces trees. Each extract-min rapidly cleans them up.

$\Phi=t$

where
t is the number of trees.

Each enqueue slowly introduces trees. Each extract-min rapidly cleans them up.

$\Phi=t$

where
t is the number of trees.

Each enqueue slowly introduces trees. Each extract-min rapidly cleans them up.

$\Phi=t$

where
t is the number of trees.

Each enqueue slowly introduces trees. Each extract-min rapidly cleans them up.

$\Phi=t$

where
t is the number of trees.

Each enqueue slowly introduces trees. Each extract-min rapidly cleans them up.

$\Phi=t$

where
t is the number of trees.

Each enqueue slowly introduces trees.
Each extract-min rapidly cleans them up.

$\Phi=t$

where
t is the number of trees.

Each decrease-key may trigger a chain of cuts. Those chains happen due to previous decrease-keys.

$\Phi=t$

where
t is the number of trees.

Each decrease-key may trigger a chain of cuts. Those chains happen due to previous decrease-keys.

$\Phi=t$

where
t is the number of trees.

Each decrease-key may trigger a chain of cuts. Those chains happen due to previous decrease-keys.

$\Phi=t$

where
t is the number of trees.

Each decrease-key may trigger a chain of cuts. Those chains happen due to previous decrease-keys.

$\Phi=t$

where
t is the number of trees.

Each decrease-key may trigger a chain of cuts. Those chains happen due to previous decrease-keys.

$\Phi=t$

where
t is the number of trees.

Each decrease-key may trigger a chain of cuts. Those chains happen due to previous decrease-keys.

$\Phi=t$

where
t is the number of trees.

Each decrease-key may trigger a chain of cuts. Those chains happen due to previous decrease-keys.

$\Phi=t$

where
t is the number of trees.

Each decrease-key may trigger a chain of cuts. Those chains happen due to previous decrease-keys.

$\Phi=t$

 wheret is the number of trees.

Each decrease-key may trigger a chain of cuts. Those chains happen due to previous decrease-keys.

$\Phi=t$

 wheret is the number of trees.

Each decrease-key may trigger a chain of cuts. Those chains happen due to previous decrease-keys.

$\Phi=t$

 wheret is the number of trees.

Each decrease-key may trigger a chain of cuts. Those chains happen due to previous decrease-keys.

$\Phi=t$

where
t is the number of trees.

Each decrease-key may trigger a chain of cuts. Those chains happen due to previous decrease-keys.

$\Phi=t$

where
t is the number of trees.

Each decrease-key may trigger a chain of cuts. Those chains happen due to previous decrease-keys.

$\Phi=t$

 wheret is the number of trees.

Each decrease-key may trigger a chain of cuts. Those chains happen due to previous decrease-keys.

$\Phi=t$

 wheret is the number of trees.

Each decrease-key may trigger a chain of cuts. Those chains happen due to previous decrease-keys.

$\Phi=t$

where
t is the number of trees.

Each decrease-key may trigger a chain of cuts. Those chains happen due to previous decrease-keys.

$\Phi=t$

where
t is the number of trees.

Each decrease-key may trigger a chain of cuts. Those chains happen due to previous decrease-keys.

$\Phi=t$

where
t is the number of trees.

Each decrease-key may trigger a chain of cuts. Those chains happen due to previous decrease-keys.
$\Phi=t$
where
t is the number of trees.

Idea: Factor the number of marked nodes into our potential to offset the cost of cascading cuts.

$$
\Phi=t+m
$$

where
t is the number of trees and m is the number of marked nodes.

Idea: Factor the number of marked nodes into our potential to offset the cost of cascading cuts.

$$
\Phi=t+m
$$

where
t is the number of trees and m is the number of marked nodes.

Idea: Factor the number of marked nodes into our potential to offset the cost of cascading cuts.

$$
\Phi=t+m
$$

where
t is the number of trees and m is the number of marked nodes.

Idea: Factor the number of marked nodes into our potential to offset the cost of cascading cuts.

$$
\Phi=t+m
$$

where
t is the number of trees and m is the number of marked nodes.

Idea: Factor the number of marked nodes into our potential to offset the cost of cascading cuts.

$\Phi=t+m$

where
t is the number of trees and m is the number of marked nodes.

Idea: Factor the number of marked nodes into our potential to offset the cost of cascading cuts.

$$
\Phi=t+m
$$

where
t is the number of trees and m is the number of marked nodes.

Idea: Factor the number of marked nodes into our potential to offset the cost of cascading cuts.

$$
\Phi=t+m
$$

where
t is the number of trees and m is the number of marked nodes.

Idea: Factor the number of marked nodes into our potential to offset the cost of cascading cuts.

$$
\Phi=t+m
$$

where
t is the number of trees and m is the number of marked nodes.

