CS166: Advanced Data Structures

Welcome!

Why study advanced data structures?

Why Study Advanced Data Structures?

- Expand your library of problem-solving tools.
- We'll cover a wide range of tools for a bunch of interesting problems. These come in handy, both IRL an in Theoryland.
- Learn new problem-solving techniques.
- We'll see some truly beautiful problem-solving strategies that work beyond just a single example.
- Challenge your intuition for the limits of efficiency.
- You'd be amazed how many times we'll take a problem you're sure you know how to solve and then see how to solve it faster.
- See the beauty of theoretical computer science.
- We'll cover some amazingly clever theoretical techniques in the course of this class. You'll love them.

Where is CS166 situated in Stanford's CS sequence?

Our (Transitive) Prerequisites

CS109

$$
\begin{aligned}
& \mathrm{E}\left[\sum_{l=1}^{n} x_{i}\right]=\sum_{i=1}^{n} \mathrm{E}\left[X_{i}\right] \\
& \operatorname{Pr}[X \geq c] \leq \frac{\mathrm{E}[X]}{c}
\end{aligned}
$$

CS103

$$
a_{0}=1 \quad a_{n+1}=2 a_{n}+n
$$

Theorem: $a_{n}=2^{n+1}-n-1$.
Proof: By induction. As a base case, when $n=0$, we have

$$
2^{n+1}-n-1=2^{1}-0-1=1=a_{0} .
$$

For the inductive step, assume that $a_{k}=2^{k+1}-k-1$. Then

$$
\begin{aligned}
a_{k+1} & =2 a_{k}+k \\
& =2^{k+2}-2 k-2+k \\
& =2^{(k+1)+1}-(k+1)-1,
\end{aligned}
$$

as required.

CS161

$$
\begin{gathered}
\mathrm{T}(n)=a \mathrm{~T}(n / b)+\mathrm{O}\left(n^{d}\right) \\
n^{2} \log n^{2}=\mathrm{O}\left(n^{3}\right) \\
n^{2} \log n^{2}=\Omega\left(n^{2}\right) \\
n^{2} \log n^{2}=\Theta\left(n^{2} \log n\right)
\end{gathered}
$$

Who are we?

Course Staff

Keith Schwarz (htiek@cs.stanford.edu)

Kevin Tan

Ping us over EdStem with questions!

The Course Website

https://cs166.stanford.edu

Course Requirements

- We plan on having six problem sets.
- Problem sets may be completed individually or in a pair. (Exception: PS0 must be done individually.)
- They're a mix of written problems and C++ coding exercises.
- You'll submit one copy of the problem set regardless of how many people worked on it.
- Need to find a partner? Use EdStem, stop by office hours, or send us an email.
- We plan on having a midterm exam.
- The plan is to hold it on Tuesday, May 30 ${ }^{\text {th }}$ from 7:00PM - 10:00PM.
- We plan on requiring lecture participation.
- This will help build community and improve learning outcomes.
- We'll use PollEV for in-class questions starting in Week 3.
- Why "plan on?" Two reasons.

Problem Set 0

- Problem Set 0 goes out today. It's due next Tuesday at noon Pacific time.
- This is mostly designed as a refresher of topics from the prerequisite courses CS103, CS107, CS109, and CS161.
- If you're mostly comfortable with these problems and are just "working through some rust," then you're probably in the right place!

Let’s Get Started!

Range Minimum Queries

The RMQ Problem

- The Range Minimum Query problem ($\boldsymbol{R M Q}$ for short) is the following:
Given an array A and two indices $i \leq j$, what is the smallest element out of

$$
\mathrm{A}[i], \mathrm{A}[i+1], \ldots, \mathrm{A}[j-1], \mathrm{A}[j] ?
$$

The RMQ Problem

- The Range Minimum Query problem ($\boldsymbol{R M Q}$ for short) is the following:
Given an array A and two indices $i \leq j$, what is the smallest element out of

$$
\mathrm{A}[i], \mathrm{A}[i+1], \ldots, \mathrm{A}[j-1], \mathrm{A}[j] ?
$$

- Notation: We'll denote a range minimum query in array A between indices i and j as $\mathbf{R M Q}_{\mathrm{A}}(\boldsymbol{i}, \boldsymbol{j})$.
- For simplicity, let's assume 0-indexing.

