

Splay Trees

Recap from Last Time

 What does an “optimal” binary search tree look like?

Balance

Entropy

Dynamic
Finger

Working Set

Lookups take time
O(log n).

Lookups take expected
time O(1 + H).

Lookups take O(log Δ).
Δ measures distance.

Lookups take O(log t),
t measures recency.

Traditional
balanced BST

Weight-equalized
trees

Level-linked
BST with finger

Iacono’s
structure

Property Description Met by

 What does an “optimal” binary search tree look like?

Consider a discrete probability distribution with elements
x₁, …, xₙ, where element xᵢ has access probability pᵢ.

The Shannon entropy of this probability distribution, denoted
Hₚ (or just H, where p is implicit) is the quantity

Hp = ∑
i=1

n

pi lg
1
pi

.

Theorem: The expected cost of a lookup in any BST with keys
x₁, …, xₙ and access probabilities p₁, …, pₙ is Ω(1 + H).

 What does an “optimal” binary search tree look like?

11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71

11 – 13 17 – 19 23 – 29 31 – 37 41 – 43 47 – 53 59 – 61 67 – 71

11 – 19 23 – 37 41 – 53 59 – 71

11 – 37 41 – 71

11 – 71

 What does an “optimal” binary search tree look like?

11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71

11 – 13 17 – 19 23 – 29 31 – 37 41 – 43 47 – 53 59 – 61 67 – 71

11 – 19 23 – 37 41 – 53 59 – 71

11 – 37 41 – 71

11 – 71

☞
☞ ☞

 What does an “optimal” binary search tree look like?

11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71

11 – 13 17 – 19 23 – 29 31 – 37 41 – 43 47 – 53 59 – 61 67 – 71

11 – 19 23 – 37 41 – 53 59 – 71

11 – 37 41 – 71

11 – 71

☞☞

☞
☞ ☞

☞

 What does an “optimal” binary search tree look like?

“Hot”
elements
(recently
accessed)

“Cold”
elements

(haven’t used
in a while)

 What does an “optimal” binary search tree look like?

queried
element

least

recent

least

recent

 Is there a single BST with all of these properties?

Balance

Entropy

Dynamic
Finger

Working Set

Lookups take time
O(log n).

Lookups take expected
time O(1 + H).

Lookups take O(log Δ).
Δ measures distance.

Lookups take O(log t),
t measures recency.

Traditional
balanced BST

Weight-equalized
trees

Level-linked
BST with finger

Iacono’s
structure

Property Description Met by

 Yes!

Balance

Entropy

Dynamic
Finger

Working Set

Lookups take time
O(log n).

Lookups take expected
time O(1 + H).

Lookups take O(log Δ).
Δ measures distance.

Lookups take O(log t),
t measures recency.

Splay tree

Splay tree

Splay tree

Splay tree

Property Description Met by

New Stuff!

 How do we build a BST with the working set property?

2

1 3

6

5 7

10

9 11

14

13 15

124

8

Idea 1: Get the
working set property
by choosing a clever

BST shape.

Problem: We can
always pick a set of
hot elements deep

in the tree.

 How do we build a BST with the working set property?

2

1 3

6

5 7

10

9 11

14

13 15

124

8

Idea 2: Get the
working set property

by adding a finger
into our BST.

☞

Problem: What if
those keys aren’t

near each other in
key space?

 How do we build a BST with the working set property?

2

1 3

6

5 7

10

9 11

14

13 15

124

8

Idea 3: Get the
working set property

by moving nodes
around the BST.

Strategy: After
querying a node,
rotate it up to the
root of the tree.

 How do we build a BST with the working set property?

2

1 3

6

5 7

10

9 11

14

13 15

124

8

Idea 3: Get the
working set property

by moving nodes
around the BST.

Strategy: After
querying a node,
rotate it up to the
root of the tree.

 How do we build a BST with the working set property?