Idea: Factor the number of marked nodes into our potential to offset the cost of cascading cuts.

$$
\Phi=t+m
$$

where
t is the number of trees and m is the number of marked nodes.

Idea: Factor the number of marked nodes into our potential to offset the cost of cascading cuts.

$$
\Phi=t+m
$$

where
t is the number of trees and m is the number of marked nodes.

Idea: Factor the number of marked nodes into our potential to offset the cost of cascading cuts.

$$
\Phi=t+m
$$

where
t is the number of trees and m is the number of marked nodes.

Idea: Factor the number of marked nodes into our potential to offset the cost of cascading cuts.

$$
\Phi=t+m
$$

where
t is the number of trees and m is the number of marked nodes.

Idea: Factor the number of marked nodes into our potential to offset the cost of cascading cuts.

$$
\Phi=t+m
$$

where
t is the number of trees and m is the number of marked nodes.

Idea: Factor the number of marked nodes into our potential to offset the cost of cascading cuts.

$$
\Phi=t+m
$$

where
t is the number of trees and m is the number of marked nodes.

Idea: Factor the number of marked nodes into our potential to offset the cost of cascading cuts.

$$
\Phi=t+m
$$

where
t is the number of trees and m is the number of marked nodes.

Idea: Factor the number of marked nodes into our potential to offset the cost of cascading cuts.

$$
\Phi=t+m
$$

where
t is the number of trees and m is the number of marked nodes.

Idea: Factor the number of marked nodes into our potential to offset the cost of cascading cuts.

$$
\Phi=t+m
$$

where
t is the number of trees and m is the number of marked nodes.

Idea: Factor the number of marked nodes into our potential to offset the cost of cascading cuts.

$\Phi=t+m$

where
t is the number of trees and m is the number of marked nodes.

Actual cost: $\mathrm{O}(C)$ $\Delta \Phi:+1$

Amortized cost: $\mathbf{O}(C)$.

Idea: Factor the number of marked nodes into our potential to offset the cost of cascading cuts.

$\Phi=t+m$

where
t is the number of trees and m is the number of marked nodes.

Idea 2: Each decrease-key hurts twice: once in a cascading cut, and once in an extract-min.

$\Phi=t+2 m$

where

t is the number of trees and m is the number of marked nodes.

Idea 2: Each decrease-key hurts twice: once in a cascading cut, and once in an extract-min.

$\Phi=t+2 m$

where

t is the number of trees and m is the number of marked nodes.

Idea 2: Each decrease-key hurts twice: once in a cascading cut, and once in an extract-min.

$\Phi=t+2 m$

where

t is the number of trees and m is the number of marked nodes.

Idea 2: Each decrease-key hurts twice: once in a cascading cut, and once in an extract-min.

$\Phi=t+2 m$

 wheret is the number of trees and m is the number of marked nodes.

Idea 2: Each decrease-key hurts twice: once in a cascading cut, and once in an extract-min.

$\Phi=t+2 m$

where
t is the number of trees and m is the number of marked nodes.

Idea 2: Each decrease-key hurts twice: once in a cascading cut, and once in an extract-min.

$\Phi=t+2 m$

where

t is the number of trees and m is the number of marked nodes.

Idea 2: Each decrease-key hurts twice: once in a cascading cut, and once in an extract-min.

$\Phi=t+2 m$

where

t is the number of trees and m is the number of marked nodes.

Idea 2: Each decrease-key hurts twice: once in a cascading cut, and once in an extract-min.

$\Phi=t+2 m$

where
t is the number of trees and m is the number of marked nodes.

Idea 2: Each decrease-key hurts twice: once in a cascading cut, and once in an extract-min.

$\Phi=t+2 m$

where
t is the number of trees and m is the number of marked nodes.

Idea 2: Each decrease-key hurts twice: once in a cascading cut, and once in an extract-min.

$\Phi=t+2 m$

where

t is the number of trees and m is the number of marked nodes.

Idea 2: Each decrease-key hurts twice: once in a cascading cut, and once in an extract-min.

$\Phi=t+2 m$

where

t is the number of trees and m is the number of marked nodes.

Idea 2: Each decrease-key hurts twice: once in a cascading cut, and once in an extract-min.

$\Phi=t+2 m$

where

t is the number of trees and m is the number of marked nodes.

Idea 2: Each decrease-key hurts twice: once in a cascading cut, and once in an extract-min.

$\Phi=t+2 m$

where

t is the number of trees and m is the number of marked nodes.

Idea 2: Each decrease-key hurts twice: once in a cascading cut, and once in an extract-min.

$\Phi=t+2 m$

where

t is the number of trees and m is the number of marked nodes.

