Balanced Trees

Part One

Balanced Trees

- Balanced search trees are among the most useful and versatile data structures.
- Many programming languages ship with a balanced tree library.
- C++: std::map / std::set
- Java: TreeMap / TreeSet
- Many advanced data structures are layered on top of balanced trees.
- We'll see several later in the quarter!

Where We're Going

- B-Trees (Today)
- A simple type of balanced tree developed for block storage.
- Red/Black Trees (Today/Thursday)
- The canonical balanced binary search tree.
- Augmented Search Trees (Thursday)
- Adding extra information to balanced trees to supercharge the data structure.

Outline for Today

- BST Review
- Refresher on basic BST concepts and runtimes.
- Overview of Red/Black Trees
- What we're building toward.
- B-Trees and 2-3-4 Trees
- Simple balanced trees, in depth.
- Intuiting Red/Black Trees
- A much better feel for red/black trees.

A Quick BST Review

Binary Search Trees

- A binary search tree is a binary tree with the following properties:
- Each node in the BST stores a key, and optionally, some auxiliary information.
- The key of every node in a BST is strictly greater than all keys to its left and strictly smaller than all keys to its right.

Binary Search Trees

- The height of a binary search tree is the length of the longest path from the root to a leaf, measured in the number of edges.
- A tree with one node has height 0 .
- A tree with no nodes has height -1 , by convention.

Searching a BST

Searching a BST

73
271

161
314

Searching a BST

73
271

161
314

Searching a BST

Searching a BST

Searching a BST

Inserting into a BST

Inserting into a BST

Inserting into a BST

Inserting into a BST

137

Inserting into a BST

Inserting into a BST

137

73

Inserting into a BST

Inserting into a BST

Deleting from a BST

Deleting from a BST

Delete 60 from this tree,
then 73 , and then 137.
Discuss with your
neighbor!

271

Deleting from a BST

Deleting from a BST

137

Deleting from a BST

137

Deleting from a BST

137

Deleting from a BST

137

166

Deleting from a BST

137

Case 0: If the node has just no children, just remove it.

Deleting from a BST

73
271

Deleting from a BST

137

Deleting from a BST

137

161

166

Deleting from a BST

137

166

Deleting from a BST

137

42
271
$161 \quad 314$

Deleting from a BST

137

Case 1: If the node has just one child, remove it and replace it with its child.

Deleting from a BST

137

42
271
$161 \quad 314$

Deleting from a BST

42
271
$161 \quad 314$

Deleting from a BST

42
271
$161 \quad 314$

Deleting from a BST

161

166

Deleting from a BST

42
271
$161 \quad 314$

Deleting from a BST

42
271
$161 \quad 314$

Deleting from a BST

42

161
314

Deleting from a BST

42
271

Deleting from a BST

42
271

166

Deleting from a BST

42

Deleting from a BST

161

42
271

166
314

Deleting from a BST

161

42
271

Case 2: If the node has two children, find its inorder successor (which has zero or one child), replace the node's key with its successor's key, then delete its successor.

Runtime Analysis

- The time complexity of all these operations is $O(h)$, where h is the height of the tree.
- That's the longest path we can take.
- In the best case, $h=O(\log n)$ and all operations take time $O(\log n)$.
- In the worst case, $h=\Theta(n)$ and some operations will take time $\Theta(n)$.
- Challenge: How do you efficiently keep the height of a tree low?

A Glimpse of Red/Black Trees

Red/Black Trees

- A red/black tree is a BST with the following properties:
- Every node is either red or black.
- The root is black.
- No red node has a red child.
- Every root-null path in the tree passes through the same number of black nodes.

261

Red/Black Trees

- A red/black tree is a BST with the following properties:
- Every node is either red or black.
- The root is black.
- No red node has a red child.
- Every root-null path in the tree passes through the same number of black nodes.

Red/Black Trees

- A red/black tree is a BST with the following properties:
- Every node is either red or black.
- The root is black.
- No red node has a red child.
- Every root-null path in the tree passes through the same number of black nodes.

Red/Black Trees

- A red/black tree is a BST with the following properties:
- Every node is either red or black.
- The root is black.
- No red node has a red child.
- Every root-null path in the tree passes through the same number of black nodes.

Red/Black Trees

- A red/black tree is a BST with the following properties:
- Every node is either red or black.
- The root is black.
- No red node has a red child.
- Every root-null path in
 the tree passes through the same number of black nodes.