2

1 3

6

5 7

10

9 11

14

13 15

124

8

Idea 3: Get the
working set property

by moving nodes
around the BST.

Strategy: After
querying a node,
rotate it up to the
root of the tree.

 How do we build a BST with the working set property?

2

1 3 6

5

7 10

9 11

14

13 15

124

8

Idea 3: Get the
working set property

by moving nodes
around the BST.

Strategy: After
querying a node,
rotate it up to the
root of the tree.

 How do we build a BST with the working set property?

6

5

10

9 11

14

13 15

12

8

Idea 3: Get the
working set property

by moving nodes
around the BST.

Strategy: After
querying a node,
rotate it up to the
root of the tree.

2

1 3

4

7

 How do we build a BST with the working set property?

10

9 11

14

13 15

12

8

Idea 3: Get the
working set property

by moving nodes
around the BST.

Strategy: After
querying a node,
rotate it up to the
root of the tree.

6

5

2

1 3

4

7

 How do we build a BST with the working set property?

10

9 11

14

13 15

12

8

Idea 3: Get the
working set property

by moving nodes
around the BST.

Strategy: After
querying a node,
rotate it up to the
root of the tree.

6

5

2

1 3

4

7

 How do we build a BST with the working set property?

10

9 11

14

13 15

12

8

Idea 3: Get the
working set property

by moving nodes
around the BST.

Strategy: After
querying a node,
rotate it up to the
root of the tree.

6

5

2

1 3

4

7

 How do we build a BST with the working set property?

10

9 11

14

13 15

12

8

Idea 3: Get the
working set property

by moving nodes
around the BST.

Strategy: After
querying a node,
rotate it up to the
root of the tree.

6

5

2

1 3

4

7

 How do we build a BST with the working set property?

14

13 15

12

8

Idea 3: Get the
working set property

by moving nodes
around the BST.

Strategy: After
querying a node,
rotate it up to the
root of the tree.

6

5

2

1 3

4

7

10

11

9

 How do we build a BST with the working set property?

8

Idea 3: Get the
working set property

by moving nodes
around the BST.

Strategy: After
querying a node,
rotate it up to the
root of the tree.

6

5

2

1 3

4

7

10

11

14

13 15

12

9

9

How do we build a BST with the working set property?

8

Idea 3: Get the
working set property

by moving nodes
around the BST.

Strategy: After
querying a node,
rotate it up to the
root of the tree.

6

5

2

1 3

4

7

10

11

14

13 15

12

9

How do we build a BST with the working set property?

Idea 3: Get the
working set property

by moving nodes
around the BST.

Strategy: After
querying a node,
rotate it up to the
root of the tree.

10

11

14

13 15

12

6

5

2

1 3

4

7

8

9

How do we build a BST with the working set property?

Idea 3: Get the
working set property

by moving nodes
around the BST.

Strategy: After
querying a node,
rotate it up to the
root of the tree.

10

11

14

13 15

12

6

5

2

1 3

4

7

8

9

How do we build a BST with the working set property?

Idea 3: Get the
working set property

by moving nodes
around the BST.

Strategy: After
querying a node,
rotate it up to the
root of the tree.

10

11

14

13 15

12

6

5

2

1 3

4

7

8

9

How do we build a BST with the working set property?

Idea 3: Get the
working set property

by moving nodes
around the BST.

Strategy: After
querying a node,
rotate it up to the
root of the tree.

10

11

15

12

6

5

2

1 3

4

7

8

14

13

9

How do we build a BST with the working set property?

Idea 3: Get the
working set property

by moving nodes
around the BST.

Strategy: After
querying a node,
rotate it up to the
root of the tree.

6

5

2

1 3

4

7

8

15

10

11

12

14

13

159

How do we build a BST with the working set property?

Idea 3: Get the
working set property

by moving nodes
around the BST.

Strategy: After
querying a node,
rotate it up to the
root of the tree.

6

5

2

1 3

4

7

8 10

11

12

14

13

15

159

How do we build a BST with the working set property?

