
  

CS166: Advanced Data Structures

Welcome!



  

Why study advanced data structures?



  

Why Study Advanced Data Structures?

● Expand your library of problem-solving tools. 
● We’ll cover a wide range of tools for a bunch of interesting 

problems. These come in handy, both IRL an in Theoryland.
● Learn new problem-solving techniques.

● We’ll see some truly beautiful problem-solving strategies that 
work beyond just a single example.

● Challenge your intuition for the limits of efficiency.
● You'd be amazed how many times we'll take a problem you're 

sure you know how to solve and then see how to solve it faster.
● See the beauty of theoretical computer science.

● We'll cover some amazingly clever theoretical techniques in 
the course of this class. You'll love them.



  

Where is CS166 situated in
Stanford’s CS sequence?



  

CS103
a₀ = 1       an+1 = 2an + n

 

Theorem: aₙ = 2n+1 – n – 1.
Proof: By induction. As a base case, when
    n = 0, we have
 

2n+1 – n – 1 = 21 – 0 – 1 = 1 = a₀.
 

    For the inductive step, assume that
    ak = 2k+1 – k – 1. Then
 

       ak+1 = 2ak + k
= 2k+2 – 2k – 2 + k
= 2(k+1)+1 – (k+1) – 1, 

    as required. ■

CS109

E[∑i=1

n

X i] = ∑
i=1

n

E [ X i ]

Pr [X ≥ c] ≤ E [ X ]
c

CS161

T(n) = aT(n / b) + O(nd)

    n2 log n2 = O(n3)
     n2 log n2 = Ω(n2)
     n2 log n2 = Θ(n2 log n)

CS106B / CS107

1

0 3

2 4
make && gdb ./a.out

struct Node {
   int value;
   Node* left;
   Node* right;
};

Our (Transitive) Prerequisites



  

Who are we?



  

Course Staff

Keith Schwarz (htiek@cs.stanford.edu)

Kevin Tan

Ping us over EdStem with questions!

mailto:htiek@cs.stanford.edu


  

https://cs166.stanford.edu

The Course Website

https://cs166.stanford.edu/


  

Course Requirements
● We plan on having six problem sets.

● Problem sets may be completed individually or in a pair. 
(Exception: PS0 must be done individually.)

● They’re a mix of written problems and C++ coding exercises.
● You’ll submit one copy of the problem set regardless of how many 

people worked on it.
● Need to find a partner? Use EdStem, stop by office hours, or send 

us an email.
● We plan on having a midterm exam.

● The plan is to hold it on Tuesday, May 30th from 7:00PM – 10:00PM.
● We plan on requiring lecture participation.

● This will help build community and improve learning outcomes.
● We’ll use PollEV for in-class questions starting in Week 3.

● Why “plan on?” Two reasons.



  

Problem Set 0
● Problem Set 0 goes out today. It’s due next 

Tuesday at noon Pacific time.
● This is mostly designed as a refresher of 

topics from the prerequisite courses CS103, 
CS107, CS109, and CS161.

● If you’re mostly comfortable with these 
problems and are just “working through 
some rust,” then you’re probably in the 
right place!



  

Let’s Get Started!



  

Range Minimum Queries



  

41 59 26 5331 41 59 26 53 58 97 93

The RMQ Problem
● The Range Minimum Query problem 

(RMQ for short) is the following:
Given an array A and two indices i ≤ j, 

what is the smallest element out of
A[i], A[i + 1], …, A[j – 1], A[j]?

31 58 97 93



  

The RMQ Problem
● The Range Minimum Query problem 

(RMQ for short) is the following:
Given an array A and two indices i ≤ j, 

what is the smallest element out of
A[i], A[i + 1], …, A[j – 1], A[j]?

● Notation: We'll denote a range minimum 
query in array A between indices i and j 
as RMQA(i, j).

● For simplicity, let's assume 0-indexing.



  

A Trivial Solution
● There's a simple O(n)-time algorithm for 

evaluating RMQA(i, j): just iterate across the 
elements between i and j, inclusive, and take 
the minimum!

● So... why is this problem at all algorithmically 
interesting?

● Suppose that the array A is fixed in advance 
and you're told that we're going to make 
multiple queries on it.

● Can we do better than the naïve algorithm?



  

An Observation
● In an array of length n, there are only Θ(n2) distinct possible 

queries.
● Why?