A Trivial Solution

- There's a simple $O(n)$-time algorithm for evaluating $\mathrm{RMQ}_{\mathrm{A}}(i, j)$: just iterate across the elements between i and j, inclusive, and take the minimum!
- So... why is this problem at all algorithmically interesting?
- Suppose that the array A is fixed in advance and you're told that we're going to make multiple queries on it.
- Can we do better than the naïve algorithm?

An Observation

- In an array of length n, there are only $\Theta\left(n^{2}\right)$ distinct possible queries.
- Why?

1 subarray of length 5

2 subarrays of length 4

3 subarrays of length 3

4 subarrays of length 2

5 subarrays of length 1

A Different Approach

- There are only $\Theta\left(n^{2}\right)$ possible RMQs in an array of length n.
- If we precompute all of them, we can answer RMQ in time $O(1)$ per query.

Building the Table

- One simple approach: for each entry in the table, iterate over the range in question and find the minimum value.
- How efficient is this?
- Number of entries: $\Theta\left(n^{2}\right)$.
- Time to evaluate each entry: O(n).
- Time required: $\mathrm{O}\left(n^{3}\right)$.
- The runtime is $\mathrm{O}\left(n^{3}\right)$ using this approach. Is it also $\Theta\left(n^{3}\right)$?
$\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$

A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- Claim: We can precompute all subarrays in time $\Theta\left(n^{2}\right)$ using dynamic programming.

A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- Claim: We can precompute all subarrays in time $\Theta\left(n^{2}\right)$ using dynamic programming.

A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- Claim: We can precompute all subarrays in time $\Theta\left(n^{2}\right)$ using dynamic programming.

A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- Claim: We can precompute all subarrays in time $\Theta\left(n^{2}\right)$ using dynamic programming.

A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- Claim: We can precompute all subarrays in time $\Theta\left(n^{2}\right)$ using dynamic programming.

A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- Claim: We can precompute all subarrays in time $\Theta\left(n^{2}\right)$ using dynamic programming.

	0		1	2
3				
0	16	\star		
1		18		
2			33	
3				98

A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- Claim: We can precompute all subarrays in time $\Theta\left(n^{2}\right)$ using dynamic programming.

	0	1	2	3
0	16	16		
1		18		
2			33	
3				98

A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- Claim: We can precompute all subarrays in time $\Theta\left(n^{2}\right)$ using dynamic programming.

A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- Claim: We can precompute all subarrays in time $\Theta\left(n^{2}\right)$ using dynamic programming.

A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- Claim: We can precompute all subarrays in time $\Theta\left(n^{2}\right)$ using dynamic programming.

				0	0		2	3
					16	16		
				1		18	18	
16	18	33	98	2			33	33
0	1	2	3	3				98

A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- Claim: We can precompute all subarrays in time $\Theta\left(n^{2}\right)$ using dynamic programming.

	0		1	2
3				
0	16	16	\star	
1		18	18	
2			33	33
3				98

A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- Claim: We can precompute all subarrays in time $\Theta\left(n^{2}\right)$ using dynamic programming.

				0	01		2	3
					16	16	16	16
				1		18	18	18
16	18	33	98	2			33	33
0	1	2	3	3				98

Some Notation

- We'll say that an RMQ data structure has time complexity $\langle\boldsymbol{p}(\boldsymbol{n}), \boldsymbol{q}(\boldsymbol{n})$) if
- preprocessing takes time at most $p(n)$ and
- queries take time at most $q(n)$.
- We now have two RMQ data structures:
- $\langle\mathrm{O}(1), \mathrm{O}(n)\rangle$ with no preprocessing.
- $\left\langle\mathrm{O}\left(n^{2}\right), \mathrm{O}(1)\right\rangle$ with full preprocessing.
- These are two extremes on a curve of tradeoffs: no preprocessing versus full preprocessing.
- Question: Is there a "golden mean" between these extremes?

Another Approach: Block Decomposition

A Block-Based Approach

- Split the input into $\mathrm{O}(\mathrm{n} / \mathrm{b})$ blocks of some "block size" b.
- Here, $b=4$.