Red/Black Trees

- A red/black tree is a BST with the following properties:
- Every node is either red or black.
- The root is black.
- No red node has a red child.
- Every root-null path in the tree passes through the same number of black nodes.

Red/Black Trees

- Theorem: Any red/black tree with n nodes has height $O(\log n)$.
- We could prove this now, but there's a much simpler proof of this we'll see later on.
- Given a fixed red/black tree, lookups can be done in time $O(\log n)$.

Mutating Red/Black Trees

Mutating Red/Black Trees

Mutating Red/Black Trees

Mutating Red/Black Trees

Mutating Red/Black Trees

Mutating Red/Black Trees

Mutating Red/Black Trees

17

23

Mutating Red/Black Trees

Mutating Red/Black Trees

Mutating Red/Black Trees

17

23

Mutating Red/Black Trees

How do we fix up the black-height property?

Fixing Up Red/Black Trees

- The Good News: After doing an insertion or deletion, we can locally modify a red/black tree in time $O(\log n)$ to fix up the red/black properties.
- The Bad News: There are a lot of cases to consider and they're not trivial.
- Some questions:
- How do you memorize / remember all the rules for fixing up the tree?
- How on earth did anyone come up with red/black trees in the first place?

Fixing Up Red/Black Trees

- The Good News: After doing an insertion or deletion, we can locally modify a red/black tree in time $O(\log n)$ to fix up the red/black properties.
- The Bad News: There are a lot of cases to consider and they're not trivial.
- Some questions:
- How do you memorize / remember all the rules for fixing up the tree?
- How on earth did anyone come up with red/black trees in the first place?

B-Trees

Generalizing BSTs

- In a binary search tree, each node stores a single key.
- That key splits the "key space" into two pieces, and each subtree stores the keys in those halves.

Generalizing BSTs

- In a multiway search tree, each node stores an arbitrary number of keys in sorted order.
- A node with k keys splits the key space into $k+1$ regions, with subtrees for keys in each region.

$$
\begin{array}{l|l|l}
0 & 3 & 5
\end{array}
$$

Generalizing BSTs

- In a multiway search tree, each node stores an arbitrary number of keys in sorted order.

4346

- Surprisingly, it's a bit easier to build a balanced multiway tree than it is to build a balanced BST. Let's see how.

Balanced Multiway Trees

- In some sense, building a balanced multiway tree isn't all that hard.
- We can always just cram more keys into a single node!

Balanced Multiway Trees

- In some sense, building a balanced multiway tree isn't all that hard.
- We can always just cram more keys into a single node!

Balanced Multiway Trees

- In some sense, building a balanced multiway tree isn't all that hard.
- We can always just cram more keys into a single node!

Balanced Multiway Trees

- In some sense, building a balanced multiway tree isn't all that hard.
- We can always just cram more keys into a single node!

Balanced Multiway Trees

- In some sense, building a balanced multiway tree isn't all that hard.
- We can always just cram more keys into a single node!

26314159

Balanced Multiway Trees

- In some sense, building a balanced multiway tree isn't all that hard.
- We can always just cram more keys into a single node!

2631415359

Balanced Multiway Trees

- In some sense, building a balanced multiway tree isn't all that hard.
- We can always just cram more keys into a single node!

263141535859

Balanced Multiway Trees

- In some sense, building a balanced multiway tree isn't all that hard.
- We can always just cram more keys into a single node!

26314153585997

Balanced Multiway Trees

- In some sense, building a balanced multiway tree isn't all that hard.
- We can always just cram more keys into a single node!

2631415358599397

Balanced Multiway Trees

- In some sense, building a balanced multiway tree isn't all that hard.
- We can always just cram more keys into a single node!

$$
232631415358599397
$$

Balanced Multiway Trees

- In some sense, building a balanced multiway tree isn't all that hard.
- We can always just cram more keys into a single node!

23263141535859849397

Balanced Multiway Trees

- In some sense, building a balanced multiway tree isn't all that hard.
- We can always just cram more keys into a single node!

2326314153585962849397

Balanced Multiway Trees

- In some sense, building a balanced multiway tree isn't all that hard.
- We can always just cram more keys into a single node!

2326314153585962849397

- At a certain point, this stops being a good idea - it's basically just a sorted array. What does "balance" even mean here?

Balanced Multiway Trees

- What could we do if our nodes get too big?