Idea 3: Get the
working set property

by moving nodes
around the BST.

Strategy: After
querying a node,
rotate it up to the
root of the tree.

6

5

2

1 3

4

7

8 10

11

12

14

13

15

159

How do we build a BST with the working set property?

Idea 3: Get the
working set property

by moving nodes
around the BST.

Strategy: After
querying a node,
rotate it up to the
root of the tree.

6

5

2

1 3

4

7

8 10

11

12

14

13

15

 How do we build a BST with the working set property?

Idea 3: Get the
working set property

by moving nodes
around the BST.

Strategy: After
querying a node,
rotate it up to the
root of the tree.

6

5

2

1 3

4

7

8

15

159

10

11

12

14

13

 How do we build a BST with the working set property?

Idea 3: Get the
working set property

by moving nodes
around the BST.

Strategy: After
querying a node,
rotate it up to the
root of the tree.

6

5

2

1 3

4

7

8

15

159

10

11

12

14

13

 How do we build a BST with the working set property?

Idea 3: Get the
working set property

by moving nodes
around the BST.

Strategy: After
querying a node,
rotate it up to the
root of the tree.

6

5

2

1 3

4

7

8

15

159

10

11

12

14

13

 Question: Does rotating each accessed key to the
root guarantee good overall performance?

We have a mechanical
description of how we
reshape the tree. Can

we get an operational
description?

a

b

c

d

e

f

g

h

 Question: Does rotating each accessed key to the
root guarantee good overall performance?

We have a mechanical
description of how we
reshape the tree. Can

we get an operational
description?

a

b

c

d

e

f

g

h

 Question: Does rotating each accessed key to the
root guarantee good overall performance?

We have a mechanical
description of how we
reshape the tree. Can

we get an operational
description?

a

b

c

d

e

f

g

h

 Question: Does rotating each accessed key to the
root guarantee good overall performance?

We have a mechanical
description of how we
reshape the tree. Can

we get an operational
description?

a

b

c

d

e

f

g

h

 Question: Does rotating each accessed key to the
root guarantee good overall performance?

We have a mechanical
description of how we
reshape the tree. Can

we get an operational
description?

a

b

c

d

e

f

g

h

 Question: Does rotating each accessed key to the
root guarantee good overall performance?

We have a mechanical
description of how we
reshape the tree. Can

we get an operational
description?

a

b

c

e

f

g

d

h

 Question: Does rotating each accessed key to the
root guarantee good overall performance?

We have a mechanical
description of how we
reshape the tree. Can

we get an operational
description?

a

b

e

f

g

d

h

c

 Question: Does rotating each accessed key to the
root guarantee good overall performance?

We have a mechanical
description of how we
reshape the tree. Can

we get an operational
description?

a

d

h

c

e

f

g

b

 Question: Does rotating each accessed key to the
root guarantee good overall performance?

We have a mechanical
description of how we
reshape the tree. Can

we get an operational
description? d

h

c

e

f

g

b

a

 Question: Does rotating each accessed key to the
root guarantee good overall performance?

We have a mechanical
description of how we
reshape the tree. Can

we get an operational
description? d

h

c

e

f

g

b

a

 Question: Does rotating each accessed key to the
root guarantee good overall performance?

We have a mechanical
description of how we
reshape the tree. Can

we get an operational
description?

d

h

c

e

f

g

b

a

a

b

c

d

e

f

g

h

 Question: Does rotating each accessed key to the
root guarantee good overall performance?

We have a mechanical
description of how we
reshape the tree. Can

we get an operational
description?

d

h

c

e

f

g

b

a

a

b

c

d

e

f

g

h

L

L

L

R

R

L

L

L

L

L

L

LR

R

Group R-type and L-type
nodes into two chains.

Join them together

using the rotated node.

 Question: Does rotating each accessed key to the
root guarantee good overall performance?

Group R-type and L-type
nodes into two chains.

