

Disjoint-Set Forests

Outline for Today
● Iterated Functions

● Making an implicit idea explicit.
● Incremental Connectivity

● Finding connected nodes as a graph changes.
● Disjoint-Set Forests

● A surprisingly simple and subtle data structure.
● Analyzing Disjoint-Set Forests

● A clever, nuanced analysis with a surprising result.

Iterated Functions

Iterated Functions
● Recursive functions work by converting a

problem of size n into one or more
subproblems of a smaller size.

● How much smaller those subproblems
are indicates how many levels of
recursion we’ll have.
● n → n – 1: Θ(n) levels.
● n → ⁿ/₂: Θ(log n) levels

Iterated Functions
● Let f be a function. The iterated function of

f, denoted f★ is a function defined as follows:

● Intuitively, f*(n) is (roughly) the number of
times you need to apply f to n to reduce it to
a sufficiently small constant.
● If f(n) ≤ 1, no steps are needed.
● Otherwise, you need one step to turn n into f(n),

then f★(f(n)) more steps from there.

f * (n)={ 0 if f (n)≤1
1+ f * (f (n)) otherwise

Iterated Functions

f(n) = n – 1

f(n) = ⁿ/₂

f(n) = n1/2

f(n) = log n

f(n) = n1/2

f*(n)

Θ(??)

Θ(??)

Θ(??)

Θ(??)

Θ(n)

Θ(log n)

Θ(log log n)

Θ(log* n)

As seen in…

Linear search

Binary search

Rabin’s closest pair
of points algorithm

Succinct binary rank

Iterated Logarithms
● Intuition: The log function is incredibly effective at

shrinking down large quantities.
● Number of protons in the known universe: ≈2240.
● log(0) 2240 = 1,766,847,[… 57 digits …],292,619,776
● log(1) 2240 = 240
● log(2) 2240 ≈ 7.91
● log(3) 2240 ≈ 2.98
● log(4) 2240 ≈ 1.58
● log(5) 2240 ≈ 0.66

● So log* 2240 = 4.
● The iterated logarithm of n, denoted log* n,

grows much more slowly than log n.

Intuiting log* n
● What is log* n for the value of n shown

below?

● Answer: log* n = 16.
● The value of n is inconceivably large, and yet

log* n is small enough to hold in your hand.
The log* function grows very, very slowly!

n = 2222222222222222

Iterated Iterates
● What is the value of this expression?

● After taking one log*, we’re left with 16 = 2²².
● After taking another log*, we’re left with 2.
● After taking another log*, we’re left with 0.
● So the above expression evaluates to 2.
● How big of an input do we need to get log** n to

be 3?

log** (222222222222222

)

Just how slowly can a function grow?

Incremental Dynamic Connectivity

Kruskal’s Algorithm

7

 43

6

 1

 5

10

2

4

 9

8

 9

● Kruskal’s Algorithm finds an MST of a graph. It
works as follows:
● Remove all edges from the graph and sort them from

lowest to highest.
● Repeatedly insert edges back into the graph, as long as

their endpoints aren’t already reachable from each other.

Kruskal’s Algorithm

7

 43

6

 1

 5

10

2

4

 9

8

 9

● Kruskal’s Algorithm finds an MST of a graph. It
works as follows:
● Remove all edges from the graph and sort them from

lowest to highest.
● Repeatedly insert edges back into the graph, as long as

their endpoints aren’t already reachable from each other.

Kruskal’s Algorithm

7

 43

6

 1

 5

10

2

4

 9

8

 9

● Kruskal’s Algorithm finds an MST of a graph. It
works as follows:
● Remove all edges from the graph and sort them from

lowest to highest.
● Repeatedly insert edges back into the graph, as long as

their endpoints aren’t already reachable from each other.

Kruskal’s Algorithm

7

 43

6

 1

 5

10

2

4

 9

8

 9

● Kruskal’s Algorithm finds an MST of a graph. It
works as follows:
● Remove all edges from the graph and sort them from

lowest to highest.
● Repeatedly insert edges back into the graph, as long as

their endpoints aren’t already reachable from each other.

Kruskal’s Algorithm

7

 43

6

 1

 5

10

2

4

 9

8

 9

● Kruskal’s Algorithm finds an MST of a graph. It
works as follows:
● Remove all edges from the graph and sort them from

lowest to highest.
● Repeatedly insert edges back into the graph, as long as

their endpoints aren’t already reachable from each other.

Kruskal’s Algorithm

7

 43

6

 1

 5

10

2

4

 9

8

 9

● Kruskal’s Algorithm finds an MST of a graph. It
works as follows:
● Remove all edges from the graph and sort them from

lowest to highest.
● Repeatedly insert edges back into the graph, as long as

their endpoints aren’t already reachable from each other.

Kruskal’s Algorithm

7

 43

6

 1

 5

10

2

4

 9

8

 9

● Kruskal’s Algorithm finds an MST of a graph. It
works as follows:
● Remove all edges from the graph and sort them from

lowest to highest.
● Repeatedly insert edges back into the graph, as long as

their endpoints aren’t already reachable from each other.

Kruskal’s Algorithm

7

 43

6

 1

 5

10

2

4

 9

8

 9

● Kruskal’s Algorithm finds an MST of a graph. It
works as follows:
● Remove all edges from the graph and sort them from

lowest to highest.
● Repeatedly insert edges back into the graph, as long as

their endpoints aren’t already reachable from each other.

Kruskal’s Algorithm

7

 43

6

 1

 5

10

2

4

 9

8

 9

● Kruskal’s Algorithm finds an MST of a graph. It
works as follows:
● Remove all edges from the graph and sort them from

lowest to highest.
● Repeatedly insert edges back into the graph, as long as

their endpoints aren’t already reachable from each other.

Kruskal’s Algorithm

7

 43

 1

 5

10

2

4

 9

8

 9

● Kruskal’s Algorithm finds an MST of a graph. It
works as follows:
● Remove all edges from the graph and sort them from

lowest to highest.
● Repeatedly insert edges back into the graph, as long as

their endpoints aren’t already reachable from each other.

Kruskal’s Algorithm

7

 43

 1

 5

10

2

4

 9

8

 9

● Kruskal’s Algorithm finds an MST of a graph. It
works as follows:
● Remove all edges from the graph and sort them from

lowest to highest.
● Repeatedly insert edges back into the graph, as long as

their endpoints aren’t already reachable from each other.

Kruskal’s Algorithm

 43

 1

 5

10

2

4

 9

8

 9

● Kruskal’s Algorithm finds an MST of a graph. It
works as follows:
● Remove all edges from the graph and sort them from

lowest to highest.
● Repeatedly insert edges back into the graph, as long as

their endpoints aren’t already reachable from each other.

Kruskal’s Algorithm

 43

 1

 5

10

2

4

 9

8

 9

● Kruskal’s Algorithm finds an MST of a graph. It
works as follows:
● Remove all edges from the graph and sort them from

lowest to highest.
● Repeatedly insert edges back into the graph, as long as

their endpoints aren’t already reachable from each other.

Kruskal’s Algorithm

 43

 1

 5

10

2

4

 9

8

 9

● Kruskal’s Algorithm finds an MST of a graph. It
works as follows:
● Remove all edges from the graph and sort them from

lowest to highest.
● Repeatedly insert edges back into the graph, as long as

their endpoints aren’t already reachable from each other.

Kruskal’s Algorithm

 43

 1

 5 2

4

8

 9

● Kruskal’s Algorithm finds an MST of a graph. It
works as follows:
● Remove all edges from the graph and sort them from

lowest to highest.
● Repeatedly insert edges back into the graph, as long as

their endpoints aren’t already reachable from each other.

Incremental Connectivity
● Kruskal’s algorithm needs a data structure that

solves incremental connectivity.
● We begin with an empty graph.
● We need to be able to add new edges to the graph and

check whether arbitrary pairs of nodes are connected.
● Question: How efficiently can we do this?

 43

 1

 5 2

4

8

 9

Representatives
● Idea: Assign a

representative to each
CC in the graph.

● To see if two nodes are
in the same CC, check if
they have the same
representative.

● To link together two
different CCs, change
the representative of all
the nodes in one CC to
be the representative of
the other CC.

Representatives
● Idea: Assign a

representative to each
CC in the graph.

● To see if two nodes are
in the same CC, check if
they have the same
representative.

● To link together two
different CCs, change
the representative of all
the nodes in one CC to
be the representative of
the other CC.

Representatives
● Idea: Assign a

representative to each
CC in the graph.

● To see if two nodes are
in the same CC, check if
they have the same
representative.

● To link together two
different CCs, change
the representative of all
the nodes in one CC to
be the representative of
the other CC.

Representatives
● Idea: Assign a

representative to each
CC in the graph.

● To see if two nodes are
in the same CC, check if
they have the same
representative.

● To link together two
different CCs, change
the representative of all
the nodes in one CC to
be the representative of
the other CC.

Representatives
● Here’s how we’ll implement

this idea.
● Each node has a parent

pointer.
● Representatives’ parent

pointers are null.
● Other nodes’ parent pointers

form chains leading to the
representative.

● Although the original graph
is undirected, parent
pointers are directed.

● This data structure is called
a disjoint-set forest.

Representatives
● Here’s how we’ll implement

this idea.
● Each node has a parent

pointer.
● Representatives’ parent

pointers are null.
● Other nodes’ parent pointers

form chains leading to the
representative.

● Although the original graph
is undirected, parent
pointers are directed.

● This data structure is called
a disjoint-set forest.

Representatives
● We’ll support two

operations.
● find(x) returns x’s

representative. It works by
following parent pointers
until we hit the
representative.

● union(x, y) merges the
clusters containing x and y.
It works by finding x and
y’s representatives. If they
aren’t equal, it assigns one
of those representatives
the other as a parent.

Representatives
● We’ll support two

operations.
● find(x) returns x’s

representative. It works by
following parent pointers
until we hit the
representative.

● union(x, y) merges the
clusters containing x and y.
It works by finding x and
y’s representatives. If they
aren’t equal, it assigns one
of those representatives
the other as a parent.

Representatives
● We’ll support two

operations.
● find(x) returns x’s

representative. It works by
following parent pointers
until we hit the
representative.

● union(x, y) merges the
clusters containing x and y.
It works by finding x and
y’s representatives. If they
aren’t equal, it assigns one
of those representatives
the other as a parent.

Representatives
● We’ll support two

operations.
● find(x) returns x’s

representative. It works by
following parent pointers
until we hit the
representative.

● union(x, y) merges the
clusters containing x and y.
It works by finding x and
y’s representatives. If they
aren’t equal, it assigns one
of those representatives
the other as a parent.

Representatives
● We’ll support two

operations.
● find(x) returns x’s

representative. It works by
following parent pointers
until we hit the
representative.

● union(x, y) merges the
clusters containing x and y.
It works by finding x and
y’s representatives. If they
aren’t equal, it assigns one
of those representatives
the other as a parent.

