

CS166: Advanced Data Structures

Welcome!

Why study advanced data structures?

Why Study Advanced Data Structures?

● Expand your library of problem-solving tools.
● We’ll cover a wide range of tools for a bunch of interesting

problems. These come in handy, both IRL an in Theoryland.
● Learn new problem-solving techniques.

● We’ll see some truly beautiful problem-solving strategies that
work beyond just a single example.

● Challenge your intuition for the limits of efficiency.
● You'd be amazed how many times we'll take a problem you're

sure you know how to solve and then see how to solve it faster.
● See the beauty of theoretical computer science.

● We'll cover some amazingly clever theoretical techniques in
the course of this class. You'll love them.

Where is CS166 situated in
Stanford’s CS sequence?

CS103
a₀ = 1 an+1 = 2an + n

Theorem: aₙ = 2n+1 – n – 1.
Proof: By induction. As a base case, when
 n = 0, we have

2n+1 – n – 1 = 21 – 0 – 1 = 1 = a₀.

 For the inductive step, assume that
 ak = 2k+1 – k – 1. Then

 ak+1 = 2ak + k
= 2k+2 – 2k – 2 + k
= 2(k+1)+1 – (k+1) – 1,

 as required. ■

CS109

E[∑i=1

n

X i] = ∑
i=1

n

E [X i]

Pr [X ≥ c] ≤ E [X]
c

CS161

T(n) = aT(n / b) + O(nd)

 n2 log n2 = O(n3)
 n2 log n2 = Ω(n2)
 n2 log n2 = Θ(n2 log n)

CS106B / CS107

1

0 3

2 4
make && gdb ./a.out

struct Node {
 int value;
 Node* left;
 Node* right;
};

Our (Transitive) Prerequisites

Who are we?

Course Staff

Keith Schwarz (htiek@cs.stanford.edu)

Kevin Tan

Ping us over EdStem with questions!

mailto:htiek@cs.stanford.edu

https://cs166.stanford.edu

The Course Website

https://cs166.stanford.edu/

Course Requirements
● We plan on having six problem sets.

● Problem sets may be completed individually or in a pair.
(Exception: PS0 must be done individually.)

● They’re a mix of written problems and C++ coding exercises.
● You’ll submit one copy of the problem set regardless of how many

people worked on it.
● Need to find a partner? Use EdStem, stop by office hours, or send

us an email.
● We plan on having a midterm exam.

● The plan is to hold it on Tuesday, May 30th from 7:00PM – 10:00PM.
● We plan on requiring lecture participation.

● This will help build community and improve learning outcomes.
● We’ll use PollEV for in-class questions starting in Week 3.

● Why “plan on?” Two reasons.

Problem Set 0
● Problem Set 0 goes out today. It’s due next

Tuesday at noon Pacific time.
● This is mostly designed as a refresher of

topics from the prerequisite courses CS103,
CS107, CS109, and CS161.

● If you’re mostly comfortable with these
problems and are just “working through
some rust,” then you’re probably in the
right place!

Let’s Get Started!

Range Minimum Queries

41 59 26 5331 41 59 26 53 58 97 93

The RMQ Problem
● The Range Minimum Query problem

(RMQ for short) is the following:
Given an array A and two indices i ≤ j,

what is the smallest element out of
A[i], A[i + 1], …, A[j – 1], A[j]?

31 58 97 93

The RMQ Problem
● The Range Minimum Query problem

(RMQ for short) is the following:
Given an array A and two indices i ≤ j,

what is the smallest element out of
A[i], A[i + 1], …, A[j – 1], A[j]?

● Notation: We'll denote a range minimum
query in array A between indices i and j
as RMQA(i, j).

● For simplicity, let's assume 0-indexing.

A Trivial Solution
● There's a simple O(n)-time algorithm for

evaluating RMQA(i, j): just iterate across the
elements between i and j, inclusive, and take
the minimum!