Join them together

using the rotated node.

Observation 1: This
works really well on
zig-zag-shaped trees. a

b

c

d

e

f

g

h

 Question: Does rotating each accessed key to the
root guarantee good overall performance?

Group R-type and L-type
nodes into two chains.

Join them together

using the rotated node.

Observation 1: This
works really well on
zig-zag-shaped trees. a

b

c

d

e

f

g

h

 Question: Does rotating each accessed key to the
root guarantee good overall performance?

Group R-type and L-type
nodes into two chains.

Join them together

using the rotated node.

Observation 1: This
works really well on
zig-zag-shaped trees. a

b

c

d

e

f

g

h

 Question: Does rotating each accessed key to the
root guarantee good overall performance?

Group R-type and L-type
nodes into two chains.

Join them together

using the rotated node.

Observation 1: This
works really well on
zig-zag-shaped trees.

ab

cd

ef

g

h

This tree is about half
as tall as it started.

Most nodes on the
access path are much

closer to the root.

 Question: Does rotating each accessed key to the
root guarantee good overall performance?

1

2

4

3

6

5

Group R-type and L-type
nodes into two chains.

Join them together

using the rotated node.

Observation 2: This
does not work well at all

on long chains.

 Question: Does rotating each accessed key to the
root guarantee good overall performance?

1

2

1

4

3

6

5

Group R-type and L-type
nodes into two chains.

Join them together

using the rotated node.

Observation 2: This
does not work well at all

on long chains.

 Question: Does rotating each accessed key to the
root guarantee good overall performance?

1

2

1

4

3

6

5

Group R-type and L-type
nodes into two chains.

Join them together

using the rotated node.

Observation 2: This
does not work well at all

on long chains.

 Question: Does rotating each accessed key to the
root guarantee good overall performance?

1

2

1

4

3

6

5

Group R-type and L-type
nodes into two chains.

Join them together

using the rotated node.

Observation 2: This
does not work well at all

on long chains.

 Question: Does rotating each accessed key to the
root guarantee good overall performance?

1

2

1

4

3

6

5

Group R-type and L-type
nodes into two chains.

Join them together

using the rotated node.

Observation 2: This
does not work well at all

on long chains.

 Question: Does rotating each accessed key to the
root guarantee good overall performance?

1

2

1

4

3

6

5

Group R-type and L-type
nodes into two chains.

Join them together

using the rotated node.

Observation 2: This
does not work well at all

on long chains.

 Question: Does rotating each accessed key to the
root guarantee good overall performance?

1

2

1

4

3

6

5

Group R-type and L-type
nodes into two chains.

Join them together

using the rotated node.

Observation 2: This
does not work well at all

on long chains.

 Question: Does rotating each accessed key to the
root guarantee good overall performance?

1

2

1

4

3

6

5

Group R-type and L-type
nodes into two chains.

Join them together

using the rotated node.

Observation 2: This
does not work well at all

on long chains.

 Question: Does rotating each accessed key to the
root guarantee good overall performance?

1

2

1

4

3

6

5

Group R-type and L-type
nodes into two chains.

Join them together

using the rotated node.

Observation 2: This
does not work well at all

on long chains.

 Question: Does rotating each accessed key to the
root guarantee good overall performance?

1

2

1

4

3

6

5

Group R-type and L-type
nodes into two chains.

Join them together

using the rotated node.

Observation 2: This
does not work well at all

on long chains.

 Question: Does rotating each accessed key to the
root guarantee good overall performance?

1

2

1

4

3

6

5

Group R-type and L-type
nodes into two chains.

Join them together

using the rotated node.

Observation 2: This
does not work well at all

on long chains.

 Question: Does rotating each accessed key to the
root guarantee good overall performance?

1

2

1

4

3

6

5

Group R-type and L-type
nodes into two chains.

Join them together

using the rotated node.

Observation 2: This
does not work well at all

on long chains.