Representatives
● We’ll support two

operations.
● find(x) returns x’s

representative. It works by
following parent pointers
until we hit the
representative.

● union(x, y) merges the
clusters containing x and y.
It works by finding x and
y’s representatives. If they
aren’t equal, it assigns one
of those representatives
the other as a parent.

Representatives
● We’ll support two

operations.
● find(x) returns x’s

representative. It works by
following parent pointers
until we hit the
representative.

● union(x, y) merges the
clusters containing x and y.
It works by finding x and
y’s representatives. If they
aren’t equal, it assigns one
of those representatives
the other as a parent.

Representatives
● We’ll support two

operations.
● find(x) returns x’s

representative. It works by
following parent pointers
until we hit the
representative.

● union(x, y) merges the
clusters containing x and y.
It works by finding x and
y’s representatives. If they
aren’t equal, it assigns one
of those representatives
the other as a parent.

Representatives
● We’ll support two

operations.
● find(x) returns x’s

representative. It works by
following parent pointers
until we hit the
representative.

● union(x, y) merges the
clusters containing x and y.
It works by finding x and
y’s representatives. If they
aren’t equal, it assigns one
of those representatives
the other as a parent.

Representatives
● We’ll support two

operations.
● find(x) returns x’s

representative. It works by
following parent pointers
until we hit the
representative.

● union(x, y) merges the
clusters containing x and y.
It works by finding x and
y’s representatives. If they
aren’t equal, it assigns one
of those representatives
the other as a parent.

Representatives
● We’ll support two

operations.
● find(x) returns x’s

representative. It works by
following parent pointers
until we hit the
representative.

● union(x, y) merges the
clusters containing x and y.
It works by finding x and
y’s representatives. If they
aren’t equal, it assigns one
of those representatives
the other as a parent.

Representatives
● We’ll support two

operations.
● find(x) returns x’s

representative. It works by
following parent pointers
until we hit the
representative.

● union(x, y) merges the
clusters containing x and y.
It works by finding x and
y’s representatives. If they
aren’t equal, it assigns one
of those representatives
the other as a parent.

Representatives
● We’ll support two

operations.
● find(x) returns x’s

representative. It works by
following parent pointers
until we hit the
representative.

● union(x, y) merges the
clusters containing x and y.
It works by finding x and
y’s representatives. If they
aren’t equal, it assigns one
of those representatives
the other as a parent.

Representatives
● Unfortunately, this

system can be very
slow.

● If we aren’t careful
with how we link
trees, the cost of a
find or union can
grow to Θ(n), where
n is the number of
nodes in the graph.

● Can we do better?

Union-By-Rank
● Assign each node a

rank, initially 0.
● When linking two

representatives x and y:
● If one representative has

a lower rank than the
other, set its parent to the
other.

● Otherwise, arbitrarily set
x’s parent to y, then
increment y’s rank.

● This keeps the lengths of
parent chains low.

0 0 00

0 0 00

0 0 00

0 0 00

0 0 00

Union-By-Rank
● Assign each node a

rank, initially 0.
● When linking two

representatives x and y:
● If one representative has

a lower rank than the
other, set its parent to the
other.

● Otherwise, arbitrarily set
x’s parent to y, then
increment y’s rank.

● This keeps the lengths of
parent chains low.

0 0 00

0 0 00

0 0 00

0 0 00

0 0 00

Union-By-Rank
● Assign each node a

rank, initially 0.
● When linking two

representatives x and y:
● If one representative has

a lower rank than the
other, set its parent to the
other.

● Otherwise, arbitrarily set
x’s parent to y, then
increment y’s rank.

● This keeps the lengths of
parent chains low.

0 0 00

0 0 00

0 0 00

0 0 00

0 0 00

Union-By-Rank
● Assign each node a

rank, initially 0.
● When linking two

representatives x and y:
● If one representative has

a lower rank than the
other, set its parent to the
other.

● Otherwise, arbitrarily set
x’s parent to y, then
increment y’s rank.

● This keeps the lengths of
parent chains low.

0 0 0

0 0 00

0 0 00

0 0 00

0 0 00

0

Union-By-Rank
● Assign each node a

rank, initially 0.
● When linking two

representatives x and y:
● If one representative has

a lower rank than the
other, set its parent to the
other.

● Otherwise, arbitrarily set
x’s parent to y, then
increment y’s rank.

● This keeps the lengths of
parent chains low.

0 0 00

1 0 00

0 0 00

0 0 00

0 0 00

0

Union-By-Rank
● Assign each node a

rank, initially 0.
● When linking two

representatives x and y:
● If one representative has

a lower rank than the
other, set its parent to the
other.

● Otherwise, arbitrarily set
x’s parent to y, then
increment y’s rank.

● This keeps the lengths of
parent chains low.

0 0 0

1 0 00

0 0 00

0 0 00

0 0 00

0

Union-By-Rank
● Assign each node a

rank, initially 0.
● When linking two

representatives x and y:
● If one representative has

a lower rank than the
other, set its parent to the
other.

● Otherwise, arbitrarily set
x’s parent to y, then
increment y’s rank.

● This keeps the lengths of
parent chains low.

0 0 0

1 0 00

0 0 00

0 0 00

0 0 00

0

Union-By-Rank
● Assign each node a

rank, initially 0.
● When linking two

representatives x and y:
● If one representative has

a lower rank than the
other, set its parent to the
other.

● Otherwise, arbitrarily set
x’s parent to y, then
increment y’s rank.

● This keeps the lengths of
parent chains low.

0 0 0

1 0 00

0 0 00

0 0 00

0 0 00

0

Union-By-Rank
● Assign each node a

rank, initially 0.
● When linking two

representatives x and y:
● If one representative has

a lower rank than the
other, set its parent to the
other.

● Otherwise, arbitrarily set
x’s parent to y, then
increment y’s rank.

● This keeps the lengths of
parent chains low.

0 0 0

1 0 00

0 0 01

0 0 00

0 0 00

0

Union-By-Rank
● Assign each node a

rank, initially 0.
● When linking two

representatives x and y:
● If one representative has

a lower rank than the
other, set its parent to the
other.

● Otherwise, arbitrarily set
x’s parent to y, then
increment y’s rank.

● This keeps the lengths of
parent chains low.

0 0 0

1 0 00

0 0 01

0 0 00

0 0 00

0

Union-By-Rank
● Assign each node a

rank, initially 0.
● When linking two

representatives x and y:
● If one representative has

a lower rank than the
other, set its parent to the
other.

● Otherwise, arbitrarily set
x’s parent to y, then
increment y’s rank.

● This keeps the lengths of
parent chains low.

0 0 0

1 0 00

0 0 01

0 0 00

0 0 00

0

Union-By-Rank
● Assign each node a

rank, initially 0.
● When linking two

representatives x and y:
● If one representative has

a lower rank than the
other, set its parent to the
other.

● Otherwise, arbitrarily set
x’s parent to y, then
increment y’s rank.

● This keeps the lengths of
parent chains low.

0 0 0

1 0 00

0 0 01

0 0 00

0 0 00

0

Union-By-Rank
● Assign each node a

rank, initially 0.
● When linking two

representatives x and y:
● If one representative has

a lower rank than the
other, set its parent to the
other.

● Otherwise, arbitrarily set
x’s parent to y, then
increment y’s rank.

● This keeps the lengths of
parent chains low.

0 0 0

1 0 00

0 1 01

0 0 00

0 0 00

0

Union-By-Rank
● Assign each node a

rank, initially 0.
● When linking two

representatives x and y:
● If one representative has

a lower rank than the
other, set its parent to the
other.

● Otherwise, arbitrarily set
x’s parent to y, then
increment y’s rank.

● This keeps the lengths of
parent chains low.

0 0 0

1 0 00

0 1 01

0 0 00

0 0 00

0

Union-By-Rank
● Assign each node a

rank, initially 0.
● When linking two

representatives x and y:
● If one representative has

a lower rank than the
other, set its parent to the
other.

● Otherwise, arbitrarily set
x’s parent to y, then
increment y’s rank.

● This keeps the lengths of
parent chains low.

0 0 0

1 0 00

0 1 01

0 0 00

0 0 00

0

Union-By-Rank
● Assign each node a

rank, initially 0.
● When linking two

representatives x and y:
● If one representative has

a lower rank than the
other, set its parent to the
other.

● Otherwise, arbitrarily set
x’s parent to y, then
increment y’s rank.

● This keeps the lengths of
parent chains low.

0 0 0

1 0 00

0 1 01

0 0 00

0 0 00

0

Union-By-Rank
● Assign each node a

rank, initially 0.
● When linking two

representatives x and y:
● If one representative has

a lower rank than the
other, set its parent to the
other.

● Otherwise, arbitrarily set
x’s parent to y, then
increment y’s rank.

● This keeps the lengths of
parent chains low.

0 0 0

1 0 00

0 1 01

0 0 00

0 0 00

0

Union-By-Rank
● Assign each node a

rank, initially 0.
● When linking two

representatives x and y:
● If one representative has

a lower rank than the
other, set its parent to the
other.

● Otherwise, arbitrarily set
x’s parent to y, then
increment y’s rank.

● This keeps the lengths of
parent chains low.

0 0 0

1 0 00

0 1 01

0 0 00

0 0 00

0

Union-By-Rank
● Assign each node a

rank, initially 0.
● When linking two

representatives x and y:
● If one representative has

a lower rank than the
other, set its parent to the
other.

● Otherwise, arbitrarily set
x’s parent to y, then
increment y’s rank.

● This keeps the lengths of
parent chains low.

0 0 0

1 0 00

0 1 01

0 0 00

0 0 00

0

Union-By-Rank
● Assign each node a

rank, initially 0.
● When linking two

representatives x and y:
● If one representative has

a lower rank than the
other, set its parent to the
other.

● Otherwise, arbitrarily set
x’s parent to y, then
increment y’s rank.

● This keeps the lengths of
parent chains low.

0 0 0

1 0 00

0 1 01

0 0 00

0 0 00

0

Union-By-Rank
● Assign each node a

rank, initially 0.
● When linking two

representatives x and y:
● If one representative has

a lower rank than the
other, set its parent to the
other.

● Otherwise, arbitrarily set
x’s parent to y, then
increment y’s rank.

● This keeps the lengths of
parent chains low.

0 0 0

1 0 00

0 1 01

0 0 00

0 0 00

0

Union-By-Rank
● Assign each node a

rank, initially 0.
● When linking two

representatives x and y:
● If one representative has

a lower rank than the
other, set its parent to the
other.

● Otherwise, arbitrarily set
x’s parent to y, then
increment y’s rank.

● This keeps the lengths of
parent chains low.

0 0 0

1 0 00

0 1 01

0 0 00

0 0 00

0

Union-By-Rank
● Assign each node a

rank, initially 0.
● When linking two

representatives x and y:
● If one representative has

a lower rank than the
other, set its parent to the
other.

● Otherwise, arbitrarily set
x’s parent to y, then
increment y’s rank.