Balanced Multiway Trees

- What could we do if our nodes get too big?
- Option 1: Push the new key down into its own node.

Balanced Multiway Trees

- What could we do if our nodes get too big?
- Option 1: Push the 23263141535859849397 new key down into its own node.

Balanced Multiway Trees

- What could we do if our nodes get too big?
- Option 1: Push the new key down into its own node.

Balanced Multiway Trees

- What could we do if our nodes get too big?
- Option 1: Push the new key down into its own node.

Balanced Multiway Trees

- What could we do if our nodes get too big?
- Option 1: Push the new key down into its own node.

- Option 2: Split big nodes in half, kicking the middle key up.

Balanced Multiway Trees

- What could we do if our nodes get too big?
- Option 1: Push the new key down into its own node.
- Option 2: Split big nodes in half, kicking the middle key up.

Balanced Multiway Trees

- What could we do if our nodes get too big?
- Option 1: Push the new key down into its own node.
- Option 2: Split big nodes in half, kicking the middle key up.

Balanced Multiway Trees

- What could we do if our nodes get too big?
- Option 1: Push the new key down into its own node.
- Option 2: Split big nodes in half, kicking the middle key up.

Balanced Multiway Trees

- What could we do if our nodes get too big?
- Option 1: Push the new key down into its own node.
- Option 2: Split big nodes in half, kicking the middle key up.
- Assume that, during an insertion, we add keys to the deepest node possible.
- How do these options compare?

Balanced Multiway Trees

- What could we do if our nodes get too big?
- Option 1: Push the new key down into its own node.

- Option 2: Split big nodes in half, kicking the middle key up.
- Assume that, during an insertion, we add keys to the deepest node possible.
- How do these options compare?

Try this out, and discuss with your neighbor!

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.
- Can lead to tree imbalances.
$\begin{array}{llllllllllll}10 & 99 & 50 & 20 & 40 & 30 & 31 & 39 & 35 & 32 & 33 & 34\end{array}$

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.
- Can lead to tree imbalances.

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.

1099

- Can lead to tree imbalances.

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.

105099

- Can lead to tree imbalances.

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.

10205099

- Can lead to tree imbalances.

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.

10205099

- Can lead to tree imbalances.

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.
- Can lead to tree imbalances.

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.
- Can lead to tree imbalances.

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.
- Can lead to tree imbalances.

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.
- Can lead to tree imbalances.

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.
- Can lead to tree imbalances.

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.
- Can lead to tree imbalances.

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.
- Can lead to tree imbalances.

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.
- Can lead to tree imbalances.

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.
- Can lead to tree imbalances.

$\begin{array}{llll}35 & 32 & 33 & 34\end{array}$

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.
- Can lead to tree imbalances.

$\begin{array}{lll}32 & 33 & 34\end{array}$

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.
- Can lead to tree imbalances.

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.
- Can lead to tree imbalances.

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.
- Can lead to tree imbalances.

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.
- Can lead to tree imbalances.

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.
- Can lead to tree imbalances.

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.
- Can lead to tree imbalances.

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.
- Can lead to tree imbalances.
- Option 2: Split big nodes, kicking keys higher up.
- Keeps the tree balanced.
- Slightly trickier to implement.
$\begin{array}{llllllllllll}10 & 99 & 50 & 20 & 40 & 30 & 31 & 39 & 35 & 32 & 33 & 34\end{array}$

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.
- Can lead to tree imbalances.
- Option 2: Split big nodes, kicking keys higher up.
- Keeps the tree balanced.
- Slightly trickier to implement.

99	50	20	40	30	31	39	35	32	33	34

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.
- Can lead to tree imbalances.
- Option 2: Split big nodes, kicking keys higher up.
- Keeps the tree balanced.
- Slightly trickier to implement.

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.
- Can lead to tree imbalances.
- Option 2: Split big nodes, kicking keys higher up.
- Keeps the tree balanced.
- Slightly trickier to implement.

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.
- Can lead to tree imbalances.
- Option 2: Split big nodes, kicking keys higher up.
- Keeps the tree balanced.
- Slightly trickier to

10205099 implement.

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.
- Can lead to tree imbalances.
- Option 2: Split big nodes, kicking keys higher up.
- Keeps the tree balanced.
- Slightly trickier to

10205099 implement.