5 subarrays of 
length 1

4 subarrays of 
length 2

3 subarrays of 
length 3

2 subarrays of 
length 4

1 subarray of 
length 5



  

A Different Approach
● There are only Θ(n2) possible RMQs in an array of 

length n.
● If we precompute all of them, we can answer RMQ in 

time O(1) per query.

16 18 33 98
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Building the Table
● One simple approach: for each entry in 

the table, iterate over the range in 
question and find the minimum value.

● How efficient is this?
● Number of entries: Θ(n2).
● Time to evaluate each entry: O(n).
● Time required: O(n3).

● The runtime is O(n3) using this approach. 
Is it also Θ(n3)?



  

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7

Each entry in yellow requires at 
least n / 2 = Θ(n) work to evaluate.

There are roughly n2 / 8 = Θ(n2) 
entries here.

Total work required: Θ(n3)



  

★

A Different Approach
● Naïvely precomputing the table is inefficient.
● Can we do better?
● Claim: We can precompute all subarrays in time Θ(n2) 

using dynamic programming.
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● Naïvely precomputing the table is inefficient.
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using dynamic programming.
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A Different Approach
● Naïvely precomputing the table is inefficient.
● Can we do better?
● Claim: We can precompute all subarrays in time Θ(n2) 

using dynamic programming.
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A Different Approach
● Naïvely precomputing the table is inefficient.
● Can we do better?
● Claim: We can precompute all subarrays in time Θ(n2) 
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A Different Approach
● Naïvely precomputing the table is inefficient.
● Can we do better?
● Claim: We can precompute all subarrays in time Θ(n2) 

using dynamic programming.

16 18 33 98

0 1 2 3

0 1 2 3

0

1

2

3



  

18

16

98

33

98

33

18

16 16

A Different Approach
● Naïvely precomputing the table is inefficient.
● Can we do better?
● Claim: We can precompute all subarrays in time Θ(n2) 

using dynamic programming.
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A Different Approach
● Naïvely precomputing the table is inefficient.
● Can we do better?
● Claim: We can precompute all subarrays in time Θ(n2) 

using dynamic programming.
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using dynamic programming.
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A Different Approach
● Naïvely precomputing the table is inefficient.
● Can we do better?
● Claim: We can precompute all subarrays in time Θ(n2) 

using dynamic programming.
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A Different Approach
● Naïvely precomputing the table is inefficient.
● Can we do better?
● Claim: We can precompute all subarrays in time Θ(n2) 

using dynamic programming.
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A Different Approach
● Naïvely precomputing the table is inefficient.
● Can we do better?
● Claim: We can precompute all subarrays in time Θ(n2) 

using dynamic programming.
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Some Notation
● We'll say that an RMQ data structure has time 

complexity ⟨p(n), q(n)⟩ if
● preprocessing takes time at most p(n) and
● queries take time at most q(n).

● We now have two RMQ data structures:
● ⟨O(1), O(n)⟩ with no preprocessing.
● ⟨O(n2), O(1)⟩ with full preprocessing.

● These are two extremes on a curve of tradeoffs: no 
preprocessing versus full preprocessing.

● Question: Is there a “golden mean” between 
these extremes?



  

Another Approach: Block Decomposition



  

A Block-Based Approach
● Split the input into O(n / b) blocks of 

some “block size” b.
● Here, b = 4.

31 41 59 26 53 58 97 93 23 84 62 43 33 83 27 95 2 88 41 97



  

A Block-Based Approach
● Split the input into O(n / b) blocks of 

some “block size” b.
● Here, b = 4.

● Compute the minimum value in each 
block.

31 41 59 26 53 58 97 93 23 84 62 43 33 83 27 95 2 88 41 97

26 53 23 27 2



  

A Block-Based Approach
● Split the input into O(n / b) blocks of 

some “block size” b.
● Here, b = 4.

● Compute the minimum value in each 
block.

31 41 59 26 53 58 97 93 23 84 62 43 33 83 27 95 2 88 41 97

26 53 23 27 2



  

Analyzing the Approach
● Let's analyze this approach in terms of n and b.
● Preprocessing time:

● O(b) work on O(n / b) blocks to find minima.
● Total work: O(n).

● Time to evaluate RMQA(i, j):
● O(1) work to find block indices (divide by block size).
● O(b) work to scan inside i and j's blocks.
● O(n / b) work looking at block minima between i and j.
● Total work: O(b + n / b).