31415926	53589793	23846243	33832795	2884197

A Block-Based Approach

- Split the input into $\mathrm{O}(n / b)$ blocks of some "block size" b.
- Here, $b=4$.
- Compute the minimum value in each block.

26				
	53	23	27	2
31415926	53589793	23846243	33832795	2884197

A Block-Based Approach

- Split the input into $O(n / b)$ blocks of some "block size" b.
- Here, $b=4$.
- Compute the minimum value in each block.

Analyzing the Approach

- Let's analyze this approach in terms of n and b.
- Preprocessing time:
- $\mathrm{O}(b)$ work on $\mathrm{O}(n / b)$ blocks to find minima.
- Total work: O(n).
- Time to evaluate $\mathrm{RMQ}_{\mathrm{A}}(i, j)$:
- O(1) work to find block indices (divide by block size).
- $O(b)$ work to scan inside i and j 's blocks.
- $\mathrm{O}(n / b)$ work looking at block minima between i and j.
- Total work: $\mathbf{O}(\boldsymbol{b}+\boldsymbol{n} / \boldsymbol{b})$.

26	53	23	27	2
31415926	53589793	23846243	33832795	2884197

Intuiting $\mathrm{O}(\boldsymbol{b}+\boldsymbol{n} / \boldsymbol{b})$

- As b increases:
- The \boldsymbol{b} term rises (more elements to scan within each block).
- The $\boldsymbol{n} / \boldsymbol{b}$ term drops (fewer blocks to look at).
- As b decreases:
- The b term drops (fewer elements to scan within a block).
- The $\boldsymbol{n} / \boldsymbol{b}$ term rises (more blocks to look at).
- Is there an optimal choice of b given these constraints?

26	53	23	27	2
31415926	53589793	23846243	33832795	2884197

Optimizing b

- What choice of b minimizes $b+n / b$?
- Start by taking the derivative:

$$
\frac{d}{d b}(b+n / b)=1-\frac{n}{b^{2}}
$$

- Setting the derivative to zero:

$$
\begin{array}{clc}
1-n / b^{2} & = & 0 \\
1 & =n / b^{2} \\
b^{2} & = & n \\
b & = & \sqrt{n}
\end{array}
$$

- Asymptotically optimal runtime is when $b=n^{1 / 2}$.
- In that case, the runtime is

$$
\mathrm{O}(b+n / b)=\mathrm{O}\left(n^{1 / 2}+n / n^{1 / 2}\right)=\mathrm{O}\left(n^{1 / 2}+n^{1 / 2}\right)=\mathbf{O}\left(\boldsymbol{n}^{1 / 2}\right)
$$

Summary of Approaches

- Three solutions so far:
- Full preprocessing: $\left\langle\mathrm{O}\left(n^{2}\right), \mathrm{O}(1)\right\rangle$.
- Block partition: $\left\langle O(n), \quad O\left(n^{1 / 2}\right)\right\rangle$.
- No preprocessing: $\langle O(1), O(n)\rangle$.
- Modest preprocessing yields modest performance increases.
- Question: Can we do better?

A Second Approach: Sparse Tables

An Intuition

- The $\left\langle O\left(n^{2}\right), O(1)\right\rangle$ solution gives fast queries because every range we might look up has already been precomputed.
- This solution is slow overall because we have to compute the minimum of every possible range.
- Question: Can we still get constant-time queries without preprocessing all possible ranges?

An Observation

An Observation

									0		1	2		4	5	6	7
								0	31		31	31					
								1			41	41		26			
								2				59		26	26		
31	41	59	26	53	58	97	93	3						26	26	26	
0	1	2	3	4	5	6	7	4						53	53	53	53
								5							58	58	58
								6								97	93
								7									93

An Observation

The Intuition

- It's still possible to answer any query in time $\mathrm{O}(1)$ without precomputing RMQ over all ranges.
- If we precompute the answers over too many ranges, the preprocessing time will be too large.
- If we precompute the answers over too few ranges, the query time won't be $O(1)$.
- Goal: Precompute RMQ over a set of ranges such that
- there are $o\left(n^{2}\right)$ total ranges, but
- there are enough ranges to support $O(1)$ query times.