Idea 2: Each decrease-key hurts twice: once in a cascading cut, and once in an extract-min.

$\Phi=t+2 m$

 wheret is the number of trees and m is the number of marked nodes.

Idea 2: Each decrease-key hurts twice: once in a cascading cut, and once in an extract-min.

$\Phi=t+2 m$

 wheret is the number of trees and m is the number of marked nodes.

Idea 2: Each decrease-key hurts twice: once in a cascading cut, and once in an extract-min.

$\Phi=t+2 m$

where

t is the number of trees and m is the number of marked nodes.

Idea 2: Each decrease-key hurts twice: once in a cascading cut, and once in an extract-min.

$\Phi=t+2 m$

where

t is the number of trees and m is the number of marked nodes.

Idea 2: Each decrease-key hurts twice: once in a cascading cut, and once in an extract-min.

The Overall Analysis

- Here's the final scorecard for the Fibonacci heap.
- These are excellent theoretical runtimes. There's minimal room for improvement!
- Later work made all these operations worst-case efficient at a significant increase in both runtime and intellectual complexity.

$$
\begin{aligned}
& \text { enqueue: } \mathrm{O}(1) \\
& \text { find-min: } \mathrm{O}(1) \\
& \text { meld: } \mathrm{O}(1) \\
& \text { extract-min: } \mathrm{O}(\log n)^{*} \\
& \text { decrease-key: } \mathrm{O}(1)^{*}
\end{aligned}
$$

Representation Issues

Representing Trees

- The trees in a Fibonacci heap must be able to do the following:
- During a merge: Add one tree as a child of the root of another tree.
- During a cut: Cut a node from its parent in time O(1).
- Claim: This is trickier than it looks.

Representing Trees

Finding this pointer might take time $\Theta(\log n)$!

The Solution

The Solution

This is going to be weird. Sorry.

The Solution

The Solution

The children of each node are in a circularly, doubly-linked list.

The Solution

The Solution

The Solution

The Solution

To cut a node from its parent, if it isn't the representative child, just splice it out of its linked list.

The Solution

If it is the representative, change the parent's representative child to be one of the node's siblings.

Awful Linked Lists

- Trees are stored as follows:
- Each node stores a pointer to some child.
- Each node stores a pointer to its parent.
- Each node is in a circularly-linked list of its siblings.
- The following possible are now possible in time $\mathrm{O}(1)$:
- Cut a node from its parent.
- Add another child node to a node.

Fibonacci Heap Nodes

- Each node in a Fibonacci heap stores
- A pointer to its parent.
- A pointer to the next sibling.
- A pointer to the previous sibling.
- A pointer to an arbitrary child.
- A bit for whether it's marked.
- Its order.
- Its key.
- Its element.

In Practice

- In practice, the constant factors on Fibonacci heaps make it slower than other heaps, except on huge graphs or workflows with tons of decrease-keys.
- Why?
- Huge memory requirements per node.
- High constant factors on all operations.
- Poor locality of reference and caching.

In Theory

- That said, Fibonacci heaps are worth knowing about for several reasons:
- Clever use of a two-tiered potential function shows up in lots of data structures.
- Implementation of decrease-key forms the basis for many other advanced priority queues.
- Gives the theoretically optimal comparisonbased implementation of Prim's and Dijkstra's algorithms.

More to Explore

- Since the development of Fibonacci heaps, there have been a number of other priority queues with similar runtimes.
- In 1986, a powerhouse team (Fredman, Sedgewick, Sleator, and Tarjan) invented the pairing heap. It's much simpler than a Fibonacci heap, is fast in practice, but its runtime bounds are unknown!
- In 2012, Brodal et al. invented the strict Fibonacci heap. It has the same time bounds as a Fibonacci heap, but in a worst-case rather than amortized sense.
- In 2013, Chan invented the quake heap. It matches the asymptotic bounds of a Fibonacci heap but uses a totally different strategy.
- Also interesting to explore: if the weights on the edges in a graph are chosen from a continuous distribution, the expected number of decrease-keys in Dijkstra's algorithm is $\mathrm{O}(n \log (m / n))$. That might counsel another heap structure!
- Also interesting to explore: binary heaps generalize to b-ary heaps, where each node has b children. Picking $b=\log (2+m / n)$ makes Dijkstra and Prim run in time $\mathrm{O}(m \log n / \log m / n)$, which is $\mathrm{O}(m)$ if $m=\Theta\left(n^{1+\varepsilon}\right)$ for any $\varepsilon>0$.

Next Time

- Randomized Data Structures
- Doing well on average, broadly speaking.
- Frequency Estimation
- Counting in sublinear space.
- Count-Min Sketches
- A simple, elegant, fast, and widely-used data structure.