 Question: Does rotating each accessed key to the
root guarantee good overall performance?

1

2

1

3

6

5

4

Group R-type and L-type
nodes into two chains.

Join them together

using the rotated node.

Observation 2: This
does not work well at all

on long chains.

 Question: Does rotating each accessed key to the
root guarantee good overall performance?

1

2

1

3

6

5

4

Group R-type and L-type
nodes into two chains.

Join them together

using the rotated node.

Observation 2: This
does not work well at all

on long chains.

 Question: Does rotating each accessed key to the
root guarantee good overall performance?

1

2

1

3

6

5

4

Group R-type and L-type
nodes into two chains.

Join them together

using the rotated node.

Observation 2: This
does not work well at all

on long chains.

 Question: Does rotating each accessed key to the
root guarantee good overall performance?

1

2

1

3

6

5

4

Group R-type and L-type
nodes into two chains.

Join them together

using the rotated node.

Observation 2: This
does not work well at all

on long chains.

 Question: Does rotating each accessed key to the
root guarantee good overall performance?

1

2

1

3

6

5

4

Group R-type and L-type
nodes into two chains.

Join them together

using the rotated node.

Observation 2: This
does not work well at all

on long chains.

 Question: Does rotating each accessed key to the
root guarantee good overall performance?

1

2

1

6

5

4

3

Group R-type and L-type
nodes into two chains.

Join them together

using the rotated node.

Observation 2: This
does not work well at all

on long chains.

 Question: Does rotating each accessed key to the
root guarantee good overall performance?

1

2

1

6

5

4

3

Group R-type and L-type
nodes into two chains.

Join them together

using the rotated node.

Observation 2: This
does not work well at all

on long chains.

 Question: Does rotating each accessed key to the
root guarantee good overall performance?

1

2

1

6

5

4

3

Group R-type and L-type
nodes into two chains.

Join them together

using the rotated node.

Observation 2: This
does not work well at all

on long chains.

 Question: Does rotating each accessed key to the
root guarantee good overall performance?

2

1

6

5

4

3

Group R-type and L-type
nodes into two chains.

Join them together

using the rotated node.

Observation 2: This
does not work well at all

on long chains.

 Question: Does rotating each accessed key to the
root guarantee good overall performance?

2

1

6

5

4

3

Group R-type and L-type
nodes into two chains.

Join them together

using the rotated node.

Observation 2: This
does not work well at all

on long chains.

 Question: Does rotating each accessed key to the
root guarantee good overall performance?

2

1

6

5

4

3

Group R-type and L-type
nodes into two chains.

Join them together

using the rotated node.

Observation 2: This
does not work well at all

on long chains.

 Question: Does rotating each accessed key to the
root guarantee good overall performance?

1

2

1

4

3

6

5

Group R-type and L-type
nodes into two chains.

Join them together

using the rotated node.

Observation 2: This
does not work well at all

on long chains.

 Question: Does rotating each accessed key to the
root guarantee good overall performance?

1

2

1

4

3

6

5

We’re right back
where we started!

Total rotations: Θ(n2).

Group R-type and L-type
nodes into two chains.

Join them together

using the rotated node.

Observation 2: This
does not work well at all

on long chains.

 Question: How do we fix rotate-to-root to
work well with long chains of nodes?

Intuition: We already
handle zig-zags well.

Let’s just fix the linear
case.

 Question: How do we fix rotate-to-root to
work well with long chains of nodes?

Intuition: We already
handle zig-zags well.

Let’s just fix the linear
case.

 Question: How do we fix rotate-to-root to
work well with long chains of nodes?

Intuition: We already
handle zig-zags well.

Let’s just fix the linear
case.

 Question: How do we fix rotate-to-root to
work well with long chains of nodes?

Intuition: We already
handle zig-zags well.

Let’s just fix the linear
case.

 Question: How do we fix rotate-to-root to
work well with long chains of nodes?

Intuition: We already
handle zig-zags well.