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.
- Can lead to tree imbalances.
- Option 2: Split big nodes, kicking keys higher up.
- Keeps the tree 50 balanced.
- Slightly trickier to implement.
$1020 \quad 99$

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.
- Can lead to tree imbalances.
- Option 2: Split big nodes, kicking keys higher up.
- Keeps the tree balanced.
- Slightly trickier to implement.

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.
- Can lead to tree imbalances.
- Option 2: Split big nodes, kicking keys higher up.
- Keeps the tree balanced.
- Slightly trickier to implement.

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.
- Can lead to tree imbalances.
- Option 2: Split big nodes, kicking keys higher up.
- Keeps the tree balanced.
- Slightly trickier to implement.

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.
- Can lead to tree imbalances.
- Option 2: Split big nodes, kicking keys higher up.
- Keeps the tree balanced.
- Slightly trickier to implement.

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.
- Can lead to tree imbalances.
- Option 2: Split big nodes, kicking keys higher up.
- Keeps the tree balanced.
- Slightly trickier to implement.

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.
- Can lead to tree imbalances.
- Option 2: Split big nodes, kicking keys higher up.
- Keeps the tree balanced.
- Slightly trickier to implement.

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.
- Can lead to tree imbalances.
- Option 2: Split big nodes, kicking keys higher up.
- Keeps the tree balanced.
- Slightly trickier to implement.

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.
- Can lead to tree imbalances.
- Option 2: Split big nodes, kicking keys higher up.
- Keeps the tree balanced.
- Slightly trickier to implement.

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.
- Can lead to tree imbalances.
- Option 2: Split big nodes, kicking keys higher up.
- Keeps the tree balanced.
- Slightly trickier to implement.

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.
- Can lead to tree imbalances.
- Option 2: Split big nodes, kicking keys higher up.
- Keeps the tree balanced.
- Slightly trickier to implement.

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.
- Can lead to tree imbalances.
- Option 2: Split big nodes, kicking keys higher up.
- Keeps the tree balanced.
- Slightly trickier to implement.

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.
- Can lead to tree imbalances.
- Option 2: Split big nodes, kicking keys higher up.
- Keeps the tree balanced.
- Slightly trickier to implement.

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.
- Can lead to tree imbalances.
- Option 2: Split big nodes, kicking keys higher up.
- Keeps the tree balanced.
- Slightly trickier to implement.

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.
- Can lead to tree imbalances.
- Option 2: Split big nodes, kicking keys higher up.
- Keeps the tree balanced.
- Slightly trickier to implement.

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.
- Can lead to tree imbalances.
- Option 2: Split big nodes, kicking keys higher up.
- Keeps the tree balanced.
- Slightly trickier to implement.

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.
- Can lead to tree imbalances.
- Option 2: Split big nodes, kicking keys higher up.
- Keeps the tree balanced.
- Slightly trickier to implement.

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.
- Can lead to tree imbalances.
- Option 2: Split big nodes, kicking keys higher up.
- Keeps the tree balanced.
- Slightly trickier to implement.

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.
- Can lead to tree imbalances.
- Option 2: Split big nodes, kicking keys higher up.
- Keeps the tree balanced.
- Slightly trickier to implement.

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.
- Can lead to tree imbalances.
- Option 2: Split big nodes, kicking keys higher up.
- Keeps the tree balanced.
- Slightly trickier to implement.

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.
- Can lead to tree imbalances.
- Option 2: Split big nodes, kicking keys higher up.
- Keeps the tree balanced.
- Slightly trickier to implement.

34

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.
- Can lead to tree imbalances.
- Option 2: Split big nodes, kicking keys higher up.
- Keeps the tree balanced.
- Slightly trickier to implement.

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.
- Can lead to tree imbalances.
- Option 2: Split big nodes, kicking keys higher up.
- Keeps the tree balanced.
- Slightly trickier to implement.

34

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.
- Can lead to tree imbalances.
- Option 2: Split big nodes, kicking keys higher up.
- Keeps the tree balanced.
- Slightly trickier to implement.

Balanced Multiway Trees

- Option 1: Push keys down into new nodes.
- Simple to implement.
- Can lead to tree imbalances.
- Option 2: Split big nodes, kicking keys higher up.
- Keeps the tree balanced.
- Slightly trickier to implement.

Balanced Multiway Trees

- General idea: Cap the maximum number of keys in a node. Add keys into leaves. Whenever a node gets too big, split it and kick one key higher up the tree.

- Advantage 1: The tree is always balanced.
- Advantage 2: Insertions and lookups are pretty fast.

