

Balanced Trees
Part Two

Outline for Today
● Red/Black Trees

● Using our isometry!
● Tree Rotations

● A key primitive in restructuring trees.
● Augmented Binary Search Trees

● Leveraging red/black trees.

Recap from Last Time

2-3-4 Trees

1 2 4 6 7 8 10 12 14 15 17 18 19 21 22 24 26

3 9 11 16 20 25

5 13 23

● A 2-3-4 tree is a multiway search tree where
● every node has 1, 2, or 3 keys,
● any non-leaf node with k keys has exactly k+1 children, and
● all leaves are at the same depth.

● To insert a key, place it in a leaf. If out of space, split the leaf and
kick the median key one level higher, repeating this process.

Red/Black Trees
● A red/black tree is a BST with

the following properties:
● Every node is either red or black.
● The root is black.
● No red node has a red child.
● Every root-null path in the tree

passes through the same number of
black nodes.

After we hoist red nodes into
their parents:

Each “meta node” has 1, 2, or 3
keys in it. (No red node has a red
child.)
Each “meta node” is either a leaf or
has one more key than node. (Root-
null path property.)
Each “meta leaf” is at the same
depth. (Root-null path property.)

7

3

5 11

1

2 4

6

8

9

10

12

Red/Black Trees
● A red/black tree is a BST with

the following properties:
● Every node is either red or black.
● The root is black.
● No red node has a red child.
● Every root-null path in the tree

passes through the same number of
black nodes.

● After we hoist red nodes into
their parents:
● Each “meta node” has 1, 2, or 3

keys in it. (No red node has a red
child.)

● Each “meta node” is either a leaf or
has one more child than key. (Root-
null path property.)

● Each “meta leaf” is at the same
depth. (Root-null path property.)

7

3 5 11

1 2 4 6 8 9 10 12

This is a
2-3-4 tree!

New Stuff!

Data Structure Isometries
● Red/black trees are an isometry of 2-3-4 trees;

they represent the structure of
2-3-4 trees in a different way.

● That gives us some really easy theorems
basically for free.

● Theorem: The maximum height of a red/black
tree with n nodes is O(log n).

● Proof idea: Pulling red nodes into their
parents forms a 2-3-4 tree with n keys, which
has height O(log n). Undoing this at most
doubles the height of the tree. ■-ish

Data Structure Isometries
● Red/black trees are an isometry of 2-3-4 trees;

they represent the structure of
2-3-4 trees in a different way.

● That gives us some really easy theorems
basically for free.

● Theorem: The maximum height of a red/black
tree with n nodes is O(log n).

● Proof idea: Pulling red nodes into their
parents forms a 2-3-4 tree with n keys, which
has height O(log n). Undoing this at most
doubles the height of the tree. ■-ish

Explain why, using the isometry.

Formulate a hypothesis!

Data Structure Isometries
● Red/black trees are an isometry of 2-3-4 trees;

they represent the structure of
2-3-4 trees in a different way.

● That gives us some really easy theorems
basically for free.

● Theorem: The maximum height of a red/black
tree with n nodes is O(log n).

● Proof idea: Pulling red nodes into their
parents forms a 2-3-4 tree with n keys, which
has height O(log n). Undoing this at most
doubles the height of the tree. ■-ish

Exploring the Isometry
● Nodes in a 2-3-4 tree are classified into

types based on the number of children
they can have.
● 2-nodes have one key (two children).
● 3-nodes have two keys (three children).
● 4-nodes have three keys (four children).

● How might these nodes be represented?

Exploring the Isometry

k₁

k₁ k₂

k₁ k₂ k₃

k₁

k₁

k₂ k₁

k₂

k₁ k₃

k₂

19

3 31

7 23

17

13

7 19

3 13 17 23 31

7 19

3 13 17 23 315

19

3 31

7 23

17

13

5

add
5

add
5

19

31

7 23

17

13

7 19

3 13 17 23 31

7 19

3 13 17 23 315

19

31

7 23

17

13

add
5

add
5

3

5

3

19

3 31

7 23

17

13

5

add
21

add
21

7 19

3 13 17 23 315

7 19

3 13 17 23 315 21

19

3 31

7 23

17

13

5

21

19

3

7

17

13

5

add
21

add
21

7 19

3 13 17 23 315

7 19

3 13 17 23 315 21

19

3

7

17

13

5

21

31

23

31

23

Red/Black Tree Insertion
● Rule #1: When inserting a node, if its

parent is black, make the node red and
stop.