31 41 59 26 53 58 97 93 23 84 62 43 33 83 27 95 2 88 41 97

26 53 23 27 2



  

Intuiting O(b + n / b)
● As b increases:

● The b term rises (more elements to scan within each 
block).

● The n / b term drops (fewer blocks to look at).
● As b decreases:

● The b term drops (fewer elements to scan within a 
block).

● The n / b term rises (more blocks to look at).
● Is there an optimal choice of b given these constraints?

31 41 59 26 53 58 97 93 23 84 62 43 33 83 27 95 2 88 41 97

26 53 23 27 2



  

Optimizing b
● What choice of b minimizes b + n / b?
● Start by taking the derivative:

● Setting the derivative to zero:

● Asymptotically optimal runtime is when b = n1/2.
● In that case, the runtime is

O(b + n / b) = O(n1/2 + n / n1/2) = O(n1/2 + n1/2) = O(n1/2)

d
db (b+n/b) = 1− n

b2

1−n/b2 = 0
1 = n/b2

b2 = n
b = √n



  

Summary of Approaches
● Three solutions so far:

● Full preprocessing: ⟨O(n2), O(1)⟩.
● Block partition: ⟨O(n), O(n1/2)⟩.
● No preprocessing: ⟨O(1), O(n)⟩.

● Modest preprocessing yields modest 
performance increases.

● Question: Can we do better?



  

A Second Approach: Sparse Tables



  

An Intuition
● The ⟨O(n2), O(1)⟩ solution gives fast 

queries because every range we might 
look up has already been precomputed.

● This solution is slow overall because we 
have to compute the minimum of every 
possible range.

● Question: Can we still get constant-time 
queries without preprocessing all 
possible ranges?
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The Intuition
● It's still possible to answer any query in time O(1) 

without precomputing RMQ over all ranges.
● If we precompute the answers over too many 

ranges, the preprocessing time will be too large.
● If we precompute the answers over too few ranges, 

the query time won't be O(1).
● Goal: Precompute RMQ over a set of ranges such 

that
● there are o(n2) total ranges, but
● there are enough ranges to support O(1) query 

times.



  

Some Observations



  

The Approach
● For each index i, compute RMQ for ranges 

starting at i of size 1, 2, 4, 8, 16, …, 2k as long 
as they fit in the array.
● Gives both large and small ranges starting at 

any point in the array.
● Only O(log n) ranges computed for each array 

element.
● Total number of ranges: O(n log n).

● Claim: Any range in the array can be formed 
as the union of two of these ranges.



  

Creating Ranges

18

16
16



  

Creating Ranges

7

4
4



  

Doing a Query
● To answer RMQA(i, j):

● Find the largest k such that 2k ≤ j – i + 1.
– With the right preprocessing, this can be done in 

time O(1); you'll figure out how in an upcoming 
assignment. 😃

● The range [i, j] can be formed as the overlap 
of the ranges [i, i + 2k – 1] and [j – 2k + 1, j].

● Each range can be looked up in time O(1).
● Total time: O(1).



  

★

Precomputing the Ranges
● There are O(n log n) ranges to precompute.
● Using dynamic programming, we can compute 

all of them in time O(n log n).
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Sparse Tables
● This data structure is called a sparse 

table.
● It gives an ⟨O(n log n), O(1)⟩ solution to 

RMQ.
● This is asymptotically better than 

precomputing all possible ranges!



  

The Story So Far
● We now have the following solutions for 

RMQ:
● Precompute all: ⟨O(n2), O(1)⟩.
● Sparse table: ⟨O(n log n), O(1)⟩.
● Blocking: ⟨O(n), O(n1/2)⟩.
● Precompute none: ⟨O(1), O(n)⟩.

● Can we do better?



  

A Third Approach: Hybrid Strategies



  

Blocking Revisited
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Blocking Revisited
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This is just RMQ on 
the block minima!



  

Blocking Revisited
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31 41 59 26 53 58 97 93 23 84 62 64 33 83 2731 41 59 26 53 58 97 93 23 84 62 64 33 83 27

31 26 23 62 27

This is just RMQ 
inside the blocks!



  

The Framework

31 41 59 26 53 58 97 93 23 84 62 64 33 83 27

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Summary
RMQ

31 26 23 62 27

● Split the input into blocks of size b.
● Form an array of the block minima.
● Construct a “summary” RMQ structure over the block minima.
● Construct “block” RMQ structures for each block.
● Aggregate the results together.