● This keeps the lengths of
parent chains low.

0 0 0

1 0 00

0 2 01

0 0 00

0 0 00

0

Union-By-Rank
● Assign each node a

rank, initially 0.
● When linking two

representatives x and y:
● If one representative has

a lower rank than the
other, set its parent to the
other.

● Otherwise, arbitrarily set
x’s parent to y, then
increment y’s rank.

● This keeps the lengths of
parent chains low.

0 0 0

1 0 00

0 2 01

0 0 00

0 0 00

0

Union-By-Rank
● Assign each node a

rank, initially 0.
● When linking two

representatives x and y:
● If one representative has

a lower rank than the
other, set its parent to the
other.

● Otherwise, arbitrarily set
x’s parent to y, then
increment y’s rank.

● This keeps the lengths of
parent chains low.

0 0 0

1 0 00

0 2 01

0 0 00

0 0 00

0

Union-By-Rank
● Assign each node a

rank, initially 0.
● When linking two

representatives x and y:
● If one representative has

a lower rank than the
other, set its parent to the
other.

● Otherwise, arbitrarily set
x’s parent to y, then
increment y’s rank.

● This keeps the lengths of
parent chains low.

0 0 0

1 0 00

0 2 01

0 0 00

0 0 00

0

Union-By-Rank
● Assign each node a

rank, initially 0.
● When linking two

representatives x and y:
● If one representative has

a lower rank than the
other, set its parent to the
other.

● Otherwise, arbitrarily set
x’s parent to y, then
increment y’s rank.

● This keeps the lengths of
parent chains low.

0 0 0

1 0 00

0 2 01

1 0 00

0 0 00

0

Union-By-Rank
● Assign each node a

rank, initially 0.
● When linking two

representatives x and y:
● If one representative has

a lower rank than the
other, set its parent to the
other.

● Otherwise, arbitrarily set
x’s parent to y, then
increment y’s rank.

● This keeps the lengths of
parent chains low.

0 0 0

1 0 00

0 2 01

1 0 00

0 0 00

0

Union-By-Rank
● Assign each node a

rank, initially 0.
● When linking two

representatives x and y:
● If one representative has

a lower rank than the
other, set its parent to the
other.

● Otherwise, arbitrarily set
x’s parent to y, then
increment y’s rank.

● This keeps the lengths of
parent chains low.

0 0 0

1 0 00

0 2 01

1 0 00

0 0 00

0

Union-By-Rank
● Assign each node a

rank, initially 0.
● When linking two

representatives x and y:
● If one representative has

a lower rank than the
other, set its parent to the
other.

● Otherwise, arbitrarily set
x’s parent to y, then
increment y’s rank.

● This keeps the lengths of
parent chains low.

0 0 0

1 0 00

0 2 01

1 0 00

0 0 00

0

Union-By-Rank
● Assign each node a

rank, initially 0.
● When linking two

representatives x and y:
● If one representative has

a lower rank than the
other, set its parent to the
other.

● Otherwise, arbitrarily set
x’s parent to y, then
increment y’s rank.

● This keeps the lengths of
parent chains low.

0 0 0

1 0 00

0 2 01

2 0 00

0 0 00

0

Union-By-Rank
● Assign each node a

rank, initially 0.
● When linking two

representatives x and y:
● If one representative has

a lower rank than the
other, set its parent to the
other.

● Otherwise, arbitrarily set
x’s parent to y, then
increment y’s rank.

● This keeps the lengths of
parent chains low.

0 0 0

1 0 00

0 2 01

2 0 00

0 0 00

0

Union-By-Rank
● Assign each node a

rank, initially 0.
● When linking two

representatives x and y:
● If one representative has

a lower rank than the
other, set its parent to the
other.

● Otherwise, arbitrarily set
x’s parent to y, then
increment y’s rank.

● This keeps the lengths of
parent chains low.

0 0 0

1 0 00

0 2 01

2 0 00

0 0 00

0

Union-By-Rank
● Assign each node a

rank, initially 0.
● When linking two

representatives x and y:
● If one representative has

a lower rank than the
other, set its parent to the
other.

● Otherwise, arbitrarily set
x’s parent to y, then
increment y’s rank.

● This keeps the lengths of
parent chains low.

0 0 0

1 0 00

0 2 01

2 0 00

0 0 00

0

Union-By-Rank
● Assign each node a

rank, initially 0.
● When linking two

representatives x and y:
● If one representative has

a lower rank than the
other, set its parent to the
other.

● Otherwise, arbitrarily set
x’s parent to y, then
increment y’s rank.

● This keeps the lengths of
parent chains low.

0 0 0

1 0 00

0 2 01

3 0 00

0 0 00

0

Union-By-Rank
● Assign each node a

rank, initially 0.
● When linking two

representatives x and y:
● If one representative has

a lower rank than the
other, set its parent to the
other.

● Otherwise, arbitrarily set
x’s parent to y, then
increment y’s rank.

● This keeps the lengths of
parent chains low.

0 0 0

1 0 00

0 2 01

3 0 00

0 0 00

0

Union-By-Rank
● Assign each node a

rank, initially 0.
● When linking two

representatives x and y:
● If one representative has

a lower rank than the
other, set its parent to the
other.

● Otherwise, arbitrarily set
x’s parent to y, then
increment y’s rank.

● This keeps the lengths of
parent chains low.

0 0 0

1 0 00

0 2 01

3 0 00

0 0 00

0

Union-By-Rank
● Assign each node a

rank, initially 0.
● When linking two

representatives x and y:
● If one representative has

a lower rank than the
other, set its parent to the
other.

● Otherwise, arbitrarily set
x’s parent to y, then
increment y’s rank.

● This keeps the lengths of
parent chains low.

0 0 0

1 0 00

0 2 01

3 0 00

0 0 00

0

Union-By-Rank
● Assign each node a

rank, initially 0.
● When linking two

representatives x and y:
● If one representative has

a lower rank than the
other, set its parent to the
other.

● Otherwise, arbitrarily set
x’s parent to y, then
increment y’s rank.

● This keeps the lengths of
parent chains low.

0 0 0

1 0 00

0 2 01

3 0 00

0 0 00

0

Union-By-Rank
● Lemma: A node of rank r

has children of ranks
0, 1, 2, …, and r – 1.

● Proof: Induction!
● A node of rank 0 has no

children.
● A node v of rank r + 1, at

the time its rank was
increased, was a tree of
rank r that got another tree
of rank r as a child.

● By the IH v already had
children of ranks
0, 1, 2, …, r – 1. Now it also
has a child of rank r. ■

0 0 0

1 0 00

0 2 01

3 0 00

0 0 00

0

Why?

Answer at
https://pollev.com/cs166spr23

https://pollev.com/cs166spr23

Union-By-Rank
● Lemma: A node of rank r

has children of ranks
0, 1, 2, …, and r – 1.

● Proof: Induction!
● A node of rank 0 has no

children.
● A node v of rank r + 1, at

the time its rank was
increased, was a tree of
rank r that got another tree
of rank r as a child.

● By the IH v already had
children of ranks
0, 1, 2, …, r – 1. Now it also
has a child of rank r. ■

0 0 0

1 0 00

0 2 01

3 0 00

0 0 00

0

Union-By-Rank
● Our lemma tells us,

indirectly, that the
“simplest” tree whose
root has rank r is a
binomial tree of order r.

● A nice consequence of
this is that all trees in a
forest of n nodes have
height O(log n), so each
union and find takes
time O(log n).

● Can we do better?

0 0 0

1 0 00

0 2 01

3 0 00

0 0 00

0

An Observation
● Suppose we call

find(x) multiple
times.

● Each time we do
that, we may have to
traverse a chain of
O(log n) nodes to find
its representative.

● Do we really need to
scan things so many
times?

0 0 0

1 0 00

0 2 01

3 0 00

0 0 00

0

Path Compression
● Path compression is

an optimization on the
find operation.

● After figuring out x’s
representative, change
the parent pointers of
all of x’s ancestors to
point directly to x’s
representative.

● This makes it a lot
faster to find
representatives across
multiple operations.

0

1

2

3

Path Compression
● Path compression is

an optimization on the
find operation.

● After figuring out x’s
representative, change
the parent pointers of
all of x’s ancestors to
point directly to x’s
representative.

● This makes it a lot
faster to find
representatives across
multiple operations.

0

1

2

3

Path Compression
● Path compression is

an optimization on the
find operation.

● After figuring out x’s
representative, change
the parent pointers of
all of x’s ancestors to
point directly to x’s
representative.

● This makes it a lot
faster to find
representatives across
multiple operations.

0 0 0

1 0 00

0 2 01

3 0 00

0 0 00

0

Path Compression
● Path compression is

an optimization on the
find operation.

● After figuring out x’s
representative, change
the parent pointers of
all of x’s ancestors to
point directly to x’s
representative.

● This makes it a lot
faster to find
representatives across
multiple operations.

0 0 0

1 0 00

0 2 01

3 0 00

0 0 00

0

Path Compression
● Path compression is

an optimization on the
find operation.

● After figuring out x’s
representative, change
the parent pointers of
all of x’s ancestors to
point directly to x’s
representative.

● This makes it a lot
faster to find
representatives across
multiple operations.

0 0 0

1 0 00

0 2 01

3 0 00

0 0 00

0

Path Compression
● Path compression is

an optimization on the
find operation.

● After figuring out x’s
representative, change
the parent pointers of
all of x’s ancestors to
point directly to x’s
representative.

● This makes it a lot
faster to find
representatives across
multiple operations.

0 0 0

1 0 00

0 2 01

3 0 00

0 0 00

0

Path Compression
● Path compression is

an optimization on the
find operation.

● After figuring out x’s
representative, change
the parent pointers of
all of x’s ancestors to
point directly to x’s
representative.

● This makes it a lot
faster to find
representatives across
multiple operations.

0 0 0

1 0 00

0 2 01

3 0 00

0 0 00

0

Path Compression
● Path compression is

an optimization on the
find operation.

● After figuring out x’s
representative, change
the parent pointers of
all of x’s ancestors to
point directly to x’s
representative.

● This makes it a lot
faster to find
representatives across
multiple operations.

0 0 0

1 0 00

0 2 01

3 0 00

0 0 00

0

Path Compression
● The resulting code for our data structure is surprisingly simple:

Node* find(Node* source) {
 if (source->parent == nullptr) return source;

 /* Path compression: update parent before returning. */
 source->parent = find(source parent);→
 return source->parent;
}

void doUnion(Node* one, Node* two) {
 /* Find the representatives. */
 one = find(one);
 two = find(two);
 if (one->rank > two->rank) swap(one, two);

 /* Link and update ranks if needed. */
 one->parent = two;
 if (one->rank == two->rank) two->rank++;
}

● Now, all we have to do is analyze the runtime.

Analyzing Disjoint-Set Forests

History
● The analysis of union-by-rank plus path compression

has a long history.
● For a while, its actual efficiency was an open problem!
● In 1979 Tarjan proved a tight upper bound on the

runtime using a clever and nuanced analysis, and
provided a matching lower bound.