● Justification: This simulates inserting a
key into an existing 2-node or 3-node.

19

31

7 23

17

13

add
4

add
4

7 19

3 13 17 23 315

7 19

3 13 17 23 315 214

19

31

7

17

13

23

214

53

21
21

3

5

19

31

7 23

17

13

add
4

add
4

7 19

3 13 17 23 315

7 19

3 13 17 23 315 21

19

31

7

17

13

23

21
4

4

53

21
21

3

5

19

31

7 23

17

13

19

31

7

17

13

23

214

53

213

5

4

Goal

We need to move nodes
around in a binary search
tree. How do we do this?

A B

>B<A >A
<B

A
B

<A

>A
B

A
B

<A >A
B

Tree Rotations

A B

>B<A >A
<B

Tree Rotations

A
B

<A

>A
B

A
B

<A >A
B

A
B

<A >A
B

A
B

<A

>A
B

A
B

<A >A
B
Rotate
Right

Rotate
Left

A
B

<A

>A
B

3

5

4

3 5

4

3

5

4

3 5

4

apply
rotation

change
colors

 apply
 rotation

This applies any time we're
inserting a new node into

the middle of a “3-node” in
this pattern.

By making observations like
these, we can determine

how to update a red/black
tree after an insertion.

7 19

3 17 23 315 21

19

31

7 23

15 214

53 1713
4 13 15

7 19

3 17 23 315 214 13

15

16

add
16

add
16

19

31

7 23

15 214

53 1713

16

7 19

3 17 23 315 21

19

31

7 23

214

53
4 13 15

7 19

3 17 23 315 214 13

15

16

add
16

19

31

7 23

214

53

15

1713

16

add
16

15

1713

Building Up Rules
● The complex rules on red/black trees make

perfect sense if you connect it back to 2-3-4 trees.
● There are lots of cases to consider because there

are many different ways you can insert into a
red/black tree.

● Main point: Simulating the insertion of a key into
a node takes time O(1) in all cases. Therefore,
since 2-3-4 trees support O(log n) insertions,
red/black trees support O(log n) insertions.

● The same is true of deletions.

My Advice
● Do know how to do B-tree insertions and searches.

● You can derive these easily if you remember to split
nodes.

● Do remember the rules for red/black trees and B-trees.
● These are useful for proving bounds and deriving results.

● Do remember the isometry between red/black trees
and 2-3-4 trees.

● Gives immediate intuition for all the red/black tree
operations.

● Don't memorize the red/black rotations and color flips.
● This is rarely useful. If you're coding up a red/black tree,

just flip open CLRS and translate the pseudocode. ☺

Dynamic Problems

Classical Algorithms
● The “classical” algorithms model goes

something like this:
Given some input X, compute some

interesting function f(X).
● The input X is provided up front, and only a

single answer is produced.

time

Input X
provided

Output f(X)
computed

Dynamic Problems
● Dynamic versions of problems are framed like this:

Given an input X that can change in fixed ways,
maintain X while being able to compute f(X)

efficiently at any point in time.
● These problems are typically harder to solve

efficiently than the “classical” static versions.

time

Input X
provided

f(X)
computed

X
updated

X
updated

f(X)
computed

X
updated

Dynamic Selection
● The selection problem is the following:

Given a list of distinct values and a number k,
return the kth-smallest value.

● In the static case, where the data set is fixed in
advance and k is known, we can solve this in time O(n)
using quickselect or the median-of-medians algorithm.

● Goal: Solve this problem efficiently when the data set
is changing – that is, the underlying set of elements
can have insertions and deletions intermixed with
queries.