  

Analyzing Efficiency

31 41 59 26 53 58 97 93 23 84 62 64 33 83 27

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Summary
RMQ

31 26 23 62 27

● Suppose we use a ⟨p₁(n), q₁(n)⟩-time RMQ for the summary RMQ 
and a ⟨p₂(n), q₂(n)⟩-time RMQ for each block, with block size b.

● What is the preprocessing time for this hybrid structure?
● O(n) time to compute the minima of each block.
● O(p₁(n / b)) time to construct RMQ on the minima.
● O((n / b) p₂(b)) time to construct the block RMQs.

● Total construction time is O(n + p₁(n / b) + (n / b) p₂(b)).

Block size: b.
# Blocks: O(n / b).



  

Analyzing Efficiency

31 41 59 26 97 93 23 84 62 64 83 27

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Summary
RMQ

31 26

53 58 33

23 62 27

● Suppose we use a ⟨p₁(n), q₁(n)⟩-time RMQ for the summary RMQ 
and a ⟨p₂(n), q₂(n)⟩-time RMQ for each block, with block size b.

● What is the query time for this hybrid structure?
● O(q₁(n / b)) time to query the summary RMQ.
● O(q₂(b)) time to query the block RMQs.

● Total query time: O(q₁(n / b) + q₂(b)).

53 58 33

23 62

Block size: b.
# Blocks: O(n / b).



  

Analyzing Efficiency

31 41 59 26 53 58 97 93 23 84 62 64 33 83 27

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Summary
RMQ

31 26 23 62 27

● Suppose we use a ⟨p₁(n), q₁(n)⟩-time RMQ for the summary RMQ 
and a ⟨p₂(n), q₂(n)⟩-time RMQ for each block, with block size b.

● Hybrid preprocessing time:

O(n + p₁(n / b) + (n / b)p₂(b))
● Hybrid query time:

O(q₁(n / b) + q₂(b))

Block size: b.
# Blocks: O(n / b).



  

● The ⟨O(n), O(n1/2)⟩ block-based structure from earlier uses 
this framework with the ⟨O(1), O(n)⟩ no-preprocessing 
RMQ structure and b = n1/2.
According to our formulas, the preprocessing time should 
be
    =   =  O(n + p₁(n / b) + (n / b) p₂(b))
    =    = O(n + 1 + n / b)
    =   == O(n)
The query time should be
    =   == O(q₁(n / b) + q₂(b))
    =   == O(n / b + b)
    =   == O(n1/2)
Looks good so far!

A Sanity Check

Do no further preprocessing 
than just computing the 

block minima.

Don’t do anything fancy per 
block. Just do linear scans 

over each of them.

31 41 59 26 53 58 97 93 23 84 62 64 33 83 27

31 26 23 62 27



  

For Reference
 

p₁(n) = O(1)
q₁(n) = O(n)

 

p₂(n) = O(1)
q₂(n) = O(n)

 

b = n1/2

A Sanity Check
● The ⟨O(n), O(n1/2)⟩ block-based structure from earlier uses 

this framework with the ⟨O(1), O(n)⟩ no-preprocessing 
RMQ structure and b = n1/2.

● According to our formulas, the preprocessing time should 
be
    =   = O(n + p₁(n / b) + (n / b) p₂(b))
    =    = O(n + 1 + n / b)
    =   == O(n)

● The query time should be
    =   == O(q₁(n / b) + q₂(b))
    =   == O(n / b + b)
    =   == O(n1/2)

● Looks good so far!



  

An Observation
● We can use any data structures we’d like for the summary 

and block RMQs.
● Suppose we use an ⟨O(n log n), O(1)⟩ sparse table for the 

summary RMQ.
● If the block size is b, the time to construct a sparse table 

over the (n / b) blocks is O((n / b) log (n / b)).
● Cute trick: If b = Θ(log n), the time to construct a 

sparse table over the minima is
= O((n / log n) log (n / log n))
= O((n / log n) log n)    (O is an upper bound)
= O(n).         (logs cancel out)



  

One Possible Hybrid
● Set the block size to log n.
● Use a sparse table for the summary RMQ.
● Use the “no preprocessing” structure for each block.