● In 2003 Seidel and Sharir arrived at the same upper
bound using a totally different technique.

● Both analyses require a careful analysis of the costs of
the operations and result in a very surprising result.

● The analysis I’ll share comes from Seidel and Sharir
and is based on this set of lecture slides from an
algorithms course at Harvard.

https://www.cs.princeton.edu/courses/archive/spr09/cos423/Lectures/path-compression.pdf

Our Analysis
● We’re going to analyze a

slightly simplified version of
this problem.

● We’ll be given a forest ℱ
formed purely from union-by-
rank, then do a series of path
compressions on it.
● These don’t have to go all the

way from a node to its
representative.

● Our goal will be to bound the
total amount of work done.

● Great Exercise: Show that
this analysis carries over to
the case of interleaved
unions and finds.

0 1 0

1 0 00

0 2 01

3 0 10

0 0 20

0

Our Analysis
● We’re going to analyze a

slightly simplified version of
this problem.

● We’ll be given a forest ℱ
formed purely from union-by-
rank, then do a series of path
compressions on it.
● These don’t have to go all the

way from a node to its
representative.

● Our goal will be to bound the
total amount of work done.

● Great Exercise: Show that
this analysis carries over to
the case of interleaved
unions and finds.

0 1 0

1 0 00

0 2 01

3 0 10

0 0 20

0

Our Analysis
● We’re going to analyze a

slightly simplified version of
this problem.

● We’ll be given a forest ℱ
formed purely from union-by-
rank, then do a series of path
compressions on it.
● These don’t have to go all the

way from a node to its
representative.

● Our goal will be to bound the
total amount of work done.

● Great Exercise: Show that
this analysis carries over to
the case of interleaved
unions and finds.

0 1 0

1 0 00

0 2 01

3 0 10

0 0 20

0

Our Analysis
● We’re going to analyze a

slightly simplified version of
this problem.

● We’ll be given a forest ℱ
formed purely from union-by-
rank, then do a series of path
compressions on it.
● These don’t have to go all the

way from a node to its
representative.

● Our goal will be to bound the
total amount of work done.

● Great Exercise: Show that
this analysis carries over to
the case of interleaved
unions and finds.

0 1 0

1 0 00

0 2 01

3 0 10

0 0 20

0

Our Analysis
● We’re going to analyze a

slightly simplified version of
this problem.

● We’ll be given a forest ℱ
formed purely from union-by-
rank, then do a series of path
compressions on it.
● These don’t have to go all the

way from a node to its
representative.

● Our goal will be to bound the
total amount of work done.

● Great Exercise: Show that
this analysis carries over to
the case of interleaved
unions and finds.

0 1 0

1 0 00

0 2 01

3 0 10

0 0 20

0

Our Analysis
● We’re going to analyze a

slightly simplified version of
this problem.

● We’ll be given a forest ℱ
formed purely from union-by-
rank, then do a series of path
compressions on it.
● These don’t have to go all the

way from a node to its
representative.

● Our goal will be to bound the
total amount of work done.

● Great Exercise: Show that
this analysis carries over to
the case of interleaved
unions and finds.

0 1 0

1 0 00

0 2 01

3 0 10

0 0 20

0

Our Analysis
● We’re going to analyze a

slightly simplified version of
this problem.

● We’ll be given a forest ℱ
formed purely from union-by-
rank, then do a series of path
compressions on it.
● These don’t have to go all the

way from a node to its
representative.

● Our goal will be to bound the
total amount of work done.

● Great Exercise: Show that
this analysis carries over to
the case of interleaved
unions and finds.

0 1 0

1 0 00

0 2 01

3 0 10

0 0 20

0

Our Analysis
● We’re going to analyze a

slightly simplified version of
this problem.

● We’ll be given a forest ℱ
formed purely from union-by-
rank, then do a series of path
compressions on it.
● These don’t have to go all the

way from a node to its
representative.

● Our goal will be to bound the
total amount of work done.

● Great Exercise: Show that
this analysis carries over to
the case of interleaved
unions and finds.

0 1 0

1 0 00

0 2 01

3 0 10

0 0 20

0

Our Analysis
● We’re going to analyze a

slightly simplified version of
this problem.

● We’ll be given a forest ℱ
formed purely from union-by-
rank, then do a series of path
compressions on it.
● These don’t have to go all the

way from a node to its
representative.

● Our goal will be to bound the
total amount of work done.

● Great Exercise: Show that
this analysis carries over to
the case of interleaved
unions and finds.

0 1 0

1 0 00

0 2 01

3 0 10

0 0 20

0

Our Analysis
● We’re going to analyze a

slightly simplified version of
this problem.

● We’ll be given a forest ℱ
formed purely from union-by-
rank, then do a series of path
compressions on it.
● These don’t have to go all the

way from a node to its
representative.

● Our goal will be to bound the
total amount of work done.

● Great Exercise: Show that
this analysis carries over to
the case of interleaved
unions and finds.

0 1 0

1 0 00

0 2 01

3 0 10

0 0 20

0

0 1 0

1 0 00

0 2 01

3 0 10

0 0 20

0

0 1

01 0 00

0 2 01

3 0 10

0 0 20

0

0 1

01 0 00

0 2

0

1

3 0 10

0 0

2

0

0

0 1

01 0 0

0

0 2

0

1

3 0 10

0 0

2

0

0

1

00

0

0

1

0

2

0

3

2

1

00

1

0 0 000

1

000 0

1

0

2

0

3

2

1

00

1

0 0 000

Our Analysis
● Some notation we’ll use throughout this analysis:

● Let n be the number of nodes in the disjoint-set forest.
● Let m be the number of operations performed.
● Let r be the maximum rank of any node in the forest. (We know

r = O(log n), but could be lower.)
● In practice, we’ll have m = Ω(n), and we’ll assume this in our

analysis.

1

000 0

1

0

2

0

3

2

1

00

1

0 0 000

Our Analysis
● We will specifically focus on the number of times a node’s

parent changes.
● Why?

● Each operation does O(1) work, plus work proportional to the
number of parents changed.

● The total work done is then Θ(m + #changes).

1

000 0

1

0

2

0

3

2

1

00

1

0 0 000

A Starting Analysis
● Lemma: The number of pointer changes is at most m + n · r / 2.
● Proof Sketch: Consider nodes of zero and nonzero rank.

● Nodes of rank 0: A node of rank 0 only has its parent change if it is the start
node of a compress. There are m compresses, so these pointers change at most
m times.

● Nodes of nonzero rank: When a parent changes, the new parent’s rank is
bigger than the old parent’s rank, so a node’s rank can increase at most r times.
There are at most n / 2 nodes of nonzero rank. This gives a bound of n · r / 2.

1

000 0

1

0

2

0

3

2

1

00

1

0 0 000

A Starting Analysis
● Lemma: The number of pointer changes is at most m + n · r / 2.
● Proof Sketch: Consider nodes of zero and nonzero rank.

● Nodes of rank 0: A node of rank 0 only has its parent change if it is the start
node of a compress. There are m compresses, so these pointers change at most
m times.

● Nodes of nonzero rank: When a parent changes, the new parent’s rank is
bigger than the old parent’s rank, so a node’s rank can increase at most r times.
There are at most n / 2 nodes of nonzero rank. This gives a bound of n · r / 2.

1

000 0

1

0

2

0

3

2

1

00

1

0 0 000

A Starting Analysis
● Lemma: The number of pointer changes is at most m + n · r / 2.
● Proof Sketch: Consider nodes of zero and nonzero rank.

● Nodes of rank 0: A node of rank 0 only has its parent change if it is the start
node of a compress. There are m compresses, so these pointers change at most
m times.

● Nodes of nonzero rank: When a parent changes, the new parent’s rank is
bigger than the old parent’s rank, so a node’s rank can increase at most r times.
There are at most n / 2 nodes of nonzero rank. This gives a bound of n · r / 2.

1

000 0

1

0

2

0

3

2

1

00

1

0 0 000

A Starting Analysis
● Our starting analysis is weak.

● Compressing a path impacts
other nodes not on that path.

● Nodes with high starting rank
have can’t have their parents
change too many times.

● These effects work differently
in different parts of the tree.
● The first effect is more

pronounced at the bottom of the
forest.

● The second effect is more
pronounced at the top.

● Idea: Split the forest into a
“top forest” and “bottom
forest,” and analyze the costs
in each forest separately.

Forest Slicing
● As before, let r be the

maximum rank in .ℱ
● Suppose that, somehow,

we pick a rank s(r) as a
separating rank.

● Then, split our forest ℱ
into two forests:
● ₋ ℱ consists of all nodes of

rank s(r) or below.
● ₊ ℱ consists of all nodes of

rank above s(r).
● Goal: Split the cost of

compressions across ₋ ℱ
and ₊.ℱ

rank r

rank s(r)

₊ℱ

₋ℱ

Forest Slicing
● As before, let r be the

maximum rank in .ℱ
● Suppose that, somehow,

we pick a rank s(r) as a
separating rank.

● Then, split our forest ℱ
into two forests:
● ₋ ℱ consists of all nodes of

rank s(r) or below.
● ₊ ℱ consists of all nodes of

rank above s(r).
● Goal: Split the cost of

compressions across ₋ ℱ
and ₊.ℱ

0

1

0

2

3

2

1

00

1

0 0 000

Forest Slicing
● As before, let r be the

maximum rank in .ℱ
● Suppose that, somehow,

we pick a rank s(r) as a
separating rank.

● Then, split our forest ℱ
into two forests:
● ₋ ℱ consists of all nodes of

rank s(r) or below.
● ₊ ℱ consists of all nodes of

rank above s(r).
● Goal: Split the cost of

compressions across ₋ ℱ
and ₊.ℱ

0

1

0

2

3

2

1

00

1

0 0 000

Forest Slicing
● As before, let r be the

maximum rank in .ℱ
● Suppose that, somehow,

we pick a rank s(r) as a
separating rank.

● Then, split our forest ℱ
into two forests:
● ₋ ℱ consists of all nodes of

rank s(r) or below.
● ₊ ℱ consists of all nodes of

rank above s(r).
● Goal: Split the cost of

compressions across ₋ ℱ
and ₊.ℱ

0

1

0

2

3

2

1

00

1

0 0 000

Some Terminology
● Let C(m, n, r) be the maximum number of pointer

changes that can be made if there are m
compresses, n nodes, and the maximum rank is r.

● Using this notation, our earlier result is that
C(m, n, r) ≤ m + n · r / 2.

● Question: What is C(m, n, 0)? What’s C(m, n, 1)?
● Goal: Split into ₊ and ₋, find a way to write a ℱ ℱ ℱ

recurrence relation for C(m, n, r), then solve the
recurrence to get a tight bound on the cost of any
series of unions and finds.

Answer at

https://pollev.com/cs166spr23

https://pollev.com/cs166spr23

Some Terminology
● Let C(m, n, r) be the maximum number of pointer

changes that can be made if there are m
compresses, n nodes, and the maximum rank is r.

