## Balanced Trees <br> Part Two

## Outline for Today

- Red/Black Trees
- Using our isometry!
- Tree Rotations
- A key primitive in restructuring trees.
- Augmented Binary Search Trees
- Leveraging red/black trees.


## Recap from Last Time

## 2-3-4 Trees

- A 2-3-4 tree is a multiway search tree where
- every node has 1,2 , or 3 keys,
- any non-leaf node with $k$ keys has exactly $k+1$ children, and
- all leaves are at the same depth.
- To insert a key, place it in a leaf. If out of space, split the leaf and kick the median key one level higher, repeating this process.



## Red/Black Trees

- A red/black tree is a BST with the following properties:
- Every node is either red or black.
- The root is black.
- No red node has a red child.
- Every root-null path in the tree passes through the same number of black nodes.



## Red/Black Trees

- A red/black tree is a BST with the following properties:
- Every node is either red or black.
- The root is black.
- No red node has a red child.
- Every root-null path in the tree passes through the same number of black nodes.
- After we hoist red nodes into
 their parents:
- Each "meta node" has 1, 2, or 3 keys in it. (No red node has a red child.)
- Each "meta node" is either a leaf or has one more child than key. (Rootnull path property.)
- Each "meta leaf" is at the same depth. (Root-null path property.)


## New Stuff!

## Data Structure Isometries

- Red/black trees are an isometry of 2-3-4 trees; they represent the structure of 2-3-4 trees in a different way.
- That gives us some really easy theorems basically for free.
- Theorem: The maximum height of a red/black tree with $n$ nodes is $\mathrm{O}(\log n)$.


## Data Structure Isometries

- Red/black trees are an isometry of 2-3-4 trees; they represent the structure of 2-3-4 trees in a different way.
- That gives us some really easy theorems basically for free.
- Theorem: The maximum height of a red/black tree with $n$ nodes is $\mathrm{O}(\log n)$.

Explain why, using the isometry.
Formulate a hypothesis!

## Data Structure Isometries

- Red/black trees are an isometry of 2-3-4 trees; they represent the structure of 2-3-4 trees in a different way.
- That gives us some really easy theorems basically for free.
- Theorem: The maximum height of a red/black tree with $n$ nodes is $\mathrm{O}(\log n)$.
- Proof idea: Pulling red nodes into their parents forms a 2-3-4 tree with $n$ keys, which has height $\mathrm{O}(\log n)$. Undoing this at most doubles the height of the tree. $\quad$-ish


## Exploring the Isometry

- Nodes in a 2-3-4 tree are classified into types based on the number of children they can have.
- 2-nodes have one key (two children).
- 3-nodes have two keys (three children).
- 4-nodes have three keys (four children).
- How might these nodes be represented?


## Exploring the Isometry







## Red/Black Tree Insertion

- Rule \#1: When inserting a node, if its parent is black, make the node red and stop.
- Justification: This simulates inserting a key into an existing 2-node or 3-node.




We need to move nodes around in a binary search tree. How do we do this?

Goal

## Tree Rotations



## Tree Rotations







## Building Up Rules

- The complex rules on red/black trees make perfect sense if you connect it back to 2-3-4 trees.
- There are lots of cases to consider because there are many different ways you can insert into a red/black tree.
- Main point: Simulating the insertion of a key into a node takes time $O(1)$ in all cases. Therefore, since 2-3-4 trees support $O(\log n)$ insertions, red/black trees support $\mathrm{O}(\log n)$ insertions.
- The same is true of deletions.


## My Advice

- Do know how to do B-tree insertions and searches.
- You can derive these easily if you remember to split nodes.
- Do remember the rules for red/black trees and B-trees.
- These are useful for proving bounds and deriving results.
- Do remember the isometry between red/black trees and 2-3-4 trees.
- Gives immediate intuition for all the red/black tree operations.
- Don't memorize the red/black rotations and color flips.
- This is rarely useful. If you're coding up a red/black tree, just flip open CLRS and translate the pseudocode. ©


## Dynamic Problems

## Classical Algorithms

- The "classical" algorithms model goes something like this:


## Given some input $X$, compute some interesting function $f(X)$.

- The input $X$ is provided up front, and only a single answer is produced.



## Dynamic Problems

- Dynamic versions of problems are framed like this:

Given an input $X$ that can change in fixed ways, maintain $X$ while being able to compute $f(X)$ efficiently at any point in time.

- These problems are typically harder to solve efficiently than the "classical" static versions.