31 41 59 26 53 58 79

Dynamic Selection

19

3 23

7

311713

5

4

14

150

1

2

3

4

5

6

7

8

10

9

Dynamic Selection

19

3 23

7

311713

5

4

14

150

1

2

3

5

6

7

8

9

11

1094

Dynamic Selection

19

3 23

7

311713

5

4

14

150

1

2

3

5

6

7

8

9

11

1094

Problem: After inserting a
new value, we may have to

update Θ(n) values.

This is inherent in this solution
route. These numbers track
global properties of the tree.

Dynamic Selection

19

3 23

7

311713

5

4

14

150

1

2

3

4

5

6

7

8

10

9

Dynamic Selection

19

3 23

7

311713

5

4

14

150

1

2

3

4

5

6

7

8

10

9

Dynamic Selection

19

3 23

7

311713

5

4

14

150

1

2

3

4

5

0

1

2

4

3

If new nodes are added to the
the left subtree, the numbers on
the right don’t need to update.

Dynamic Selection

19

3 23

7

311713

5

4

14

150

1

0

3

0

5

0

1

2

1

0

 Mechanically: Number
each key so that it only stores

its order statistic in the
subtree rooted at itself.

 Operationally: Annotate
each key with the number of

keys in its left subtree.

Dynamic Selection

19

3 23

7

311713

5

4

14

150

1

0

3

0

5

0

1

2

1

0

Dynamic Selection

19

3 23

7

311713

5

4

14

150

1

0

3

0

5

0

1

2

1

0

1?

Dynamic Selection

19

3 23

7

311713

5

4

14

150

1

0

3

0

5

0

1

2

1

0

1?

Dynamic Selection

19

3 23

7

311713

5

4

14

150

1

0

3

0

5

0

1

2

1

0

1?

Dynamic Selection

19

3 23

7

311713

5

4

14

150

1

0

3

0

5

0

1

2

1

0

☺

Dynamic Selection

19

3 23

7

311713

5

4

14

150

1

0

3

0

5

0

1

2

1

0

Dynamic Selection

19

3 23

7

311713

5

4

14

150

1

0

3

0

5

0

1

2

1

0

9?

Dynamic Selection

19

3 23

7

311713

5

4

14

150

1

0

3

0

5

0

1

2

1

0

9 – 5 – 1?

Dynamic Selection

19

3 23

7

311713

5

4

14

150

1

0

3

0

5

0

1

2

1

0

3?

Dynamic Selection

19

3 23

7

311713

5

4

14

150

1

0

3

0

5

0

1

2

1

0

3 – 2 – 1?

Dynamic Selection

19

3 23

7

311713

5

4

14

150

1

0

3

0

5

0

1

2

1

0

0?

Dynamic Selection

19

3 23

7

311713

5

4

14

150

1

0

3

0

5

0

1

2

1

0

0?

Dynamic Selection

19

3 23

7

311713

5

4

14

150

1

0

3

0

5

0

1

2

1

0

☺

Dynamic Selection

19

3 23

7

311713

5

4

14

150

1

0

3

0

5

0

1

2

1

0

Dynamic Selection

19

3 23

7

311713

5

4

14

150

1

0

3

0

5

0

1

2

1

09

Dynamic Selection

19

3 23

7

311713

5

4

14

150

1

0

3

1

6

0

1

2

1

090

We only update values on nodes that
gained a new key in their left subtree.
And there are only O(log n) of these!

Dynamic Selection

19

3 23

7

311713

5

4

14

150

1

0

3

1

6

0

1

2

1

090

Dynamic Selection

19

3 23

7

311713

5

4

14

150

1

0

3

1

6

0

1

2

1

090

16

Dynamic Selection

19

3 23

7

311713

5

4

14

150

1

0

3

1

6

0

2

3

1

090

160

Dynamic Selection

19

3 23

7

311713

5

4

14

150

1

0

3

1

6

0

2

3

1

090

160How do we update the
numbers after the rotation?