● Using this notation, our earlier result is that
C(m, n, r) ≤ m + n · r / 2.

● Question: What is C(m, n, 0)? What’s C(m, n, 1)?
● Goal: Split into ₊ and ₋, find a way to write a ℱ ℱ ℱ

recurrence relation for C(m, n, r), then solve the
recurrence to get a tight bound on the cost of any
series of unions and finds.

Forest Slicing
● Focus on any one compression

from x to y. Let’s see how it
interacts with ₋ and ₊.ℱ ℱ

● Case 1: x and y are both in ₊.ℱ
● We can recursively handle this

compression when bounding the
work done purely in ₊.ℱ

Forest Slicing
● Focus on any one compression

from x to y. Let’s see how it
interacts with ₋ and ₊.ℱ ℱ

● Case 1: x and y are both in ₊.ℱ
● We can recursively handle this

compression when bounding the
work done purely in ₊.ℱ

x

y

Forest Slicing
● Focus on any one compression

from x to y. Let’s see how it
interacts with ₋ and ₊.ℱ ℱ

● Case 1: x and y are both in ₊.ℱ
● We can recursively handle this

compression when bounding the
work done purely in ₊.ℱ

x

y

Forest Slicing
● Focus on any one compression

from x to y. Let’s see how it
interacts with ₋ and ₊.ℱ ℱ

● Case 1: x and y are both in ₊.ℱ
● We can recursively handle this

compression when bounding the
work done purely in ₊.ℱ

x

y

Forest Slicing
● Case 2: x and y are both

in ₋.ℱ
● We can recursively

handle this compression
when bounding the work
done purely in ₋.ℱ

Forest Slicing
● Case 2: x and y are both

in ₋.ℱ
● We can recursively

handle this compression
when bounding the work
done purely in ₋.ℱ y

x

Forest Slicing
● Case 2: x and y are both

in ₋.ℱ
● We can recursively

handle this compression
when bounding the work
done purely in ₋.ℱ y

x

Forest Slicing
● Case 2: x and y are both

in ₋.ℱ
● We can recursively

handle this compression
when bounding the work
done purely in ₋.ℱ y

x

Forest Slicing

x

y
● Case 3: x is in ₋ and ℱ y is

in ₊.ℱ
● We compress from b to y,

purely in ₊.ℱ
● a, whose parent was already

in ₊, gets a new parent in ℱ
₊.ℱ

● Every node from x
(inclusive) and a (exclusive),
whose parents were in ₋, ℱ
now has a parent in ₊.ℱ

Forest Slicing

x

y
● Case 3: x is in ₋ and ℱ y is

in ₊.ℱ
● We compress from b to y,

purely in ₊.ℱ
● a, whose parent was already

in ₊, gets a new parent in ℱ
₊.ℱ

● Every node from x
(inclusive) and a (exclusive),
whose parents were in ₋, ℱ
now has a parent in ₊.ℱ

Forest Slicing

b

a

x

y
● Case 3: x is in ₋ and ℱ y is

in ₊.ℱ
● We compress from b to y,

purely in ₊.ℱ
● a, whose parent was already

in ₊, gets a new parent in ℱ
₊.ℱ

● Every node from x
(inclusive) and a (exclusive),
whose parents were in ₋, ℱ
now has a parent in ₊.ℱ

Forest Slicing
● Case 3: x is in ₋ and ℱ y is

in ₊.ℱ
● We compress from b to y,

purely in ₊.ℱ
● a, whose parent was already

in ₊, gets a new parent in ℱ
₊.ℱ

● Every node from x
(inclusive) and a (exclusive),
whose parents were in ₋, ℱ
now has a parent in ₊.ℱ

a

x

b

y

Forest Slicing
● Case 3: x is in ₋ and ℱ y is

in ₊.ℱ
● We compress from b to y,

purely in ₊.ℱ
● a, whose parent was already

in ₊, gets a new parent in ℱ
₊.ℱ

● Every node from x
(inclusive) and a (exclusive),
whose parents were in ₋, ℱ
now has a parent in ₊.ℱ

a

x

b

y

Forest Slicing
● Case 3: x is in ₋ and ℱ y is

in ₊.ℱ
● We compress from b to y,

purely in ₊.ℱ
● a, whose parent was already

in ₊, gets a new parent in ℱ
₊.ℱ

● Every node from x
(inclusive) and a (exclusive),
whose parents were in ₋, ℱ
now has a parent in ₊.ℱ

a

x

b

y

Forest Slicing
● Case 3: x is in ₋ and ℱ y is

in ₊.ℱ
● We compress from b to y,

purely in ₊.ℱ
● a, whose parent was already

in ₊, gets a new parent in ℱ
₊.ℱ

● Every node from x
(inclusive) and a (exclusive),
whose parents were in ₋, ℱ
now has a parent in ₊.ℱ

a

x

b

y

Forest Slicing
● Case 3: x is in ₋ and ℱ y is

in ₊.ℱ
● We compress from b to y,

purely in ₊.ℱ
● a, whose parent was already

in ₊, gets a new parent in ℱ
₊.ℱ

● Every node from x
(inclusive) and a (exclusive),
whose parents were in ₋, ℱ
now has a parent in ₊.ℱ

a x

b

y

Forest Slicing
Case 3: x is in ₋ and ℱ y is
in ₊.ℱ

● We compress from b to y,
purely in ₊.ℱ

● a, whose parent was already
in ₊, gets a new parent in ℱ

₊.ℱ
● Every node from x

(inclusive) and a (exclusive),
whose parents were in ₋, ℱ
now has a parent in ₊.ℱ

Recursively
handle this when
processing ₊.ℱ

Happens once
per compression
from ₋ to ₊.ℱ ℱ

Happens once
per non-root node

in ₋, countingℱ
across all

compressions

Forest Slicing
● Claim: The cost of

compressions crossing from
₋ to ₊ can be bounded byℱ ℱ

● the cost of some compressions
done purely in ₊ (the top parts ℱ
of the compressions),

● the total number of compressions
from ₋ to ₊ (changing the ℱ ℱ
parents of nodes in ₋ whose ℱ
parents are already in ₊), andℱ

● the number of nodes in ₋ whose ℱ
parents are in ₋ (each of which ℱ
may get a parent in ₊ for the ℱ
first time at most once).

Recursively
handle this when
processing ₊.ℱ

Happens once
per compression
from ₋ to ₊.ℱ ℱ

Happens once
per non-root node

in ₋, countingℱ
across all

compressions

Putting It All Together
● Claim: The cost of all the compressions

performed in is bounded by the following:ℱ
● The cost of some compressions purely in ₋.ℱ
● The cost of some compressions purely in ₊.ℱ

– This includes compressions originally in ₊, plus the ℱ
“tops” of compressions from ₋ to ₊.ℱ ℱ

● The number of compresses from ₋ to ₊.ℱ ℱ
– This accounts for changing the parents of nodes in

₋ whose parents are already in ₊.ℱ ℱ
● The number of nodes in ₋ with parents in ₋.ℱ ℱ

– Each of these nodes may get a parent in ₊ for the ℱ
first time once.

C(m, n, r) ≤ …

Cost of compressions
purely in ₋.ℱ

The number of
compresses from

₋ ℱ to ₊ℱ

Cost of compressions
purely in ₊.ℱ

Number of nodes in
₋ ℱ with parents in ₋.ℱ

C(m, n, r) ≤ …

Cost of compressions
purely in ₋.ℱ

The number of
compresses from

₋ ℱ to ₊ℱ

Number of nodes in
₋ ℱ with parents in ₋.ℱ

Cost of compressions
purely in ₊.ℱ

C(m, n, r) ≤ …

Cost of compressions
purely in ₋.ℱ

The number of
compresses from

₋ ℱ to ₊ℱ

Number of nodes in
₋ ℱ with parents in ₋.ℱ

Cost of compressions
purely in ₊.ℱ C(?? , ?? , ??)

C(m, n, r) ≤ …

Cost of compressions
purely in ₋.ℱ

The number of
compresses from

₋ ℱ to ₊ℱ

Number of nodes in
₋ ℱ with parents in ₋.ℱ

Cost of compressions
purely in ₊.ℱ C(?? , ?? , ??)

 rank s(r)

 rank r

C(m, n, r) ≤ …

Cost of compressions
purely in ₋.ℱ

The number of
compresses from

₋ ℱ to ₊ℱ

Number of nodes in
₋ ℱ with parents in ₋.ℱ

Cost of compressions
purely in ₊.ℱ C(?? , ?? , r – s(r) – 1)

 rank s(r)

 rank r

C(m, n, r) ≤ …

Cost of compressions
purely in ₋.ℱ

The number of
compresses from

₋ ℱ to ₊ℱ

Number of nodes in
₋ ℱ with parents in ₋.ℱ

Cost of compressions
purely in ₊.ℱ C(?? , ?? , r)

 rank s(r)

 rank r

C(m, n, r) ≤ …

Cost of compressions
purely in ₋.ℱ

The number of
compresses from

₋ ℱ to ₊ℱ

Number of nodes in
₋ ℱ with parents in ₋.ℱ

Cost of compressions
purely in ₊.ℱ C(?? , n₊, r)

 rank s(r)

 rank r

C(m, n, r) ≤ …

Cost of compressions
purely in ₋.ℱ

The number of
compresses from

₋ ℱ to ₊ℱ

Number of nodes in
₋ ℱ with parents in ₋.ℱ

Cost of compressions
purely in ₊.ℱ C(?? , n₊, r)

C(m, n, r) ≤ …

Cost of compressions
purely in ₋.ℱ

The number of
compresses from

₋ ℱ to ₊ℱ

Number of nodes in
₋ ℱ with parents in ₋.ℱ

Cost of compressions
purely in ₊.ℱ C(?? , n₊, r)

The “tops” of all compressions
running from ₋ to ₊ areℱ ℱ

handled in this bunch.

Let m₊ be the number of
compressions charged to ₊,ℱ
including both compressions

purely within ₊ and the “tops”ℱ
of compressions crossing

from ₋ to ₊.ℱ ℱ

C(m, n, r) ≤ …

Cost of compressions
purely in ₋.ℱ

The number of
compresses from

₋ ℱ to ₊ℱ

Number of nodes in
₋ ℱ with parents in ₋.ℱ

Cost of compressions
purely in ₊.ℱ C(m₊, n₊, r)

The “tops” of all compressions
running from ₋ to ₊ areℱ ℱ

handled in this bunch.

Let m₊ be the number of
compressions charged to ₊,ℱ
including both compressions

purely within ₊ and the “tops”ℱ
of compressions crossing

from ₋ to ₊.ℱ ℱ

C(m, n, r) ≤ …

Cost of compressions
purely in ₋.ℱ

The number of
compresses from

₋ ℱ to ₊ℱ

Number of nodes in
₋ ℱ with parents in ₋.ℱ

Cost of compressions
purely in ₊.ℱ C(m₊, n₊, r)

The “tops” of all compressions
running from ₋ to ₊ areℱ ℱ

handled in this bunch.