● So... why is this problem at all algorithmically
interesting?

● Suppose that the array A is fixed in advance
and you're told that we're going to make
multiple queries on it.

● Can we do better than the naïve algorithm?

An Observation
● In an array of length n, there are only Θ(n2) distinct possible

queries.
● Why?

5 subarrays of
length 1

4 subarrays of
length 2

3 subarrays of
length 3

2 subarrays of
length 4

1 subarray of
length 5

A Different Approach
● There are only Θ(n2) possible RMQs in an array of

length n.
● If we precompute all of them, we can answer RMQ in

time O(1) per query.

16 18 33 98

0 1 2 3

★
0 1 2 3

0

1

2

3

Building the Table
● One simple approach: for each entry in

the table, iterate over the range in
question and find the minimum value.

● How efficient is this?
● Number of entries: Θ(n2).
● Time to evaluate each entry: O(n).
● Time required: O(n3).

● The runtime is O(n3) using this approach.
Is it also Θ(n3)?

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7

Each entry in yellow requires at
least n / 2 = Θ(n) work to evaluate.

There are roughly n2 / 8 = Θ(n2)
entries here.

Total work required: Θ(n3)

★

A Different Approach
● Naïvely precomputing the table is inefficient.
● Can we do better?
● Claim: We can precompute all subarrays in time Θ(n2)

using dynamic programming.

16 18 33 98

0 1 2 3

0 1 2 3

0

1

2

3

16

A Different Approach
● Naïvely precomputing the table is inefficient.
● Can we do better?
● Claim: We can precompute all subarrays in time Θ(n2)

using dynamic programming.

16 18 33 98

0 1 2 3

0 1 2 3

0

1

2

3

1616

★

A Different Approach
● Naïvely precomputing the table is inefficient.
● Can we do better?
● Claim: We can precompute all subarrays in time Θ(n2)

using dynamic programming.

16 18 33 98

0 1 2 3

0 1 2 3

0

1

2

3

1616

18

A Different Approach
● Naïvely precomputing the table is inefficient.
● Can we do better?
● Claim: We can precompute all subarrays in time Θ(n2)

using dynamic programming.

16 18 33 98

0 1 2 3

0 1 2 3

0

1

2

3

 98

33

98

33

1818

1616

A Different Approach
● Naïvely precomputing the table is inefficient.
● Can we do better?
● Claim: We can precompute all subarrays in time Θ(n2)

using dynamic programming.

16 18 33 98

0 1 2 3

0 1 2 3

0

1

2

3

18

16

98

33

98

33

18

16 ★

A Different Approach
● Naïvely precomputing the table is inefficient.
● Can we do better?
● Claim: We can precompute all subarrays in time Θ(n2)

using dynamic programming.

16 18 33 98

0 1 2 3

0 1 2 3

0

1

2

3

18

16

98

33

98

33

18

16 16

A Different Approach
● Naïvely precomputing the table is inefficient.
● Can we do better?
● Claim: We can precompute all subarrays in time Θ(n2)

using dynamic programming.

16 18 33 98

0 1 2 3

0 1 2 3

0

1

2

3

18

33

★

16

18

1616 16

98

33

98

★

A Different Approach
● Naïvely precomputing the table is inefficient.
● Can we do better?
● Claim: We can precompute all subarrays in time Θ(n2)

using dynamic programming.

16 18 33 98

0 1 2 3

0 1 2 3

0

1

2

3

18

33

★

16

18

1616 16

98

33

98

18

A Different Approach
● Naïvely precomputing the table is inefficient.
● Can we do better?
● Claim: We can precompute all subarrays in time Θ(n2)

using dynamic programming.

16 18 33 98

0 1 2 3

0 1 2 3

0

1

2

3

★

3333

98

33

98

18 18

33

18 18

161616 16

A Different Approach
● Naïvely precomputing the table is inefficient.
● Can we do better?
● Claim: We can precompute all subarrays in time Θ(n2)

using dynamic programming.