Balanced Multiway Trees

- We currently have a mechanical description of how these balanced multiway trees work:
- Cap the size of each node.
- Add keys into leaves.
- Split nodes when they get too big and propagate the splits upward.
- We currently don't have an operational definition of how these balanced multiway trees work.
- e.g. "A Cartesian tree for an array is a binary tree that's a min-heap and whose inorder traversal gives back the original array."

B-Trees

- A B-tree of order b is a multiway search tree where
- each node has between $b-1$ and $2 b-1$ keys, except the root, which may have between 1 and $2 b-1$ keys;
- each node is either a leaf or has one more child than key; and
- all leaves are at the same depth.
- Different authors give different bounds on how many keys can be in each node. The ranges are often [$b-1,2 b-1$] or [$b, 2 b$]. For the purposes of today's lecture, we'll use the range $[b-1,2 b-1]$ for the key limits, just for simplicity.

Analyzing B-Trees

The Height of a B-Tree

- What is the maximum possible height of a B-tree of order b that holds n keys?

Intuition: The branching factor of the tree is at least b, so the number of keys per level grows exponentially in b. Therefore, we'd expect something along the lines of $\mathrm{O}\left(\log _{b} n\right)$.

The Height of a B-Tree

- What is the maximum possible height of a B-tree of order b that holds n keys?

The Height of a B-Tree

- Theorem: The maximum height of a B-tree of order b containing n keys is $\mathrm{O}\left(\log _{b} n\right)$.
- Proof: Number of keys n in a B-tree of height h is guaranteed to be at least

$$
\begin{aligned}
& 1+2(\boldsymbol{b}-\mathbf{1})+2 \boldsymbol{b}(\boldsymbol{b}-\mathbf{1})+2 \boldsymbol{b}^{2}(\boldsymbol{b}-\mathbf{1})+\ldots+2 \boldsymbol{b}^{h-1}(\boldsymbol{b}-\mathbf{1}) \\
= & 1+2(\boldsymbol{b}-\mathbf{1})\left(1+\boldsymbol{b}+\boldsymbol{b}^{2}+\ldots+\boldsymbol{b}^{h-1}\right) \\
= & 1+2(\boldsymbol{b}-\mathbf{1})\left(\left(\boldsymbol{b}^{h}-1\right) /(\boldsymbol{b}-\mathbf{1})\right) \\
= & 1+2\left(\boldsymbol{b}^{h}-1\right)=2 \boldsymbol{b}^{h}-1 .
\end{aligned}
$$

Solving $n=2 b^{h}-1$ yields $h=\log _{b}((n+1) / 2)$, so the height is $\mathrm{O}\left(\log _{b} n\right)$.

Analyzing Efficiency

- Suppose we have a B-tree of order b.
- What is the worstcase runtime of looking up a key in the B-tree?

51323

Analyzing Efficiency

- Suppose we have a B-tree of order b.
- What is the worstcase runtime of looking up a key in the B-tree?
- Answer: It depends on how
 we do the search!

Analyzing Efficiency

- To do a lookup in a B-tree, we need to determine which child tree to descend into.
- This means we need to compare our query key against
 the keys in the node.
- Question: How should we do this?

Analyzing Efficiency

- Option 1: Use a linear search!
- Cost per node: $\mathrm{O}(b)$.
- Nodes visited: $\mathrm{O}\left(\log _{b} n\right)$.
- Total cost:

$$
\begin{aligned}
& \mathrm{O}(b) \cdot \mathrm{O}\left(\log _{b} n\right) \\
= & \mathrm{O}\left(b \log _{b} n\right)
\end{aligned}
$$

Analyzing Efficiency

- Option 2: Use a binary search!
- Cost per node: O(log $b)$.
- Nodes visited: $\mathrm{O}\left(\log _{b} n\right)$.
- Total cost:

$$
\begin{aligned}
& \mathrm{O}(\log b) \cdot \mathrm{O}\left(\log _{b} n\right) \\
= & \mathrm{O}\left(\log b \cdot \log _{b} n\right) \\
= & \mathrm{O}(\log b \cdot(\log n) /(\log b)) \\
= & \mathbf{O}(\log \mathbf{n}) \cdot \quad \quad \begin{array}{c}
\text { Intuition: We can't do better than O(log } n \text {) for } \\
\text { arbitrary data, because it's the information- } \\
\text { theoretic minimum number of comparisons needed } \\
\text { to find something in a sorted collection! }
\end{array}
\end{aligned}
$$

Analyzing Efficiency

- Suppose we have a B-tree of order b.
- What is the worst-case runtime of inserting a key into the B-tree?
- Each insertion visits $\mathrm{O}\left(\log _{b} n\right.$) nodes, and in the worst case we have to split every node we see.
- Answer: $\mathrm{O}\left(b \log _{b} n\right)$.