Let m₊ be the number of
compressions charged to ₊,ℱ
including both compressions

purely within ₊ and the “tops”ℱ
of compressions crossing

from ₋ to ₊.ℱ ℱ

C(m, n, r) ≤ …

Cost of compressions
purely in ₋.ℱ

The number of
compresses from

₋ ℱ to ₊ℱ

Number of nodes in
₋ ℱ with parents in ₋.ℱ

Cost of compressions
purely in ₊.ℱ C(m₊, n₊, r)

C(m, n, r) ≤ …

The number of
compresses from

₋ ℱ to ₊ℱ

Number of nodes in
₋ ℱ with parents in ₋.ℱ

Cost of compressions
purely in ₋.ℱ

Cost of compressions
purely in ₊.ℱ C(m₊, n₊, r)

C(m, n, r) ≤ …

The number of
compresses from

₋ ℱ to ₊ℱ

Number of nodes in
₋ ℱ with parents in ₋.ℱ

Cost of compressions
purely in ₋.ℱ C(?? , ?? , ??)

Cost of compressions
purely in ₊.ℱ C(m₊, n₊, r)

C(m, n, r) ≤ …

The number of
compresses from

₋ ℱ to ₊ℱ

Number of nodes in
₋ ℱ with parents in ₋.ℱ

Cost of compressions
purely in ₋.ℱ C(?? , ?? , ??)

Cost of compressions
purely in ₊.ℱ C(m₊, n₊, r)

 rank s(r)

 rank r

C(m, n, r) ≤ …

The number of
compresses from

₋ ℱ to ₊ℱ

Number of nodes in
₋ ℱ with parents in ₋.ℱ

Cost of compressions
purely in ₋.ℱ C(?? , ?? , s(r))

Cost of compressions
purely in ₊.ℱ C(m₊, n₊, r)

 rank s(r)

 rank r

C(m, n, r) ≤ …

The number of
compresses from

₋ ℱ to ₊ℱ

Number of nodes in
₋ ℱ with parents in ₋.ℱ

Cost of compressions
purely in ₋.ℱ C(?? , n – n₊, s(r))

Cost of compressions
purely in ₊.ℱ C(m₊, n₊, r)

 rank s(r)

 rank r

C(m, n, r) ≤ …

The number of
compresses from

₋ ℱ to ₊ℱ

Number of nodes in
₋ ℱ with parents in ₋.ℱ

Cost of compressions
purely in ₋.ℱ C(?? , n , s(r))

Cost of compressions
purely in ₊.ℱ C(m₊, n₊, r)

 rank s(r)

 rank r

C(m, n, r) ≤ …

The number of
compresses from

₋ ℱ to ₊ℱ

Number of nodes in
₋ ℱ with parents in ₋.ℱ

Cost of compressions
purely in ₋.ℱ C(m – m₊, n , s(r))

Cost of compressions
purely in ₊.ℱ C(m₊, n₊, r)

 rank s(r)

 rank r

C(m, n, r) ≤ …

The number of
compresses from

₋ ℱ to ₊ℱ

Number of nodes in
₋ ℱ with parents in ₋.ℱ

Cost of compressions
purely in ₋.ℱ C(m – m₊, n , s(r))

Cost of compressions
purely in ₊.ℱ C(m₊, n₊, r)

 rank s(r)

 rank r

C(m, n, r) ≤ …

The number of
compresses from

₋ ℱ to ₊ℱ

Number of nodes in
₋ ℱ with parents in ₋.ℱ

Cost of compressions
purely in ₋.ℱ C(m – m₊, n , s(r))

Cost of compressions
purely in ₊.ℱ C(m₊, n₊, r)

C(m, n, r) ≤ …

Number of nodes in
₋ ℱ with parents in ₋.ℱ

Cost of compressions
purely in ₋.ℱ C(m – m₊, n , s(r))

Cost of compressions
purely in ₊.ℱ C(m₊, n₊, r)

The number of
compresses from

₋ ℱ to ₊ℱ

C(m, n, r) ≤ …

Number of nodes in
₋ ℱ with parents in ₋.ℱ

Cost of compressions
purely in ₋.ℱ C(m – m₊, n , s(r))

Cost of compressions
purely in ₊.ℱ C(m₊, n₊, r)

The number of
compresses from

₋ ℱ to ₊ℱ
m₊

(Since this includes
all compresses
from ₋ to ₊).ℱ ℱ

C(m, n, r) ≤ …

Number of nodes in
₋ ℱ with parents in ₋.ℱ

Cost of compressions
purely in ₋.ℱ C(m – m₊, n , s(r))

Cost of compressions
purely in ₊.ℱ C(m₊, n₊, r)

The number of
compresses from

₋ ℱ to ₊ℱ
m₊

C(m, n, r) ≤ …

Cost of compressions
purely in ₋.ℱ C(m – m₊, n , s(r))

Cost of compressions
purely in ₊.ℱ C(m₊, n₊, r)

The number of
compresses from

₋ ℱ to ₊ℱ
m₊

Number of nodes in
₋ ℱ with parents in ₋.ℱ

Number of nodes in
₋ ℱ with parents in ₋.ℱ

Number of nodes in
₋ ℱ with parents in ₋.ℱ

 rank s(r)

Number of nodes in
₋ ℱ with parents in ₋.ℱ

 rank s(r)

Every node in ₊ has rankℱ
s(r) + 1 or greater.

Each rank-k node has children
of ranks 0, 1, 2, …, k – 1.

So every node in ₊ hasℱ
at least s(r) + 1 children, and

they’re all in in ₋.ℱ

There are n total nodes, and
n₊ of them are in ₊.ℱ

Nodes in ₋: ℱ n – n₊.

Nodes in ₋ whose parentsℱ
are in ₊: ℱ n₊ · (s(r) + 1))

Nodes in ₋ with parents in ₋:ℱ ℱ
n – n₊ · (s(r) + 2).

Number of nodes in
₋ ℱ with parents in ₋.ℱ

 rank s(r)

Every node in ₊ has rankℱ
s(r) + 1 or greater.

Each rank-k node has children
of ranks 0, 1, 2, …, k – 1.

So every node in ₊ hasℱ
at least s(r) + 1 children, and

they’re all in in ₋.ℱ

There are n total nodes, and
n₊ of them are in ₊.ℱ

Nodes in ₋: ℱ n – n₊.

Nodes in ₋ whose parentsℱ
are in ₊: ℱ n₊ · (s(r) + 1))

Nodes in ₋ with parents in ₋:ℱ ℱ
n – n₊ · (s(r) + 2).

Number of nodes in
₋ ℱ with parents in ₋.ℱ

 rank s(r)

Every node in ₊ has rankℱ
s(r) + 1 or greater.

Each rank-k node has children
of ranks 0, 1, 2, …, k – 1.

So every node in ₊ hasℱ
at least s(r) + 1 children, and

they’re all in in ₋.ℱ

There are n total nodes, and
n₊ of them are in ₊.ℱ

Nodes in ₋: ℱ n – n₊.

Nodes in ₋ whose parentsℱ
are in ₊: ℱ n₊ · (s(r) + 1))

Nodes in ₋ with parents in ₋:ℱ ℱ
n – n₊ · (s(r) + 2).

Number of nodes in
₋ ℱ with parents in ₋.ℱ

 rank s(r)

Every node in ₊ has rankℱ
s(r) + 1 or greater.

Each rank-k node has children
of ranks 0, 1, 2, …, k – 1.

So every node in ₊ hasℱ
at least s(r) + 1 children, and

they’re all in in ₋.ℱ

There are n total nodes, and
n₊ of them are in ₊.ℱ

Nodes in ₋: ℱ n – n₊.

Nodes in ₋ whose parentsℱ
are in ₊: ℱ n₊ · (s(r) + 1))

Nodes in ₋ with parents in ₋:ℱ ℱ
n – n₊ · (s(r) + 2).

Number of nodes in
₋ ℱ with parents in ₋.ℱ

 rank s(r)

Every node in ₊ has rankℱ
s(r) + 1 or greater.

Each rank-k node has children
of ranks 0, 1, 2, …, k – 1.

So every node in ₊ hasℱ
at least s(r) + 1 children, and

they’re all in in ₋.ℱ

There are n total nodes, and
n₊ of them are in ₊.ℱ

Nodes in ₋: ℱ n – n₊.

Nodes in ₋ whose parentsℱ
are in ₊: ℱ n₊ · (s(r) + 1))

Nodes in ₋ with parents in ₋:ℱ ℱ
n – n₊ · (s(r) + 2).

Number of nodes in
₋ ℱ with parents in ₋.ℱ

 rank s(r)

Every node in ₊ has rankℱ
s(r) + 1 or greater.

Each rank-k node has children
of ranks 0, 1, 2, …, k – 1.

So every node in ₊ hasℱ
at least s(r) + 1 children, and

they’re all in in ₋.ℱ

There are n total nodes, and
n₊ of them are in ₊.ℱ

Nodes in ₋: ℱ n – n₊.

Nodes in ₋ whose parentsℱ
are in ₊: ℱ n₊ · (s(r) + 1))

Nodes in ₋ with parents in ₋:ℱ ℱ
n – n₊ · (s(r) + 2).

Number of nodes in
₋ ℱ with parents in ₋.ℱ

 rank s(r)

Every node in ₊ has rankℱ
s(r) + 1 or greater.

Each rank-k node has children
of ranks 0, 1, 2, …, k – 1.

So every node in ₊ hasℱ
at least s(r) + 1 children, and

they’re all in in ₋.ℱ

There are n total nodes, and
n₊ of them are in ₊.ℱ

Nodes in ₋: ℱ n – n₊.

Nodes in ₋ whose parentsℱ
are in ₊: ℱ n₊ · (s(r) + 1))

Nodes in ₋ with parents in ₋:ℱ ℱ
n – n₊ · (s(r) + 2).

Number of nodes in
₋ ℱ with parents in ₋.ℱ n – n₊ · (s(r) + 2)

 rank s(r)

Every node in ₊ has rankℱ
s(r) + 1 or greater.

Each rank-k node has children
of ranks 0, 1, 2, …, k – 1.

So every node in ₊ hasℱ
at least s(r) + 1 children, and

they’re all in in ₋.ℱ

There are n total nodes, and
n₊ of them are in ₊.ℱ

Nodes in ₋: ℱ n – n₊.

Nodes in ₋ whose parentsℱ
are in ₊: ℱ n₊ · (s(r) + 1))

Nodes in ₋ with parents in ₋:ℱ ℱ
n – n₊ · (s(r) + 2).