16 18 33 98

0 1 2 3

0 1 2 3

0

1

2

3

18

16

3333

98

33

98

18 18

33

18

161616 ★

A Different Approach
● Naïvely precomputing the table is inefficient.
● Can we do better?
● Claim: We can precompute all subarrays in time Θ(n2)

using dynamic programming.

16 18 33 98

0 1 2 3

0 1 2 3

0

1

2

3

18

16 16

18

16 16

18

33

18

33

1616

33

98

33

98

1818

1616

A Different Approach
● Naïvely precomputing the table is inefficient.
● Can we do better?
● Claim: We can precompute all subarrays in time Θ(n2)

using dynamic programming.

16 18 33 98

0 1 2 3

0 1 2 3

0

1

2

3

Some Notation
● We'll say that an RMQ data structure has time

complexity ⟨p(n), q(n)⟩ if
● preprocessing takes time at most p(n) and
● queries take time at most q(n).

● We now have two RMQ data structures:
● ⟨O(1), O(n)⟩ with no preprocessing.
● ⟨O(n2), O(1)⟩ with full preprocessing.

● These are two extremes on a curve of tradeoffs: no
preprocessing versus full preprocessing.

● Question: Is there a “golden mean” between
these extremes?

Another Approach: Block Decomposition

A Block-Based Approach
● Split the input into O(n / b) blocks of

some “block size” b.
● Here, b = 4.

31 41 59 26 53 58 97 93 23 84 62 43 33 83 27 95 2 88 41 97

A Block-Based Approach
● Split the input into O(n / b) blocks of

some “block size” b.
● Here, b = 4.

● Compute the minimum value in each
block.

31 41 59 26 53 58 97 93 23 84 62 43 33 83 27 95 2 88 41 97

26 53 23 27 2

A Block-Based Approach
● Split the input into O(n / b) blocks of

some “block size” b.
● Here, b = 4.

● Compute the minimum value in each
block.

31 41 59 26 53 58 97 93 23 84 62 43 33 83 27 95 2 88 41 97

26 53 23 27 2

Analyzing the Approach
● Let's analyze this approach in terms of n and b.
● Preprocessing time:

● O(b) work on O(n / b) blocks to find minima.
● Total work: O(n).

● Time to evaluate RMQA(i, j):
● O(1) work to find block indices (divide by block size).
● O(b) work to scan inside i and j's blocks.
● O(n / b) work looking at block minima between i and j.
● Total work: O(b + n / b).

31 41 59 26 53 58 97 93 23 84 62 43 33 83 27 95 2 88 41 97

26 53 23 27 2

Intuiting O(b + n / b)
● As b increases:

● The b term rises (more elements to scan within each
block).

● The n / b term drops (fewer blocks to look at).
● As b decreases:

● The b term drops (fewer elements to scan within a
block).

● The n / b term rises (more blocks to look at).
● Is there an optimal choice of b given these constraints?

31 41 59 26 53 58 97 93 23 84 62 43 33 83 27 95 2 88 41 97

26 53 23 27 2

Optimizing b
● What choice of b minimizes b + n / b?
● Start by taking the derivative:

● Setting the derivative to zero:

● Asymptotically optimal runtime is when b = n1/2.
● In that case, the runtime is

O(b + n / b) = O(n1/2 + n / n1/2) = O(n1/2 + n1/2) = O(n1/2)

d
db (b+n/b) = 1− n

b2

1−n/b2 = 0
1 = n/b2

b2 = n
b = √n

Summary of Approaches
● Three solutions so far:

● Full preprocessing: ⟨O(n2), O(1)⟩.
● Block partition: ⟨O(n), O(n1/2)⟩.
● No preprocessing: ⟨O(1), O(n)⟩.

● Modest preprocessing yields modest
performance increases.