Some Observations

The Approach

- For each index i, compute RMQ for ranges starting at i of size $1,2,4,8,16, \ldots, 2^{k}$ as long as they fit in the array.
- Gives both large and small ranges starting at any point in the array.
- Only O(log n) ranges computed for each array element.
- Total number of ranges: $O(n \log n)$.
- Claim: Any range in the array can be formed as the union of two of these ranges.

Creating Ranges

Creating Ranges

Doing a Query

- To answer $\mathrm{RMQ}_{\mathrm{A}}(i, j)$:
- Find the largest k such that $2^{k} \leq j-i+1$.
- With the right preprocessing, this can be done in time $\mathrm{O}(1)$; you'll figure out how in an upcoming assignment.
- The range $[i, j]$ can be formed as the overlap of the ranges $\left[i, i+2^{k}-1\right]$ and $\left[j-2^{k}+1, j\right]$.
- Each range can be looked up in time $O(1)$.
- Total time: O(1).

Precomputing the Ranges

- There are $\mathrm{O}(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.

31	41	59	26	53	58	97	93
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$

Precomputing the Ranges

- There are $\mathrm{O}(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.

31	41	59	26	53	58	97	93
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$

	2^{0}	2^{1}	2^{2}	2^{3}
0				
1				
2			\star	
3				
4				
5				
6				
7				

Precomputing the Ranges

- There are $\mathrm{O}(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.

| 31 | 41 | 59 | 26 | 53 | 58 | 97 | 93 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ |

	$2{ }^{0}$	2^{1}	$2^{2} \quad 2^{3}$
0	31		
1	41		
2	59		
3	26		
4	53		
5	58		
6	97		
7	93		

Precomputing the Ranges

- There are $\mathrm{O}(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.

31	41	59	26	53	58	97	93
0	1	2	3	4	5	6	7

	2^{0}	$2{ }^{1}$	2^{2}	2^{3}
0	31	\star		
1	41			
2	59			
3	26			
4	53			
5	58			
6	97			
7	93			

Precomputing the Ranges

- There are $\mathrm{O}(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.

31	41	59	26	53	58	97	93
0	1	2	3	4	5	6	7

	2^{0}	2^{1}	2^{2}	2^{3}
0	31	31		
1	41			
2	59			
3	26			
4	53			
5	58			
6	97			
7	93			

Precomputing the Ranges

- There are $\mathrm{O}(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.

| 31 | 41 | 59 | 26 | 53 | 58 | 97 | 93 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ |

	2^{0}	$2{ }^{1}$	2^{2}	2^{3}
0	31	31		
1	41	41		
2	59	26		
3	26	26		
4	53	53		
5	58	58		
6	97	93		
7	93			

Precomputing the Ranges

- There are $\mathrm{O}(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.

31	41	59	26	53	58	97	93
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$

	2^{0}	$2{ }^{1}$	2^{2}
0	31	31	\star
1	41	41	
2	59	26	
3	26	26	
4	53	53	
5	58	58	
6	97	93	
7	93		

Precomputing the Ranges

- There are $\mathrm{O}(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.

31	41	59	26	53	58	97	93
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$

	$2{ }^{0}$	$2{ }^{1}$	2^{2}	2^{3}
0	31	31	26	26
1	41	41	26	
2	59	26	26	
3	26	26	26	
4	53	53	53	
5	58	58		
6	97	93		
7	93			

Sparse Tables

- This data structure is called a sparse table.
- It gives an $\langle\mathbf{O}(\boldsymbol{n} \log \boldsymbol{n}), \mathbf{O}(\mathbf{1})\rangle$ solution to RMQ.
- This is asymptotically better than precomputing all possible ranges!

The Story So Far

- We now have the following solutions for RMQ:
- Precompute all:
- Sparse table:
- Blocking:
- Precompute none: 〈O(1),
<O(n),
$O(1)\rangle$.
$\langle\mathrm{O}(n \log n), \mathrm{O}(1)\rangle$.
$\left.O\left(n^{1 / 2}\right)\right\rangle$.
$\mathrm{O}(n)\rangle$.
- Can we do better?

A Third Approach: Hybrid Strategies

Blocking Revisited

31			26			23			62			27		
31	41	59	26	53	58	97	93	23	84	62	64	33	83	27

Blocking Revisited

This is just $R M Q$ on the block minima!