31 41 59 26 53 58 97 93 23 84 62 64 33 83 27

Summary RMQ
(Sparse table)

31 26 23 62 27

Handled via 
linear scan

Handled via 
linear scan

Table 
lookups



  

One Possible Hybrid
● Set the block size to log n.
● Use a sparse table for the summary RMQ.
● Use the “no preprocessing” structure for each block.
● Preprocessing time:

   = O(n + p₁(n / b) + (n / b) p₂(b))
   = O(n + n + n / b)
   = O(n)

● Query time:
   = O(q₁(n / b) + q₂(b))
   = O(1 + b)
   = O(log n)

● An ⟨O(n), O(log n)⟩ solution!

For Reference
 

  p₁(n) = O(n log n)
  q₁(n) = O(1)
 

  p₂(n) = O(1)
  q₂(n) = O(n)
 

  b = log n



  

Another Hybrid
● Let's suppose we use the ⟨O(n log n), O(1)⟩ sparse table 

for both the summary and block RMQ structures with a 
block size of log n.

31 41 59 26 53 58 97 93 23 84 62 64 33 83 27

Sparse Table Sparse Table Sparse Table Sparse Table Sparse Table

Summary RMQ
(Sparse table)

31 26 23 62 27

Table 
lookups

Table 
lookups

Table 
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Another Hybrid
● Let's suppose we use the ⟨O(n log n), O(1)⟩ sparse table 

for both the summary and block RMQ structures with a 
block size of log n.

● The preprocessing time is
   = O(n + p₁(n / b) + (n / b) p₂(b))
   = O(n + n + (n / b) b log b)
   = O(n + n log b)

= O(n log log n)
● The query time is

   = O(q₁(n / b) + q₂(b))
   = O(1)

● We have an ⟨O(n log log n), O(1)⟩
solution to RMQ!

For Reference
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One Last Hybrid
● Suppose we use a sparse table for the summary RMQ 

and the ⟨O(n), O(log n)⟩ solution for the block RMQs. 
Let's choose b = log n.

31 41 59 26 53 58 97 93 23 84 62 64 33 83 27

⟨O(n), O(log n)⟩
Hybrid

⟨O(n), O(log n)⟩
Hybrid

⟨O(n), O(log n)⟩
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⟨O(n), O(log n)⟩
Hybrid

⟨O(n), O(log n)⟩
Hybrid

Summary RMQ
(Sparse table)

31 26 23 62 27

It’s
complicated.

It’s
complicated.

Table 
lookups



  

One Last Hybrid
● Suppose we use a sparse table for the summary RMQ 

and the ⟨O(n), O(log n)⟩ solution for the block RMQs. 
Let's choose b = log n.

● The preprocessing time is
   = O(n + p₁(n / b) + (n / b) p₂(b))
   = O(n + n + (n / b) b)

= O(n)
● The query time is

   = O(q₁(n / b) + q₂(b))
   = O(1 + log b)
   = O(log log n)

● We have an ⟨O(n), O(log log n)⟩
solution to RMQ!

For Reference
 

  p₁(n) = O(n log n)
  q₁(n) = O(1)
 

  p₂(n) = O(n)
  q₂(n) = O(log n)
 

  b = log n



  

Where We Stand
● We've seen a bunch of RMQ structures 

today:
● No preprocessing: ⟨O(1), O(n)⟩
● Full preprocessing: ⟨O(n2), O(1)⟩
● Block partition: ⟨O(n), O(n1/2)⟩ 
● Sparse table: ⟨O(n log n), O(1)⟩
● Hybrid 1: ⟨O(n), O(log n)⟩
● Hybrid 2: ⟨O(n log log n), O(1)⟩ 
● Hybrid 3: ⟨O(n), O(log log n)⟩
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Where We Stand

We've seen a bunch of RMQ structures 
today:

No preprocessing: ⟨O(1), O(n)⟩
Full preprocessing: ⟨O(n2), O(1)⟩

● Block partition: ⟨O(n), O(n1/2)⟩ 
Sparse table: ⟨O(n log n), O(1)⟩

● Hybrid 1: ⟨O(n), O(log n)⟩
Hybrid 2: ⟨O(n log log n), O(1)⟩ 

● Hybrid 3: ⟨O(n), O(log log n)⟩



  

Is there an ⟨O(n), O(1)⟩ solution to RMQ?

Yes!



  

Next Time
● Cartesian Trees

● A data structure closely related to RMQ.
● The Method of Four Russians

● A technique for shaving off log factors.
● The Fischer-Heun Structure

● A clever, asymptotically optimal RMQ 
structure.
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