● Question: Can we do better?

A Second Approach: Sparse Tables

An Intuition
● The ⟨O(n2), O(1)⟩ solution gives fast

queries because every range we might
look up has already been precomputed.

● This solution is slow overall because we
have to compute the minimum of every
possible range.

● Question: Can we still get constant-time
queries without preprocessing all
possible ranges?

31 31 31 26 26 26 26 26

41 41 26 26 26 26 26

59 26 26 26 26 26

26 26 26 26 26

53 53 53 53

58 58 58

97 93

93

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7

31

0 1 2 3 4 5 6 7
41 59 26 53 58 97 93

An Observation

31 31 31 26

41 41 26 26

59 26 26 26

26 26 26 26

53 53 53 53

58 58 58

97 93

93

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7

31

0 1 2 3 4 5 6 7
41 59 26 53 58 97 93

An Observation

31 31 31 26

41 41 26 26

59 26 26 26 ★
26 26 26 26

53 53 53 53

58 58 58

97 93

93

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7

31

0 1 2 3 4 5 6 7
41 59 26 53 58 97 93

An Observation

The Intuition
● It's still possible to answer any query in time O(1)

without precomputing RMQ over all ranges.
● If we precompute the answers over too many

ranges, the preprocessing time will be too large.
● If we precompute the answers over too few ranges,

the query time won't be O(1).
● Goal: Precompute RMQ over a set of ranges such

that
● there are o(n2) total ranges, but
● there are enough ranges to support O(1) query

times.

Some Observations

The Approach
● For each index i, compute RMQ for ranges

starting at i of size 1, 2, 4, 8, 16, …, 2k as long
as they fit in the array.
● Gives both large and small ranges starting at

any point in the array.
● Only O(log n) ranges computed for each array

element.
● Total number of ranges: O(n log n).

● Claim: Any range in the array can be formed
as the union of two of these ranges.

Creating Ranges

18

16
16

Creating Ranges

7

4
4

Doing a Query
● To answer RMQA(i, j):

● Find the largest k such that 2k ≤ j – i + 1.
– With the right preprocessing, this can be done in

time O(1); you'll figure out how in an upcoming
assignment. 😃

● The range [i, j] can be formed as the overlap
of the ranges [i, i + 2k – 1] and [j – 2k + 1, j].

● Each range can be looked up in time O(1).
● Total time: O(1).

★

Precomputing the Ranges
● There are O(n log n) ranges to precompute.
● Using dynamic programming, we can compute

all of them in time O(n log n).

31 41 59 26 53 58 97 93

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7

20 21 22 23

★

Precomputing the Ranges
● There are O(n log n) ranges to precompute.
● Using dynamic programming, we can compute

all of them in time O(n log n).

31 41 59 26 53 58 97 93

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7

20 21 22 23

31

41

53

59

26

58

97

93

Precomputing the Ranges
● There are O(n log n) ranges to precompute.
● Using dynamic programming, we can compute

all of them in time O(n log n).

31 41 59 26 53 58 97 93

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7

20 21 22 23

31

41

5959

31

41

53

26

58

97

93

53

26

58

97

93

★

Precomputing the Ranges
● There are O(n log n) ranges to precompute.
● Using dynamic programming, we can compute

all of them in time O(n log n).

31 41 59 26 53 58 97 93

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7

20 21 22 23

31

41

5959

31

41

53

26

58

97

93

53

26

58

97

93

31

Precomputing the Ranges
● There are O(n log n) ranges to precompute.
● Using dynamic programming, we can compute

all of them in time O(n log n).

31 41 59 26 53 58 97 93

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7

20 21 22 23

41

59

4141

59

41

31 3131 31

53

26

58

97

93

53

26

58

97

93

Precomputing the Ranges
● There are O(n log n) ranges to precompute.
● Using dynamic programming, we can compute

all of them in time O(n log n).