Blocking Revisited

This is just RMQ inside the blocks!

The Framework

- Split the input into blocks of size b.
- Form an array of the block minima.
- Construct a "summary" RMQ structure over the block minima.
- Construct "block" RMQ structures for each block.
- Aggregate the results together.

Analyzing Efficiency

- Suppose we use a $\left\langle p_{1}(n), q_{1}(n)\right\rangle$-time RMQ for the summary RMQ and a $\left\langle p_{2}(n), q_{2}(n)\right\rangle$-time RMQ for each block, with block size b.
- What is the preprocessing time for this hybrid structure?
- $\mathbf{O}(n)$ time to compute the minima of each block.
- $\mathbf{O}\left(\boldsymbol{p}_{\mathbf{1}}(\boldsymbol{n} / \boldsymbol{b})\right)$ time to construct RMQ on the minima.
- $\mathbf{O}\left((n / b) p_{2}(b)\right)$ time to construct the block RMQs.
- Total construction time is $\mathbf{O}\left(n+p_{1}(n / b)+(n / b) p_{2}(b)\right)$.

Block size: \boldsymbol{b}.
\# Blocks: $\mathbf{O}(\boldsymbol{n} / \boldsymbol{b})$.

Summary				
RMQ				
31	26	23	62	27

31	41	59	26	53	58	97	93	23	84	62	64	33	83
Block-Level RMQ		Block-Level RMQ		Block-Level RMQ	Block-Level RMQ	Block-Level RMQ							

Analyzing Efficiency

- Suppose we use a $\left\langle p_{1}(n), q_{1}(n)\right\rangle$-time RMQ for the summary RMQ and a $\left\langle p_{2}(n), q_{2}(n)\right\rangle$-time RMQ for each block, with block size b.
- What is the query time for this hybrid structure?
- $\mathbf{O}\left(\boldsymbol{q}_{1}(\boldsymbol{n} / \boldsymbol{b})\right)$ time to query the summary RMQ.
- $\mathbf{O}\left(\boldsymbol{q}_{2}(b)\right)$ time to query the block RMQs.
- Total query time: $\mathbf{O}\left(\boldsymbol{q}_{1}(\boldsymbol{n} / \boldsymbol{b})+\boldsymbol{q}_{\mathbf{2}}(\boldsymbol{b})\right)$.

Analyzing Efficiency

- Suppose we use a $\left\langle p_{1}(n), q_{1}(n)\right\rangle$-time RMQ for the summary RMQ and a $\left\langle p_{2}(n), q_{2}(n)\right\rangle$-time RMQ for each block, with block size b.
- Hybrid preprocessing time:

$$
O\left(n+p_{1}(n / b)+(n / b) p_{2}(b)\right)
$$

- Hybrid query time:

$$
\mathbf{O}\left(q_{1}(n / b)+q_{2}(b)\right)
$$

31	41	59	26	53	58	97	93	23	84	62	64	33	83	27
Block-Level RMQ			Block-Level RMQ			Block-Level RMQ			Block-Level RMQ			Block-Level RMQ		

A Sanity Check

- The $\left\langle\mathrm{O}(n), \mathrm{O}\left(n^{1 / 2}\right)\right\rangle$ block-based structure from earlier uses this framework with the $\langle\mathrm{O}(1), \mathrm{O}(n)\rangle$ no-preprocessing RMQ structure and $b=n^{1 / 2}$.

Do no further preprocessing than just computing the block minima.

Don't do anything fancy per block. Just do linear scans over each of them.

A Sanity Check

- The $\left\langle\mathrm{O}(n), \mathrm{O}\left(n^{1 / 2}\right)\right\rangle$ block-based structure from earlier uses this framework with the $\langle\mathrm{O}(1), \mathrm{O}(n)\rangle$ no-preprocessing RMQ structure and $b=n^{1 / 2}$.
- According to our formulas, the preprocessing time should be

$$
\begin{aligned}
& \mathrm{O}\left(n+p_{1}(n / b)+(n / b) p_{2}(b)\right) \\
= & \mathrm{O}(n+1+n / b) \\
= & \mathbf{O}(\boldsymbol{n})
\end{aligned}
$$

- The query time should be

$$
\begin{aligned}
& \mathrm{O}\left(q_{1}(n / b)+q_{2}(b)\right) \\
= & \mathrm{O}(n / b+b) \\
= & \mathbf{O}\left(\boldsymbol{n}^{1 / 2}\right)
\end{aligned}
$$

- Looks good so far!