A
B

<A

>A
B

A
B

<A >A
B

na

nb

Rotate
Right

Rotate
Left

na

nb
 – na

 – 1

nb
 + na

 + 1

na nb

na A
B

<A

>A
B

A
B

<A >A
B

Order Statistic Trees
● This modified red/black tree is called an order

statistics tree.
● Start with a red/black tree.
● Tag each node with the number of nodes in its left subtree.
● Use the preceding update rules to preserve values during

rotations.
● Propagate other changes up to the root of the tree.

● Only O(log n) values must be updated on an insertion
or deletion and each can be updated in time O(1).

● Supports all BST operations plus select (find kth
order statistic) and rank (given a key, report its order
statistic) in time O(log n).

Generalizing our Idea

 Edits to values are localized along the access path.

 Edits to values are localized along the access path.
We can recompute values after a rotation.

 Imagine we cache some value in each node that can be computed
just from (1) the node itself and (2) its children’s values.

Recompute
values on this
access path,
bottom-up.

 Imagine we cache some value in each node that can be computed
just from (1) the node itself and (2) its children’s values.

 Imagine we cache some value in each node that can be computed
just from (1) the node itself and (2) its children’s values.

Recompute
the values in
these nodes.

Theorem: Suppose we want to cache some computed value in
each node of a red/black tree. Provided that the value can be

recomputed purely from the node’s value and from it’s children’s
values, and provided that each value can be computed in time

O(1), then these values can be cached in each node with
insertions, lookups, and deletions still taking time O(log n).

Example: Hierarchical Clustering

1D Hierarchical Clustering

42 44 60 66 71 86 92 10020

1D Hierarchical Clustering

42 44 60 66 71 86 92 100

60 66 71 86 92 100

20

20 42 44
64.56

1D Hierarchical Clustering

42 44 60 66 71 86 92 10020

This tree is called
a dendrogram.

Analyzing the Runtime
● How efficient is this algorithm?

● Number of rounds: Θ(n).
● Work to find closest pair: O(n).
● Total runtime: Θ(n2).

● Can we do better?

Analyzing the Runtime

How efficient is this algorithm?
Number of rounds: Θ(n).

● Work to find closest pair: O(n).
Total runtime: Θ(n2).

Can we do better?

Dynamic 1D Closest Points
● The dynamic 1D closest points

problem is the following:
Maintain a set of real numbers

undergoing insertion and deletion while
efficiently supporting queries of the form

“what is the closest pair of points?”
● Can we build a better data structure for

this?

Dynamic 1D Closest Points

k

max min

A Tree Augmentation
● Augment each node to store the following:

● The maximum value in the tree.
● The minimum value in the tree.
● The closest pair of points in the tree.

● Claim: Each of these properties can be
computed in time O(1) from the left and right
subtrees.

● These properties can be augmented into a
red/black tree so that insertions and deletions
take time O(log n) and “what is the closest pair
of points?” can be answered in time O(1).

Dynamic 1D Closest Points
137

 Min: -17

 Max: 415

Closest: 137, 142
42

 Min: -17

 Max: 67

 Closest: 15, 21

271
 Min: 142

 Max: 415

Closest: 300, 310

Some Other Questions
● How would you augment this tree so that

you can efficiently (in time O(1)) compute
the appropriate weighted averages?

● Trickier: Is this the fastest possible
algorithm for this problem?
● What if you’re guaranteed that the keys are

all integers in some nice range?

A Helpful Intuition

Divide-and-Conquer
● Initially, it can be tricky to come up with the

right tree augmentations.
● Useful intuition: Imagine you're writing a

divide-and-conquer algorithm over the
elements and have O(1) time per “conquer”
step.

< k > kk

Divide-and-Conquer
● Initially, it can be tricky to come up with the

right tree augmentations.
● Useful intuition: Imagine you're writing a

divide-and-conquer algorithm over the
elements and have O(1) time per “conquer”
step.

< k > k

k

Next Time
● String Data Structures

● Storing and manipulating sequences.
● Tries and Patricia Trees

● Storing a collection of strings efficiently.
● Suffix Trees

● The Swiss Army Knife of strings.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83

