
  

Balanced Trees
Part Two



  

Outline for Today
● Red/Black Trees

● Using our isometry!
● Tree Rotations

● A key primitive in restructuring trees.
● Augmented Binary Search Trees

● Leveraging red/black trees.



  

Recap from Last Time



  

2-3-4 Trees
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● A 2-3-4 tree is a multiway search tree where
● every node has 1, 2, or 3 keys,
● any non-leaf node with k keys has exactly k+1 children, and
● all leaves are at the same depth.

● To insert a key, place it in a leaf. If out of space, split the leaf and 
kick the median key one level higher, repeating this process.



  

Red/Black Trees
● A red/black tree is a BST with 

the following properties:
● Every node is either red or black.
● The root is black.
● No red node has a red child.
● Every root-null path in the tree 

passes through the same number of 
black nodes.

After we hoist red nodes into 
their parents:

Each “meta node” has 1, 2, or 3 
keys in it. (No red node has a red 
child.)
Each “meta node” is either a leaf or 
has one more key than node. (Root-
null path property.)
Each “meta leaf” is at the same 
depth. (Root-null path property.)
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Red/Black Trees
● A red/black tree is a BST with 

the following properties:
● Every node is either red or black.
● The root is black.
● No red node has a red child.
● Every root-null path in the tree 

passes through the same number of 
black nodes.

● After we hoist red nodes into 
their parents:
● Each “meta node” has 1, 2, or 3 

keys in it. (No red node has a red 
child.)

● Each “meta node” is either a leaf or 
has one more child than key. (Root-
null path property.)

● Each “meta leaf” is at the same 
depth. (Root-null path property.)
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This is a
2-3-4 tree!



  

New Stuff!



  

Data Structure Isometries
● Red/black trees are an isometry of 2-3-4 trees; 

they represent the structure of
2-3-4 trees in a different way.

● That gives us some really easy theorems 
basically for free.

● Theorem: The maximum height of a red/black 
tree with n nodes is O(log n).

● Proof idea: Pulling red nodes into their 
parents forms a 2-3-4 tree with n keys, which 
has height O(log n). Undoing this at most 
doubles the height of the tree. ■-ish



  

Data Structure Isometries
● Red/black trees are an isometry of 2-3-4 trees; 

they represent the structure of
2-3-4 trees in a different way.

● That gives us some really easy theorems 
basically for free.

● Theorem: The maximum height of a red/black 
tree with n nodes is O(log n).

● Proof idea: Pulling red nodes into their 
parents forms a 2-3-4 tree with n keys, which 
has height O(log n). Undoing this at most 
doubles the height of the tree. ■-ish

Explain why, using the isometry.

Formulate a hypothesis!



  

Data Structure Isometries
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tree with n nodes is O(log n).

● Proof idea: Pulling red nodes into their 
parents forms a 2-3-4 tree with n keys, which 
has height O(log n). Undoing this at most 
doubles the height of the tree. ■-ish



  

Exploring the Isometry
● Nodes in a 2-3-4 tree are classified into 

types based on the number of children 
they can have.
● 2-nodes have one key (two children).
● 3-nodes have two keys (three children).
● 4-nodes have three keys (four children).

● How might these nodes be represented?



  

Exploring the Isometry
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Red/Black Tree Insertion
● Rule #1: When inserting a node, if its 

parent is black, make the node red and 
stop.

● Justification: This simulates inserting a 
key into an existing 2-node or 3-node.
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Goal

We need to move nodes 
around in a binary search 
tree. How do we do this?
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This applies any time we're 
inserting a new node into 

the middle of a “3-node” in 
this pattern.

 

By making observations like 
these, we can determine 

how to update a red/black 
tree after an insertion.
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Building Up Rules
● The complex rules on red/black trees make 

perfect sense if you connect it back to 2-3-4 trees.
● There are lots of cases to consider because there 

are many different ways you can insert into a 
red/black tree.

● Main point: Simulating the insertion of a key into 
a node takes time O(1) in all cases. Therefore, 
since 2-3-4 trees support O(log n) insertions, 
red/black trees support O(log n) insertions.

● The same is true of deletions.



  

My Advice
● Do know how to do B-tree insertions and searches.

● You can derive these easily if you remember to split 
nodes.

● Do remember the rules for red/black trees and B-trees.
● These are useful for proving bounds and deriving results.

● Do remember the isometry between red/black trees 
and 2-3-4 trees.

● Gives immediate intuition for all the red/black tree 
operations.

● Don't memorize the red/black rotations and color flips.
● This is rarely useful. If you're coding up a red/black tree, 

just flip open CLRS and translate the pseudocode. ☺



  

Dynamic Problems



  

Classical Algorithms
● The “classical” algorithms model goes 

something like this:
Given some input X, compute some 

interesting function f(X).
● The input X is provided up front, and only a 

single answer is produced.

time                                                                                                      

Input X
provided

Output f(X) 
computed



  

Dynamic Problems
● Dynamic versions of problems are framed like this:

Given an input X that can change in fixed ways, 
maintain X while being able to compute f(X) 

efficiently at any point in time.
● These problems are typically harder to solve 

efficiently than the “classical” static versions.

time                                                                                                      

Input X
provided

f(X) 
computed

X 
updated

X 
updated

f(X) 
computed

X 
updated



  

Dynamic Selection
● The selection problem is the following:

Given a list of distinct values and a number k, 
return the kth-smallest value.

● In the static case, where the data set is fixed in 
advance and k is known, we can solve this in time O(n) 
using quickselect or the median-of-medians algorithm.