For Reference

$$
\begin{gathered}
p_{1}(n)=\mathrm{O}(1) \\
q_{1}(n)=\mathrm{O}(n) \\
p_{2}(n)=\mathrm{O}(1) \\
q_{2}(n)=\mathrm{O}(n) \\
b=n^{1 / 2}
\end{gathered}
$$

An Observation

- We can use any data structures we'd like for the summary and block RMQs.
- Suppose we use an $\langle O(n \log n), O(1)\rangle$ sparse table for the summary RMQ.
- If the block size is b, the time to construct a sparse table over the (n / b) blocks is $\mathbf{O}(\mathbf{n} / \boldsymbol{b}) \log (\boldsymbol{n} / \boldsymbol{b}))$.
- Cute trick: If $\boldsymbol{b}=\Theta(\log \boldsymbol{n})$, the time to construct a sparse table over the minima is

$$
\begin{aligned}
& \mathrm{O}((n / \log n) \log (n / \log n)) \\
= & \mathrm{O}((n / \log n) \log n) \\
= & \mathbf{O}(\boldsymbol{n})
\end{aligned}
$$

(O is an upper bound)

One Possible Hybrid

- Set the block size to $\log n$.
- Use a sparse table for the summary RMQ.
- Use the "no preprocessing" structure for each block.

One Possible Hybrid

- Set the block size to $\log n$.
- Use a sparse table for the summary RMQ.
- Use the "no preprocessing" structure for each block.
- Preprocessing time:

$$
\begin{aligned}
& \mathrm{O}\left(n+p_{1}(n / b)+(n / b) p_{2}(b)\right) \\
= & \mathrm{O}(n+n+n / b)
\end{aligned}
$$

$$
=\mathbf{O}(n)
$$

- Query time:

$$
\begin{aligned}
& \mathrm{O}\left(q_{1}(n / b)+q_{2}(b)\right) \\
= & \mathrm{O}(1+b) \\
= & \mathbf{O}(\log \boldsymbol{n})
\end{aligned}
$$

- An $\langle\mathbf{O}(\mathbf{n}), \mathbf{O}(\log \boldsymbol{n})\rangle$ solution!

$$
\begin{aligned}
& \text { For Reference } \\
& p_{1}(n)=\mathrm{O}(n \log n) \\
& q_{1}(n)=\mathrm{O}(1) \\
& p_{2}(n)=\mathrm{O}(1) \\
& q_{2}(n)=\mathrm{O}(n) \\
& b=\log n
\end{aligned}
$$

Another Hybrid

- Let's suppose we use the $\langle\mathrm{O}(n \log n), \mathrm{O}(1)\rangle$ sparse table for both the summary and block RMQ structures with a block size of $\log n$.

Another Hybrid

- Let's suppose we use the $\langle\mathrm{O}(n \log n), \mathrm{O}(1)\rangle$ sparse table for both the summary and block RMQ structures with a block size of $\log n$.
- The preprocessing time is

$$
\begin{aligned}
& \mathrm{O}\left(n+p_{1}(n / b)+(n / b) p_{2}(b)\right) \\
= & \mathrm{O}(n+n+(n / b) b \log b) \\
= & \mathrm{O}(n+n \log b) \\
= & \mathbf{O}(\boldsymbol{n} \log \log \boldsymbol{n})
\end{aligned}
$$

- The query time is

$$
\begin{aligned}
& \mathrm{O}\left(q_{1}(n / b)+q_{2}(b)\right) \\
= & \mathbf{O}(\mathbf{1})
\end{aligned}
$$

- We have an $\langle\mathbf{O}(\boldsymbol{n} \log \log n), \mathbf{O}(1)\rangle$ solution to RMQ!

$$
\begin{aligned}
& \text { For Reference } \\
& p_{1}(n)=\mathrm{O}(n \log n) \\
& q_{1}(n)=\mathrm{O}(1) \\
& p_{2}(n)=\mathrm{O}(n \log n) \\
& q_{2}(n)=\mathrm{O}(1) \\
& b=\log n
\end{aligned}
$$

One Last Hybrid

- Suppose we use a sparse table for the summary RMQ and the $\langle\mathrm{O}(n), \mathrm{O}(\log n)\rangle$ solution for the block RMQs. Let's choose $b=\log n$.