31 41 59 26 53 58 97 93

26

26

53

58

93

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7

20 21 22 23

2626

31

41

59

4141

59

41

31 3131

53

26

58

97

93

53

26

58

97

93

★

Precomputing the Ranges
● There are O(n log n) ranges to precompute.
● Using dynamic programming, we can compute

all of them in time O(n log n).

31 41 59 26 53 58 97 93

26

53

58

93

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7

20 21 22 23

26

26

31

26

31 26

41

59

4141

59

41

3131

53

26

58

97

93

53

26

58

97

93

Precomputing the Ranges
● There are O(n log n) ranges to precompute.
● Using dynamic programming, we can compute

all of them in time O(n log n).

31 41 59 26 53 58 97 93

26

26

53

58

93

26

26

26

53

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7

20 21 22 23

Sparse Tables
● This data structure is called a sparse

table.
● It gives an ⟨O(n log n), O(1)⟩ solution to

RMQ.
● This is asymptotically better than

precomputing all possible ranges!

The Story So Far
● We now have the following solutions for

RMQ:
● Precompute all: ⟨O(n2), O(1)⟩.
● Sparse table: ⟨O(n log n), O(1)⟩.
● Blocking: ⟨O(n), O(n1/2)⟩.
● Precompute none: ⟨O(1), O(n)⟩.

● Can we do better?

A Third Approach: Hybrid Strategies

Blocking Revisited

31 26 23 62 27

31 41 59 26 53 58 97 93 23 84 62 64 33 83 2731 41 59 26 53 58 97 93 23 84 62 64 33 83 27

31 26 23 62 27

Blocking Revisited

31 26 23 62 27

31 41 59 26 53 58 97 93 23 84 62 64 33 83 2731 41 59 26 53 58 97 93 23 84 62 64 33 83 27

31 26 23 62 27

This is just RMQ on
the block minima!

Blocking Revisited

31 26 23 62 27

31 41 59 26 53 58 97 93 23 84 62 64 33 83 2731 41 59 26 53 58 97 93 23 84 62 64 33 83 27

31 26 23 62 27

This is just RMQ
inside the blocks!

The Framework

31 41 59 26 53 58 97 93 23 84 62 64 33 83 27

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Summary
RMQ

31 26 23 62 27

● Split the input into blocks of size b.
● Form an array of the block minima.
● Construct a “summary” RMQ structure over the block minima.
● Construct “block” RMQ structures for each block.
● Aggregate the results together.

Analyzing Efficiency

31 41 59 26 53 58 97 93 23 84 62 64 33 83 27

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Summary
RMQ

31 26 23 62 27

● Suppose we use a ⟨p₁(n), q₁(n)⟩-time RMQ for the summary RMQ
and a ⟨p₂(n), q₂(n)⟩-time RMQ for each block, with block size b.

● What is the preprocessing time for this hybrid structure?
● O(n) time to compute the minima of each block.
● O(p₁(n / b)) time to construct RMQ on the minima.
● O((n / b) p₂(b)) time to construct the block RMQs.

● Total construction time is O(n + p₁(n / b) + (n / b) p₂(b)).

Block size: b.
Blocks: O(n / b).

Analyzing Efficiency

31 41 59 26 97 93 23 84 62 64 83 27

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Summary
RMQ

31 26

53 58 33

23 62 27

● Suppose we use a ⟨p₁(n), q₁(n)⟩-time RMQ for the summary RMQ
and a ⟨p₂(n), q₂(n)⟩-time RMQ for each block, with block size b.

● What is the query time for this hybrid structure?
● O(q₁(n / b)) time to query the summary RMQ.
● O(q₂(b)) time to query the block RMQs.

● Total query time: O(q₁(n / b) + q₂(b)).

53 58 33

23 62

Block size: b.
Blocks: O(n / b).