● Goal: Solve this problem efficiently when the data set 
is changing – that is, the underlying set of elements 
can have insertions and deletions intermixed with 
queries.

31 41 59 26 53 58 79



  

Dynamic Selection
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Problem: After inserting a 
new value, we may have to 

update Θ(n) values.

This is inherent in this solution 
route. These numbers track 
global properties of the tree.



  

Dynamic Selection
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Dynamic Selection
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Dynamic Selection
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If new nodes are added to the 
the left subtree, the numbers on 
the right don’t need to update.



  

Dynamic Selection
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 Mechanically: Number 
each key so that it only stores 

its order statistic in the 
subtree rooted at itself.

 Operationally: Annotate 
each key with the number of 

keys in its left subtree.



  

Dynamic Selection
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Dynamic Selection
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Dynamic Selection
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Dynamic Selection
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Dynamic Selection
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Dynamic Selection

19

3 23

7

311713

5

4

14

150

1

0

3

0

5

0

1

2

1

0

3?



  

Dynamic Selection

19

3 23

7

311713

5

4

14

150

1

0

3

0

5

0

1

2

1

0

3 – 2 – 1?



  

Dynamic Selection
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Dynamic Selection
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Dynamic Selection
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Dynamic Selection
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Dynamic Selection
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We only update values on nodes that 
gained a new key in their left subtree. 
And there are only O(log n) of these!



  

Dynamic Selection
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Dynamic Selection
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Order Statistic Trees
● This modified red/black tree is called an order 

statistics tree.
● Start with a red/black tree.
● Tag each node with the number of nodes in its left subtree.
● Use the preceding update rules to preserve values during 

rotations.
● Propagate other changes up to the root of the tree.

● Only O(log n) values must be updated on an insertion 
or deletion and each can be updated in time O(1).

● Supports all BST operations plus select (find kth 
order statistic) and rank (given a key, report its order 
statistic) in time O(log n).



  

Generalizing our Idea



  Edits to values are localized along the access path.



  Edits to values are localized along the access path.
We can recompute values after a rotation.



  Imagine we cache some value in each node that can be computed 
just from (1) the node itself and (2) its children’s values.

Recompute 
values on this 
access path, 
bottom-up.



  Imagine we cache some value in each node that can be computed 
just from (1) the node itself and (2) its children’s values.



  Imagine we cache some value in each node that can be computed 
just from (1) the node itself and (2) its children’s values.

Recompute 
the values in 
these nodes.



  

Theorem: Suppose we want to cache some computed value in 
each node of a red/black tree. Provided that the value can be 

recomputed purely from the node’s value and from it’s children’s 
values, and provided that each value can be computed in time 

O(1), then these values can be cached in each node with 
insertions, lookups, and deletions still taking time O(log n).



  

Example: Hierarchical Clustering



  

1D Hierarchical Clustering

42 44 60 66 71 86 92 10020



  

1D Hierarchical Clustering

42 44 60 66 71 86 92 100
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1D Hierarchical Clustering

42 44 60 66 71 86 92 10020

This tree is called 
a dendrogram.



  

Analyzing the Runtime
● How efficient is this algorithm?

● Number of rounds: Θ(n).
● Work to find closest pair: O(n).
● Total runtime: Θ(n2).

● Can we do better?



  

Analyzing the Runtime

How efficient is this algorithm?
Number of rounds: Θ(n).

● Work to find closest pair: O(n).
Total runtime: Θ(n2).

Can we do better?



  

Dynamic 1D Closest Points
● The dynamic 1D closest points 

problem is the following:
Maintain a set of real numbers 

undergoing insertion and deletion while 
efficiently supporting queries of the form 

“what is the closest pair of points?” 
● Can we build a better data structure for 

this?



  

Dynamic 1D Closest Points

k

max min



  

A Tree Augmentation
● Augment each node to store the following:

● The maximum value in the tree.
● The minimum value in the tree.
● The closest pair of points in the tree.

● Claim: Each of these properties can be 
computed in time O(1) from the left and right 
subtrees.

● These properties can be augmented into a 
red/black tree so that insertions and deletions 
take time O(log n) and “what is the closest pair 
of points?” can be answered in time O(1).



  

Dynamic 1D Closest Points
137

        Min: -17

        Max: 415

Closest: 137, 142
42

        Min: -17

        Max: 67

  Closest: 15, 21

271
        Min: 142

        Max: 415

Closest: 300, 310



  

Some Other Questions
● How would you augment this tree so that 

you can efficiently (in time O(1)) compute 
the appropriate weighted averages?

● Trickier: Is this the fastest possible 
algorithm for this problem?
● What if you’re guaranteed that the keys are 

all integers in some nice range?



  

A Helpful Intuition



  

Divide-and-Conquer
● Initially, it can be tricky to come up with the 

right tree augmentations.
● Useful intuition: Imagine you're writing a 

divide-and-conquer algorithm over the 
elements and have O(1) time per “conquer” 
step.

< k > kk



  

Divide-and-Conquer
● Initially, it can be tricky to come up with the 

right tree augmentations.
● Useful intuition: Imagine you're writing a 

divide-and-conquer algorithm over the 
elements and have O(1) time per “conquer” 
step.

< k > k

k



  

Next Time
● String Data Structures

● Storing and manipulating sequences.
● Tries and Patricia Trees

● Storing a collection of strings efficiently.
● Suffix Trees

● The Swiss Army Knife of strings.
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