One Last Hybrid

- Suppose we use a sparse table for the summary RMQ and the $\langle\mathrm{O}(n), \mathrm{O}(\log n)\rangle$ solution for the block RMQs. Let's choose $b=\log n$.
- The preprocessing time is

$$
\begin{aligned}
& \mathrm{O}\left(n+p_{1}(n / b)+(n / b) p_{2}(b)\right) \\
= & \mathrm{O}(n+n+(n / b) b) \\
= & \mathbf{O}(\boldsymbol{n})
\end{aligned}
$$

- The query time is

$$
\begin{aligned}
& \mathrm{O}\left(q_{1}(n / b)+q_{2}(b)\right) \\
= & \mathrm{O}(1+\log b) \\
= & \mathbf{O}(\log \log \boldsymbol{n})
\end{aligned}
$$

- We have an $\langle\mathbf{O}(\boldsymbol{n}), \mathbf{O}(\boldsymbol{\operatorname { l o g } \operatorname { l o g } \boldsymbol { n }) \rangle}$ solution to RMQ!

Where We Stand

- We've seen a bunch of RMQ structures today:
- No preprocessing: $\langle\mathrm{O}(1), \mathrm{O}(n)\rangle$
- Full preprocessing: $\left\langle\mathrm{O}\left(n^{2}\right), \mathrm{O}(1)\right\rangle$
- Block partition: $\left\langle\mathrm{O}(n), \mathrm{O}\left(n^{1 / 2}\right)\right\rangle$
- Sparse table: $\langle\mathrm{O}(n \log n), \mathrm{O}(1)\rangle$
- Hybrid 1: 〈O(n), O(log n))
- Hybrid 2: $\langle\mathrm{O}(n \log \log n), \mathrm{O}(1)\rangle$
- Hybrid 3: \{O(n), O(log log n) \rangle

Where We Stand

We've seen a bunch of RMQ structures today:

No preprocessing: $\langle\mathrm{O}(1), \mathrm{O}(n)\rangle$

- Full preprocessing: $\left\langle\mathrm{O}\left(n^{2}\right), \mathrm{O}(1)\right\rangle$ Block partition: $\left\langle\mathrm{O}(n), \mathrm{O}\left(n^{1 / 2}\right)\right\rangle$
- Sparse table: $\langle\mathrm{O}(n \log n), \mathrm{O}(1)\rangle$

Hybrid 1: 〈O(n), O(log n)〉

- Hybrid 2: $\langle\mathrm{O}(n \log \log n), \mathrm{O}(1)\rangle$ Hybrid 3: $\langle O(n), O(\log \log n)\rangle$

Where We Stand

We've seen a bunch of RMQ structures today:

No preprocessing: $\langle\mathrm{O}(1), \mathrm{O}(n)\rangle$
Full preprocessing: $\left\langle\mathrm{O}\left(n^{2}\right), \mathrm{O}(1)\right\rangle$

- Block partition: $\left\langle\mathrm{O}(n), \mathrm{O}\left(n^{1 / 2}\right)\right\rangle$

Sparse table: $\langle\mathrm{O}(n \log n), \mathrm{O}(1)\rangle$

- Hybrid 1: $\langle\mathrm{O}(n), \mathrm{O}(\log n)\rangle$

Hybrid 2: $\langle\mathrm{O}(n \log \log n), \mathrm{O}(1)\rangle$

- Hybrid 3: $\langle\mathrm{O}(n), \mathrm{O}(\log \log n)\rangle$

Is there an $\langle\mathrm{O}(n), \mathrm{O}(1)\rangle$ solution to RMQ ?

Yes!

Next Time

- Cartesian Trees
- A data structure closely related to RMQ.
- The Method of Four Russians
- A technique for shaving off log factors.
- The Fischer-Heun Structure
- A clever, asymptotically optimal RMQ structure.