Analyzing Efficiency

31 41 59 26 53 58 97 93 23 84 62 64 33 83 27

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Summary
RMQ

31 26 23 62 27

● Suppose we use a ⟨p₁(n), q₁(n)⟩-time RMQ for the summary RMQ
and a ⟨p₂(n), q₂(n)⟩-time RMQ for each block, with block size b.

● Hybrid preprocessing time:

O(n + p₁(n / b) + (n / b)p₂(b))
● Hybrid query time:

O(q₁(n / b) + q₂(b))

Block size: b.
Blocks: O(n / b).

● The ⟨O(n), O(n1/2)⟩ block-based structure from earlier uses
this framework with the ⟨O(1), O(n)⟩ no-preprocessing
RMQ structure and b = n1/2.
According to our formulas, the preprocessing time should
be
 = = O(n + p₁(n / b) + (n / b) p₂(b))
 = = O(n + 1 + n / b)
 = == O(n)
The query time should be
 = == O(q₁(n / b) + q₂(b))
 = == O(n / b + b)
 = == O(n1/2)
Looks good so far!

A Sanity Check

Do no further preprocessing
than just computing the

block minima.

Don’t do anything fancy per
block. Just do linear scans

over each of them.

31 41 59 26 53 58 97 93 23 84 62 64 33 83 27

31 26 23 62 27

For Reference

p₁(n) = O(1)
q₁(n) = O(n)

p₂(n) = O(1)
q₂(n) = O(n)

b = n1/2

A Sanity Check
● The ⟨O(n), O(n1/2)⟩ block-based structure from earlier uses

this framework with the ⟨O(1), O(n)⟩ no-preprocessing
RMQ structure and b = n1/2.

● According to our formulas, the preprocessing time should
be
 = = O(n + p₁(n / b) + (n / b) p₂(b))
 = = O(n + 1 + n / b)
 = == O(n)

● The query time should be
 = == O(q₁(n / b) + q₂(b))
 = == O(n / b + b)
 = == O(n1/2)

● Looks good so far!

An Observation
● We can use any data structures we’d like for the summary

and block RMQs.
● Suppose we use an ⟨O(n log n), O(1)⟩ sparse table for the

summary RMQ.
● If the block size is b, the time to construct a sparse table

over the (n / b) blocks is O((n / b) log (n / b)).
● Cute trick: If b = Θ(log n), the time to construct a

sparse table over the minima is
= O((n / log n) log (n / log n))
= O((n / log n) log n) (O is an upper bound)
= O(n). (logs cancel out)

One Possible Hybrid
● Set the block size to log n.
● Use a sparse table for the summary RMQ.
● Use the “no preprocessing” structure for each block.

31 41 59 26 53 58 97 93 23 84 62 64 33 83 27

Summary RMQ
(Sparse table)

31 26 23 62 27

Handled via
linear scan

Handled via
linear scan

Table
lookups

One Possible Hybrid
● Set the block size to log n.
● Use a sparse table for the summary RMQ.
● Use the “no preprocessing” structure for each block.
● Preprocessing time:

 = O(n + p₁(n / b) + (n / b) p₂(b))
 = O(n + n + n / b)
 = O(n)

● Query time:
 = O(q₁(n / b) + q₂(b))
 = O(1 + b)
 = O(log n)

● An ⟨O(n), O(log n)⟩ solution!

For Reference

 p₁(n) = O(n log n)
 q₁(n) = O(1)

 p₂(n) = O(1)
 q₂(n) = O(n)

 b = log n

Another Hybrid
● Let's suppose we use the ⟨O(n log n), O(1)⟩ sparse table

for both the summary and block RMQ structures with a
block size of log n.

31 41 59 26 53 58 97 93 23 84 62 64 33 83 27

Sparse Table Sparse Table Sparse Table Sparse Table Sparse Table

Summary RMQ
(Sparse table)

31 26 23 62 27

Table
lookups

Table
lookups

Table
lookups

Another Hybrid
● Let's suppose we use the ⟨O(n log n), O(1)⟩ sparse table

for both the summary and block RMQ structures with a
block size of log n.