Input $X$ provided


## Dynamic Selection

- The selection problem is the following:


## Given a list of distinct values and a number $k$, return the kth-smallest value.

- In the static case, where the data set is fixed in advance and $k$ is known, we can solve this in time $\mathrm{O}(n)$ using quickselect or the median-of-medians algorithm.
- Goal: Solve this problem efficiently when the data set is changing - that is, the underlying set of elements can have insertions and deletions intermixed with queries.

| 31 | 41 | 59 | 26 | 53 | 58 | 79 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Dynamic Selection



219


131

## Dynamic Selection




##  <br> 013



023

## Dynamic Selection



We only update values on nodes that gained a new key in their left subtree. And there are only $\mathrm{O}(\log n)$ of these!

## Dynamic Selection



## Dynamic Selection



## Dynamic Selection



## Dynamic Selection




## Order Statistic Trees

- This modified red/black tree is called an order statistics tree.
- Start with a red/black tree.
- Tag each node with the number of nodes in its left subtree.
- Use the preceding update rules to preserve values during rotations.
- Propagate other changes up to the root of the tree.
- Only $O(\log n)$ values must be updated on an insertion or deletion and each can be updated in time $\mathrm{O}(1)$.
- Supports all BST operations plus select (find $k$ th order statistic) and rank (given a key, report its order statistic) in time $O(\log n)$.


## Generalizing our Idea



Imagine we cache some value in each node that can be computed just from (1) the node itself and (2) its children's values.

$$
\because \because \because
$$



Imagine we cache some value in each node that can be computed just from (1) the node itself and (2) its children's values.



Theorem: Suppose we want to cache some computed value in each node of a red/black tree. Provided that the value can be recomputed purely from the node's value and from it's children's values, and provided that each value can be computed in time $O(1)$, then these values can be cached in each node with insertions, lookups, and deletions still taking time $\mathrm{O}(\log n)$.

Example: Hierarchical Clustering

1D Hierarchical Clustering

## 1D Hierarchical Clustering

| 64.56 |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 20 | 42 | 44 | 60 | 66 | 71 | 86 | 92 | 100 |



## 1D Hierarchical Clustering



## Analyzing the Runtime

- How efficient is this algorithm?
- Number of rounds: $\Theta(n)$.
- Work to find closest pair: $\mathrm{O}(n)$.
- Total runtime: $\boldsymbol{\Theta}\left(\boldsymbol{n}^{2}\right)$.
- Can we do better?


## Analyzing the Runtime

## How efficient is this algorithm?

## Number of rounds: $\Theta(n)$.

- Work to find closest pair: $\mathrm{O}(n)$. Total runtime: $\Theta\left(n^{2}\right)$.
Can we do better?


## Dynamic 1D Closest Points

- The dynamic 1D closest points problem is the following:

Maintain a set of real numbers
undergoing insertion and deletion while efficiently supporting queries of the form "what is the closest pair of points?"

- Can we build a better data structure for this?


## Dynamic 1D Closest Points

## k

## A Tree Augmentation

- Augment each node to store the following:
- The maximum value in the tree.
- The minimum value in the tree.
- The closest pair of points in the tree.
- Claim: Each of these properties can be computed in time $\mathrm{O}(1)$ from the left and right subtrees.
- These properties can be augmented into a red/black tree so that insertions and deletions take time $O(\log n)$ and "what is the closest pair of points?" can be answered in time $\mathrm{O}(1)$.


## Dynamic 1D Closest Points



## Some Other Questions

- How would you augment this tree so that you can efficiently (in time $O(1)$ ) compute the appropriate weighted averages?
- Trickier: Is this the fastest possible algorithm for this problem?
- What if you're guaranteed that the keys are all integers in some nice range?

A Helpful Intuition

## Divide-and-Conquer

- Initially, it can be tricky to come up with the right tree augmentations.
- Useful intuition: Imagine you're writing a divide-and-conquer algorithm over the elements and have $O(1)$ time per "conquer" step.

$$
<k \quad k \quad>k
$$

## Divide-and-Conquer

- Initially, it can be tricky to come up with the right tree augmentations.
- Useful intuition: Imagine you're writing a divide-and-conquer algorithm over the elements and have $O(1)$ time per "conquer" step.


## k



## Next Time

- String Data Structures
- Storing and manipulating sequences.
- Tries and Patricia Trees
- Storing a collection of strings efficiently.
- Suffix Trees
- The Swiss Army Knife of strings.