C(m, n, r) ≤ …

Cost of compressions
purely in ₋.ℱ C(m – m₊, n , s(r))

Cost of compressions
purely in ₊.ℱ C(m₊, n₊, r)

The number of
compresses from

₋ ℱ to ₊ℱ
m₊

Number of nodes in
₋ ℱ with parents in ₋.ℱ n – n₊ · (s(r) + 2)

C(m, n, r) ≤ …

Cost of compressions
purely in ₋.ℱ C(m – m₊, n , s(r))

Cost of compressions
purely in ₊.ℱ C(m₊, n₊, r)

The number of
compresses from

₋ ℱ to ₊ℱ
m₊

Number of nodes in
₋ ℱ with parents in ₋.ℱ n – n₊ · s(r)

C(m, n, r) ≤ …

Cost of compressions
purely in ₋.ℱ C(m – m₊, n , s(r))

Cost of compressions
purely in ₊.ℱ C(m₊, n₊, r)

The number of
compresses from

₋ ℱ to ₊ℱ
m₊

Number of nodes in
₋ ℱ with parents in ₋.ℱ n – n₊ · s(r)

The Recurrence
● Putting it all together:

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 C(m₊, n₊, r) +
 m₊ + n – n₊ · s(r).

● Now, “all” we need to do is solve this.
● Don’t panic! This is indeed tricky, but it’s

not as bad as it looks.

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 C(m₊, n₊, r) +
 m₊ + n – n₊ · s(r).

● Recall: C(m, n, r) ≤ m + n · r / 2.

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 C(m₊, n₊, r) +
 m₊ + n – n₊ · s(r).

● Recall: C(m, n, r) ≤ m + n · r / 2.

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 m₊ + n₊ · r / 2 +
 m₊ + n – n₊ · s(r).

● Recall: C(m, n, r) ≤ m + n · r / 2.

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 m₊ + n₊ · r / 2 +
 m₊ + n – n₊ · s(r).

● Recall: C(m, n, r) ≤ m + n · r / 2.

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 m₊ + n₊ · r / 2 +
 m₊ + n – n₊ · s(r).

● Recall: C(m, n, r) ≤ m + n · r / 2.

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 2m₊ + n₊ · r / 2 +
 n – n₊ · s(r).

● Recall: C(m, n, r) ≤ m + n · r / 2.

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 2m₊ + n₊ · r / 2 +
 n – n₊ · s(r).

● Recall: C(m, n, r) ≤ m + n · r / 2.

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 2m₊ + n₊ · r / 2 +
 n – n₊ · s(r).

● Recall: C(m, n, r) ≤ m + n · r / 2.

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 2m₊ + n +
 n₊ · r / 2 – n₊ · s(r).

● Recall: C(m, n, r) ≤ m + n · r / 2.

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 2m₊ + n +
 n₊ · (r / 2 – s(r)).

● Recall: C(m, n, r) ≤ m + n · r / 2.

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 2m₊ + n +
 n₊ · (r / 2 – s(r)).

● Recall: C(m, n, r) ≤ m + n · r / 2.

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 2m₊ + n +
 n₊ · (r / 2 – s(r)).

● Clever Decision: Set s(r) = r / 2.

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 2m₊ + n +
 n₊ · (r / 2 – s(r)).

● Clever Decision: Set s(r) = r / 2.

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, r / 2) +
 2m₊ + n +
 n₊ · (r / 2 – r / 2).

● Clever Decision: Set s(r) = r / 2.

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, r / 2) +
 2m₊ + n +
 n₊ · (0).

● Clever Decision: Set s(r) = r / 2.

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, r / 2) +
 2m₊ + n +
 n₊ · (0).

● Clever Decision: Set s(r) = r / 2.

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, r / 2) +
 2m₊ + n.

● Clever Decision: Set s(r) = r / 2.

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, r / 2) +
 2m₊ + n.

● Clever Decision: Set s(r) = r / 2.

C(m, n, r) ≤ C(m – m₊, n, r / 2) + 2m₊ + n

Starting with m… …take some
of m away…

… and add it
into the total.

C(m, n, r) ≤ C(m – m₊, n, r / 2) + 2m₊ + n

Starting with m… …take some
of m away…

… and add it
into the total.

C(, n, r) 2() + n + C(, n, r / 2)≤

C(m, n, r) ≤ C(m – m₊, n, r / 2) + 2m₊ + n

Starting with m… …take some
of m away…

… and add it
into the total.

C(, n, r) 2() + n≤

2() + n + C(, n, r / 4)

C(m, n, r) ≤ C(m – m₊, n, r / 2) + 2m₊ + n

Starting with m… …take some
of m away…

… and add it
into the total.

C(, n, r) 2() + n≤

2() + n

2() + n + C(, n, r / 8)

C(m, n, r) ≤ C(m – m₊, n, r / 2) + 2m₊ + n

Starting with m… …take some
of m away…

… and add it
into the total.

C(, n, r) 2() + n≤

2() + n

2() + n

2() + n + C(, n, r / 16)

2() + ______

C(m, n, r) ≤ C(m – m₊, n, r / 2) + 2m₊ + n

Starting with m… …take some
of m away…

… and add it
into the total.

C(, n, r) 2() + n≤

2() + n

2() + n

…

2() + n

≤

2m + ______

C(m, n, r) ≤ C(m – m₊, n, r / 2) + 2m₊ + n

Starting with m… …take some
of m away…

… and add it
into the total.

C(m, n, r) 2() + n≤

2() + n

2() + n

…

2() + n

≤

How many layers
can this recursion

have?

2m + ______

C(m, n, r) ≤ C(m – m₊, n, r / 2) + 2m₊ + n

2() + n

2() + n

…

2() + n

≤

C(m, n, r) 2() + n≤

How many layers
can this recursion

have?

2m + n lg r

C(m, n, r) ≤ C(m – m₊, n, r / 2) + 2m₊ + n

2() + n

2() + n

…

2() + n

≤

C(m, n, r) 2() + n≤

How many layers
can this recursion

have?

2m + n lg r

C(m, n, r) ≤ C(m – m₊, n, r / 2) + 2m₊ + n

2() + n

2() + n

…

2() + n

≤

C(m, n, r) 2() + n≤

Where We Are
● We’ve just proven that

C(m, n, r) ≤ 2m + n lg r.
● The maximum rank in an n-node forest is

r = O(lg n).
● This gives a bound of O(m + n log log n) for any

series of operations.
● That’s a lot better than the O(m log n) we started

with – and it’s just due to better accounting,
rather than a fundamental reenvisioning of the
data structure.

● Is this a tight bound, or can we do better?

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 C(m₊, n₊, r) +
 m₊ + n – n₊ · s(r).

● Recall: C(m, n, r) ≤ m + n · r / 2.

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 C(m₊, n₊, r) +
 m₊ + n – n₊ · s(r).

● Recall: C(m, n, r) ≤ m + n · r / 2.
● Recall: C(m, n, r) ≤ 2m + n lg r.

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 C(m₊, n₊, r) +
 m₊ + n – n₊ · s(r).

● Recall: C(m, n, r) ≤ m + n · r / 2.
● Recall: C(m, n, r) ≤ 2m + n lg r.

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 2m₊ + n₊ · lg r +
 m₊ + n – n₊ · s(r).

● Recall: C(m, n, r) ≤ m + n · r / 2.
● Recall: C(m, n, r) ≤ 2m + n lg r.

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 2m₊ + n₊ · lg r +
 m₊ + n – n₊ · s(r).

● Recall: C(m, n, r) ≤ m + n · r / 2.
● Recall: C(m, n, r) ≤ 2m + n lg r.

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 2m₊ + n₊ · lg r +
 m₊ + n – n₊ · s(r).

● Recall: C(m, n, r) ≤ m + n · r / 2.
● Recall: C(m, n, r) ≤ 2m + n lg r.

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 3m₊ + n₊ · lg r +
 n – n₊ · s(r).

● Recall: C(m, n, r) ≤ m + n · r / 2.
● Recall: C(m, n, r) ≤ 2m + n lg r.

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 3m₊ + n₊ · lg r +
 n – n₊ · s(r).

● Recall: C(m, n, r) ≤ m + n · r / 2.
● Recall: C(m, n, r) ≤ 2m + n lg r.

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 3m₊ + n₊ · lg r +
 n – n₊ · s(r).

● Recall: C(m, n, r) ≤ m + n · r / 2.
● Recall: C(m, n, r) ≤ 2m + n lg r.

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 3m₊ + n +
 n₊ · lg r – n₊ · s(r).

● Recall: C(m, n, r) ≤ m + n · r / 2.
● Recall: C(m, n, r) ≤ 2m + n lg r.

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 3m₊ + n +
 n₊ · (lg r – s(r)).

● Recall: C(m, n, r) ≤ m + n · r / 2.
● Recall: C(m, n, r) ≤ 2m + n lg r.

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 3m₊ + n +
 n₊ · (lg r – s(r)).

● Recall: C(m, n, r) ≤ m + n · r / 2.
● Recall: C(m, n, r) ≤ 2m + n lg r.

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 3m₊ + n +
 n₊ · (lg r – s(r)).

● Clever Decision: Set s(r) = lg r.

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 3m₊ + n +
 n₊ · (lg r – s(r)).

● Clever Decision: Set s(r) = lg r.

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, lg r) +
 3m₊ + n +
 n₊ · (lg r – lg r).

● Clever Decision: Set s(r) = lg r.

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, lg r) +
 3m₊ + n +
 n₊ · (0).

● Clever Decision: Set s(r) = lg r.

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, lg r) +
 3m₊ + n +
 n₊ · (0).

● Clever Decision: Set s(r) = lg r.

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, lg r) +
 3m₊ + n

● Clever Decision: Set s(r) = lg r.

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, lg r) +
 3m₊ + n

● Clever Decision: Set s(r) = lg r.

C(m, n, r) ≤ C(m – m₊, n, lg r) + 3m₊ + n

Starting with m… …take some
of m away…

… and add it
into the total.

C(m, n, r) ≤ C(m – m₊, n, lg r) + 3m₊ + n

Starting with m… …take some
of m away…

… and add it
into the total.

C(, n, r) 3() + n + C(, n, lg r)≤

C(m, n, r) ≤ C(m – m₊, n, lg r) + 3m₊ + n

Starting with m… …take some
of m away…

… and add it
into the total.

C(, n, r) 3() + n≤

3() + n + C(, n, lg lg r)

C(m, n, r) ≤ C(m – m₊, n, lg r) + 3m₊ + n

Starting with m… …take some
of m away…

… and add it
into the total.

C(, n, r) 3() + n≤

3() + n

3() + n + C(, n, lg lg lg r)

3() + ______

C(m, n, r) ≤ C(m – m₊, n, lg r) + 3m₊ + n

Starting with m… …take some
of m away…

… and add it
into the total.

C(, n, r) 3() + n≤

3() + n

3() + n

…

3() + n

≤

3m + ______

C(m, n, r) ≤ C(m – m₊, n, lg r) + 3m₊ + n

Starting with m… …take some
of m away…

… and add it
into the total.

C(m, n, r) 3() + n≤

3() + n

3() + n

…

3() + n

≤

How many layers
can this recursion

have?