● The preprocessing time is
 = O(n + p₁(n / b) + (n / b) p₂(b))
 = O(n + n + (n / b) b log b)
 = O(n + n log b)

= O(n log log n)
● The query time is

 = O(q₁(n / b) + q₂(b))
 = O(1)

● We have an ⟨O(n log log n), O(1)⟩
solution to RMQ!

For Reference

 p₁(n) = O(n log n)
 q₁(n) = O(1)

 p₂(n) = O(n log n)
 q₂(n) = O(1)

 b = log n

One Last Hybrid
● Suppose we use a sparse table for the summary RMQ

and the ⟨O(n), O(log n)⟩ solution for the block RMQs.
Let's choose b = log n.

31 41 59 26 53 58 97 93 23 84 62 64 33 83 27

⟨O(n), O(log n)⟩
Hybrid

⟨O(n), O(log n)⟩
Hybrid

⟨O(n), O(log n)⟩
Hybrid

⟨O(n), O(log n)⟩
Hybrid

⟨O(n), O(log n)⟩
Hybrid

Summary RMQ
(Sparse table)

31 26 23 62 27

It’s
complicated.

It’s
complicated.

Table
lookups

One Last Hybrid
● Suppose we use a sparse table for the summary RMQ

and the ⟨O(n), O(log n)⟩ solution for the block RMQs.
Let's choose b = log n.

● The preprocessing time is
 = O(n + p₁(n / b) + (n / b) p₂(b))
 = O(n + n + (n / b) b)

= O(n)
● The query time is

 = O(q₁(n / b) + q₂(b))
 = O(1 + log b)
 = O(log log n)

● We have an ⟨O(n), O(log log n)⟩
solution to RMQ!

For Reference

 p₁(n) = O(n log n)
 q₁(n) = O(1)

 p₂(n) = O(n)
 q₂(n) = O(log n)

 b = log n

Where We Stand
● We've seen a bunch of RMQ structures

today:
● No preprocessing: ⟨O(1), O(n)⟩
● Full preprocessing: ⟨O(n2), O(1)⟩
● Block partition: ⟨O(n), O(n1/2)⟩
● Sparse table: ⟨O(n log n), O(1)⟩
● Hybrid 1: ⟨O(n), O(log n)⟩
● Hybrid 2: ⟨O(n log log n), O(1)⟩
● Hybrid 3: ⟨O(n), O(log log n)⟩

Where We Stand

We've seen a bunch of RMQ structures
today:

No preprocessing: ⟨O(1), O(n)⟩
● Full preprocessing: ⟨O(n2), O(1)⟩

Block partition: ⟨O(n), O(n1/2)⟩
● Sparse table: ⟨O(n log n), O(1)⟩

Hybrid 1: ⟨O(n), O(log n)⟩
● Hybrid 2: ⟨O(n log log n), O(1)⟩

Hybrid 3: ⟨O(n), O(log log n)⟩

Where We Stand

We've seen a bunch of RMQ structures
today:

No preprocessing: ⟨O(1), O(n)⟩
Full preprocessing: ⟨O(n2), O(1)⟩

● Block partition: ⟨O(n), O(n1/2)⟩
Sparse table: ⟨O(n log n), O(1)⟩

● Hybrid 1: ⟨O(n), O(log n)⟩
Hybrid 2: ⟨O(n log log n), O(1)⟩

● Hybrid 3: ⟨O(n), O(log log n)⟩

Is there an ⟨O(n), O(1)⟩ solution to RMQ?

Yes!

Next Time
● Cartesian Trees

● A data structure closely related to RMQ.
● The Method of Four Russians

● A technique for shaving off log factors.
● The Fischer-Heun Structure

● A clever, asymptotically optimal RMQ
structure.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83