Analyzing Efficiency

- The cost of an insertion in a B-tree of order b is $\mathrm{O}\left(b \log _{b} n\right)$.
- What's the best choice of b to use here?
- Note that

$$
\begin{aligned}
& b \log _{b} n \\
= & b(\log n / \log b) \\
= & (b / \log b) \log n .
\end{aligned}
$$

Fun fact: This is the same time bound you'd get if you used a b-ary heap instead of a binary heap for a priority queue.

- What choice of b minimizes $b / \log b$?
- Answer: Pick $b=e$. (Or rather, $b=\lfloor e\rfloor=2$.)

2-3-4 Trees

- A 2-3-4 tree is a B-tree of order 2. Specifically:
- each node has between 1 and 3 keys;
- each node is either a leaf or has one more child than key; and
- all leaves are at the same depth.
- You actually saw this B-tree earlier! It's the type of tree from our insertion example.

51323

1	2	4

The Story So Far

- A B-tree supports
- lookups in time $O(\log n)$, and
- insertions in time $O\left(b \log _{b} n\right)$.
- Picking b to be around 2 or 3 makes this optimal in Theoryland.
- The 2-3-4 tree is great for that reason.
- Plot Twist: In practice, you most often see choices of b like 1,024 or 4,096 .
-Question: Why would anyone do that?

The Memory Hierarchy

Memory Tradeoffs

- There is an enormous tradeoff between speed and size in memory.
- SRAM (the stuff registers are made of) is fast but very expensive:
- Can keep up with processor speeds in the GHz.
- SRAM units can't be easily combined together; increasing sizes require better nanofabrication techniques (difficult, expensive!)
- Hard disks are cheap but very slow:
- As of 2021, you can buy a 4TB hard drive for about $\$ 70$.
- As of 2021, good disk seek times for magnetic drives are measured in ms (about two to four million times slower than a processor cycle!)

The Memory Hierarchy

- Idea: Try to get the best of all worlds by using multiple types of memory.

The Memory Hierarchy

- Idea: Try to get the best of all worlds by using multiple types of memory.

| Registers | $256 \mathrm{~B}-8 \mathrm{~KB}$ | $0.25-1 \mathrm{~ns}$ |
| :---: | :---: | :---: | :---: |
| L1 Cache | $16 \mathrm{~KB}-64 \mathrm{~KB}$ | $1 \mathrm{~ns}-5 \mathrm{~ns}$ |
| L2 Cache | $1 \mathrm{MB}-4 \mathrm{MB}$ | $5 \mathrm{~ns}-25 \mathrm{~ns}$ |
| Main Memory | $4 \mathrm{~GB}-256 \mathrm{~GB}$ | $25 \mathrm{~ns}-100 \mathrm{~ns}$ |
| Hard Disk | $1 \mathrm{~TB}+$ | $3-10 \mathrm{~ms}$ |
| Network (The Cloud) ${ }^{*}$ | Lots | $10-2000 \mathrm{~ms}$ |

* in some data centers, it's faster store all data in RAM and access it over the network than to use magnetic disks!

The Memory Hierarchy

- Idea: Try to get the best of all worlds by using multiple types of memory.

$256 \mathrm{~B}-8 \mathrm{~KB}$	$0.25-1 \mathrm{~ns}$
$16 \mathrm{~KB}-64 \mathrm{~KB}$	$1 \mathrm{~ns}-5 \mathrm{~ns}$
$1 \mathrm{MB}-4 \mathrm{MB}$	$5 \mathrm{~ns}-25 \mathrm{~ns}$
$4 \mathrm{~GB}-256 \mathrm{~GB}$	$25 \mathrm{~ns}-100 \mathrm{~ns}$
$1 \mathrm{~TB}+$	$3-10 \mathrm{~ms}$
Lots	$10-2000 \mathrm{~ms}$

* in some data centers, it's faster store all data in RAM and access it over the network than to use magnetic disks!