3m + ______

C(m, n, r) ≤ C(m – m₊, n, lg r) + 3m₊ + n

3() + n

3() + n

…

3() + n

≤

C(m, n, r) 3() + n≤

How many layers
can this recursion

have?

3m + n lg* r

C(m, n, r) ≤ C(m – m₊, n, lg r) + 3m₊ + n

3() + n

3() + n

…

3() + n

≤

C(m, n, r) 3() + n≤

How many layers
can this recursion

have?

3m + n lg* r

C(m, n, r) ≤ C(m – m₊, n, lg r) + 3m₊ + n

3() + n

3() + n

…

3() + n

≤

C(m, n, r) 3() + n≤

Where We Are
● We’ve just proven that

C(m, n, r) ≤ 3m + n lg* r.
● Since r = O(log n) this gives a bound of

O(m + n log* n) for any series of
operations.

● That’s a substantial improvement over
our previous bound – and all we did was
feed the analysis back into itself!

● Can we do better?

??

Notice Something?

m + n · r / 2 2m + n lg r

2m + n lg r 3m + n lg* r

km + n f(r)

If we start with this bound
on C(m, n, r)…

… then we get this stronger
bound on C(m, n, r):

Answer at
https://pollev.com/cs166spr23

https://pollev.com/cs166spr23

??(k+1)m + ___

Notice Something?

m + n · r / 2 2m + n lg r

2m + n lg r 3m + n lg* r

km + n f(r)

If we start with this bound
on C(m, n, r)…

… then we get this stronger
bound on C(m, n, r):

(k+1)m + ___

Notice Something?

m + n · r / 2 2m + n lg r

2m + n lg r 3m + n lg* r

km + n f(r)

If we start with this bound
on C(m, n, r)…

… then we get this stronger
bound on C(m, n, r):

(k+1)m + n f*(r)

(k+1)m + ___

Notice Something?

m + n · r / 2 2m + n lg r

2m + n lg r 3m + n lg* r

km + n f(r)

If we start with this bound
on C(m, n, r)…

… then we get this stronger
bound on C(m, n, r):

(k+1)m + n f*(r)

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 C(m₊, n₊, r) +
 m₊ + n – n₊ · s(r).

● Assume: C(m, n, r) ≤ km + n · f(r)

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 C(m₊, n₊, r) +
 m₊ + n – n₊ · s(r).

● Assume: C(m, n, r) ≤ km + n · f(r)

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 km₊ + n₊ · f(r) +
 m₊ + n – n₊ · s(r).

● Assume: C(m, n, r) ≤ km + n · f(r)

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 km₊ + n₊ · f(r) +
 m₊ + n – n₊ · s(r).

● Assume: C(m, n, r) ≤ km + n · f(r)

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 km₊ + n₊ · f(r) +
 m₊ + n – n₊ · s(r).

● Assume: C(m, n, r) ≤ km + n · f(r)

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 (k+1)m₊ + n₊ · f(r) +
 n – n₊ · s(r).

● Assume: C(m, n, r) ≤ km + n · f(r)

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 (k+1)m₊ + n₊ · f(r) +
 n – n₊ · s(r).

● Assume: C(m, n, r) ≤ km + n · f(r)

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 (k+1)m₊ + n₊ · f(r) +
 n – n₊ · s(r).

● Assume: C(m, n, r) ≤ km + n · f(r)

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 (k+1)m₊ + n +
 n₊ · f(r) – n₊ · s(r).

● Assume: C(m, n, r) ≤ km + n · f(r)

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 (k+1)m₊ + n +
 n₊ · (f(r) – s(r)).

● Assume: C(m, n, r) ≤ km + n · f(r)

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 (k+1)m₊ + n +
 n₊ · (f(r) – s(r)).

● Assume: C(m, n, r) ≤ km + n · f(r)

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 (k+1)m₊ + n +
 n₊ · (f(r) – s(r)).

● Clever Idea: Set s(r) = f(r).

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, s(r)) +
 (k+1)m₊ + n +
 n₊ · (f(r) – s(r)).

● Clever Idea: Set s(r) = f(r).

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, f(r)) +
 (k+1)m₊ + n +
 n₊ · (f(r) – f(r)).

● Clever Idea: Set s(r) = f(r).

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, f(r)) +
 (k+1)m₊ + n +
 n₊ · (0).

● Clever Idea: Set s(r) = f(r).

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, f(r)) +
 (k+1)m₊ + n +
 n₊ · (0).

● Clever Idea: Set s(r) = f(r).

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, f(r)) +
 (k+1)m₊ + n.

● Clever Idea: Set s(r) = f(r).

The Recurrence

 C(m, n, r) ≤ C(m – m₊, n, f(r)) +
 (k+1)m₊ + n.

● Clever Idea: Set s(r) = f(r).

 C(m, n, r) ≤ C(m – m₊, n, f(r)) + (k+1)m₊ + n

Starting with m… …take some
of m away…

… and add it
into the total.

 C(m, n, r) ≤ C(m – m₊, n, f(r)) + (k+1)m₊ + n

Starting with m… …take some
of m away…

… and add it
into the total.

C(, n, r) (k+1)() + n + C(, n, f(r))≤

(k+1)() + n + C(, n, f(f(r)))

 C(m, n, r) ≤ C(m – m₊, n, f(r)) + (k+1)m₊ + n

Starting with m… …take some
of m away…

… and add it
into the total.

C(, n, r) (k+1)() + n≤

(k+1)() + n

 C(m, n, r) ≤ C(m – m₊, n, f(r)) + (k+1)m₊ + n

Starting with m… …take some
of m away…

… and add it
into the total.

C(, n, r) (k+1)() + n≤

(k+1)() + n + C(, n, f(f(f(r))))

(k+1)() + ______

 C(m, n, r) ≤ C(m – m₊, n, f(r)) + (k+1)m₊ + n

Starting with m… …take some
of m away…

… and add it
into the total.

C(, n, r) (k+1)() + n≤

(k+1)() + n

(k+1)() + n

…

(k+1)() + n

≤

(k+1)m + ______

 C(m, n, r) ≤ C(m – m₊, n, f(r)) + (k+1)m₊ + n

Starting with m… …take some
of m away…

… and add it
into the total.

C(m, n, r) (k+1)() + n≤

(k+1)() + n

(k+1)() + n

…

(k+1)() + n

≤

How many layers
can this recursion

have?

 C(m, n, r) ≤ C(m – m₊, n, f(r)) + (k+1)m₊ + n

(k+1)m + ______

C(m, n, r) (k+1)() + n≤

(k+1)() + n

(k+1)() + n

…

(k+1)() + n

≤

How many layers
can this recursion

have?

 C(m, n, r) ≤ C(m – m₊, n, f(r)) + (k+1)m₊ + n

(k+1)m + nf*(r)

C(m, n, r) (k+1)() + n≤

(k+1)() + n

(k+1)() + n

…

(k+1)() + n

≤

How many layers
can this recursion

have?

 C(m, n, r) ≤ C(m – m₊, n, f(r)) + (k+1)m₊ + n

(k+1)m + nf*(r)

C(m, n, r) (k+1)() + n≤

(k+1)() + n

(k+1)() + n

…

(k+1)() + n

≤

Interpreting This Result
● We now have a family of bounds on the cost

of operations on a disjoint-set forest:
m + n · (ʳ/₂)
2m + n lg r
3m + n lg* r
4m + n lg** r
5m + n lg*** r

…
● Which of these is the “best” bound?

Interpreting This Result
● For now, focus on these bounds:

2m + n lg r
3m + n lg* r
4m + n lg** r
5m + n lg*** r
6m + n lg**** r

● More generally, we have bounds of the form
(k + 2)m + n lg*(k) r.

● There’s some point at which making k larger makes that
first term larger without decreasing the second term.

● What is it?

The Ackermann Inverse
● The Ackermann inverse function, denoted α(z),

is defined as follows:
α(z) = min{ k ∈ | log*ℕ (k) z ≤ 1 }

● Intuitively, this counts how many times you have
to put stars on log***...*** z before it drops to 1.

● This function grows more slowly than anything in
the iterated logarithm family – and that should
give you a sense of just how slowly this function
grows!

● Worthwhile Activity: find the smallest natural
numbers where α produces 0, 1, 2, 3, 4, 5, 6, 7, 8,
9, and 10.

The Ackermann Inverse
● We have a bound of

(k + 2)m + n log*(k) r.
● Picking k = α(r) = α(log n), and the bound on

the cost of any series of m operations is.
O(mα(log n) + n).

● This is essentially “O(m + n),” because that α
term is a constant for any input that could
ever be fed in with the resources we know
about in the universe. But technically
speaking it’s superlinear. 😃

A Tighter Analysis
● By being a bit more clever with the analysis, we

can tighten the bound as follows.
● Define α(m, n) as

α(m, n) = min{ k ∈ | log*ℕ (k) (m / n) ≤ log n }.
● Then the cost of m operations on an n-element

forest can be shown to be
O(mα(m, n)), a slight improvement over what we
just did here.

Major Ideas for Today
● Iterated functions generalize the idea of “how

many times can you divide by two before you run
out of things?”

● Iterated logarithms are a family of very slowly-
growing functions, each of which grows more
slowly than the previous one.

● The Ackermann inverse function grows slower
than any number of iterated logarithms and
essentially count what level of iteration is
needed to clear a number.

Next Time
● Euler Tour Trees

● Fully dynamic connectivity in forests.
● Augmented Dynamic Trees

● Figuring out information about connected
components in sublinear time.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240
	Slide 241
	Slide 242
	Slide 243
	Slide 244
	Slide 245
	Slide 246
	Slide 248
	Slide 249
	Slide 250
	Slide 251
	Slide 252
	Slide 253
	Slide 254
	Slide 255
	Slide 256
	Slide 257
	Slide 260
	Slide 261
	Slide 262
	Slide 263
	Slide 264
	Slide 265
	Slide 266
	Slide 267
	Slide 268
	Slide 269
	Slide 270
	Slide 271
	Slide 272
	Slide 273
	Slide 274
	Slide 275
	Slide 276
	Slide 277
	Slide 278
	Slide 279
	Slide 280
	Slide 281
	Slide 282
	Slide 283
	Slide 284
	Slide 285
	Slide 286
	Slide 287
	Slide 288
	Slide 289
	Slide 290
	Slide 291
	Slide 292
	Slide 293
	Slide 294
	Slide 295
	Slide 296
	Slide 297
	Slide 298
	Slide 299
	Slide 300
	Slide 301
	Slide 302
	Slide 303
	Slide 304
	Slide 305
	Slide 306
	Slide 307
	Slide 308
	Slide 309
	Slide 310
	Slide 311
	Slide 312
	Slide 313
	Slide 314
	Slide 315
	Slide 316
	Slide 317
	Slide 318
	Slide 319
	Slide 320
	Slide 321
	Slide 322
	Slide 323
	Slide 324
	Slide 325
	Slide 326
	Slide 327