External Data Structures

- Suppose you have a data set that's way too big to fit in RAM.
- The data structure is on disk and read into RAM as needed.
- Data from disk doesn't come back one byte at a time, but rather one page at a time.
- Goal: Minimize the number of disk reads and writes, not the number of instructions executed.

External Data Structures

- Suppose you have a data set that's way too big to fit in RAM.
- The data structure is on disk and read into RAM as needed.
- Data from disk doesn't come back one byte at a time, but rather one page at a time.
- Goal: Minimize the number of disk reads and writes, not the number of instructions executed.

External Data Structures

- Suppose you have a data set that's way too big to fit in RAM.
- The data structure is on disk and read into RAM as needed.
- Data from disk doesn't come back one byte at a time, but rather one page at a time.
- Goal: Minimize the number of disk reads and writes, not the number of instructions executed.

Analyzing B-Trees

- Suppose we tune b so that each node in the B-tree fits inside a single disk page.
- We only care about the number of disk pages read or written.
- It's so much slower than RAM that it'll dominate the runtime.
- Question: What is the cost of a lookup in a B-tree in this model?
- Question: What is the cost of inserting into a B-tree in this model?

Analyzing B-Trees

- Suppose we tune b so that each node in the B-tree fits inside a single disk page.
- We only care about the number of disk pages read or written.
- It's so much slower than RAM that it'll dominate the runtime.
- Question: What is the cost of a lookup in a B-tree in this model?
- Answer: The height of the tree, $\mathrm{O}\left(\log _{b} n\right)$.
- Question: What is the cost of inserting into a B-tree in this model?
- Answer: The height of the tree, $\mathrm{O}\left(\log _{b} n\right)$.

External Data Structures

- Because B-trees have a huge branching factor, they're great for on-disk storage.
- Disk block reads/writes are slow compared to CPU operations.
- The high branching factor minimizes the number of blocks to read during a lookup.
- Extra work scanning inside a block offset by these savings.
- Major use cases for B-trees and their variants (B+-trees, H-trees, etc.) include
- databases (huge amount of data stored on disk);
- file systems (ext4, NTFS, ReFS); and, recently,
- in-memory data structures (due to cache effects).

Analyzing B-Trees

- The cost model we use will change our overall analysis.
- Cost is number of operations:
$\mathbf{O}(\log \boldsymbol{n})$ per lookup, $\mathbf{O}\left(\boldsymbol{b} \log _{\boldsymbol{b}} \boldsymbol{n}\right)$ per insertion.
- Cost is number of blocks accessed:
$\mathbf{O}\left(\boldsymbol{l o g}_{\boldsymbol{b}} \boldsymbol{n}\right)$ per lookup, $\mathbf{O}\left(\boldsymbol{\operatorname { l o g }}_{\boldsymbol{b}} \boldsymbol{n}\right)$ per insertion.
- Going forward, we'll use operation counts as our cost model, though there's a ton of research done on designing data structures that are optimal from a cache miss perspective!

The Story So Far

- We've just built a simple, elegant, balanced multiway tree structure.
- We can use them as balanced trees in main memory (2-3-4 trees).
- We can use them to store huge quantities of information on disk (B-trees).
- We've seen that different cost models are appropriate in different situations.

So... red/black trees?

Red/Black Trees

- A red/black tree is a BST with the following properties:
- Every node is either red or black.
- The root is black.
- No red node has a red child.
- Every root-null path in the tree passes through the same number of black nodes.

Red/Black Trees

- A red/black tree is a BST with the following properties:
- Every node is either red or black.
- The root is black.
- No red node has a red child.
- Every root-null path in the tree passes through the same number of black nodes.
- After we hoist red nodes into
 their parents:
- Each "meta node" has 1, 2, or 3 keys in it. (No red node has a red child.)
- Each "meta node" is either a leaf or has one more child than key. (Rootnull path property.)
- Each "meta leaf" is at the same depth. (Root-null path property.)

Data Structure Isometries

- Red/black trees are an isometry of 2-3-4 trees; they represent the structure of 2-3-4 trees in a different way.
- Many data structures can be designed and analyzed in the same way.
- Huge advantage: Rather than memorizing a complex list of red/black tree rules, just think about what the equivalent operation on the corresponding 2-3-4 tree would be and simulate it with BST operations.

Next Time

- Deriving Red/Black Trees
- Figuring out rules for red/black trees using our isometry.
- Tree Rotations
- A key operation on binary search trees.
- Augmented Trees
- Building data structures on top of balanced BSTs.