Let’s just fix the linear
case.

 Question: How do we fix rotate-to-root to
work well with long chains of nodes?

Intuition: We already
handle zig-zags well.

Let’s just fix the linear
case.

c

b

a

a

c

b

a

b

c

 Question: How do we fix rotate-to-root to
work well with long chains of nodes?

Intuition: We already
handle zig-zags well.

Let’s just fix the linear
case.

c

b

a

a

c

b

a

b

c

 Question: How do we fix rotate-to-root to
work well with long chains of nodes?

Intuition: We already
handle zig-zags well.

Let’s just fix the linear
case.

c

b

a

a

b

cc

b

a

 Question: How do we fix rotate-to-root to
work well with long chains of nodes?

Intuition: We already
handle zig-zags well.

Let’s just fix the linear
case.

c

b

a

a

b

cc

b

a

 Question: How do we fix rotate-to-root to
work well with long chains of nodes?

Intuition: We already
handle zig-zags well.

Let’s just fix the linear
case.

c

b

a

a

b

cc

b

a

 Question: How do we fix rotate-to-root to
work well with long chains of nodes?

Intuition: We already
handle zig-zags well.

Let’s just fix the linear
case.

c

b

a

a

b

cc

b

a

 Question: How do we fix rotate-to-root to
work well with long chains of nodes?

Intuition: We already
handle zig-zags well.

Let’s just fix the linear
case.

c

b

a

a

b

cc

b

a

 Question: How do we fix rotate-to-root to
work well with long chains of nodes?

Intuition: We already
handle zig-zags well.

Let’s just fix the linear
case.

c

b

a

a

b

cc

b

a

 Question: How do we fix rotate-to-root to
work well with long chains of nodes?

Intuition: We already
handle zig-zags well.

Let’s just fix the linear
case.

c

b

a

a

b

cc

b

a

 Question: How do we fix rotate-to-root to
work well with long chains of nodes?

Intuition: We already
handle zig-zags well.

Let’s just fix the linear
case.

c

b

a

a

b

cc

b

a

 Question: How do we fix rotate-to-root to
work well with long chains of nodes?

Intuition: We already
handle zig-zags well.

Let’s just fix the linear
case.

c

b

a

a

b

cc

b

a

 Question: How do we fix rotate-to-root to
work well with long chains of nodes?

Intuition: We already
handle zig-zags well.

Let’s just fix the linear
case.

c

b

a

a

b

cc

b

a

 Question: How do we fix rotate-to-root to
work well with long chains of nodes?

Intuition: We already
handle zig-zags well.

Let’s just fix the linear
case.

c

b

a

a

b

cc

b

a

 Question: How do we fix rotate-to-root to
work well with long chains of nodes?

Intuition: We already
handle zig-zags well.

Let’s just fix the linear
case.

c

b

a

a

b

cc

b

a

 Question: How do we fix rotate-to-root to
work well with long chains of nodes?

Intuition: We already
handle zig-zags well.

Let’s just fix the linear
case.

Observation: This
new rule roughly cuts

the height of the
access path in half.

 Question: How do we fix rotate-to-root to
work well with long chains of nodes?

This procedure for
moving a node to

the root of the tree
is called splaying.

Intuition: Use
rotate-to-root,

except when nodes
chain in the same

direction.

Mechanics: Look
back two steps in
the tree and apply

the appropriate
rotation rules.

c

b

a

a

b

c

c

b

a
b ↷ c

c

b

a

c

b

a cb

a

b

a

(root)

a

b
a ↷ b

a ↷ c

a ↷ b

a ↶ b

“Zig”

“Zig-zag”

“Zig-zig”

 Splaying dramatically simplifies BST operations.

A splay tree is a
regular BST where
we splay the last

node touched after
each operation.

Theorem: The
amortized cost of
splaying a node is

O(log n).

Claim: Every splay
tree operation cost
is bounded by O(1)
splays and takes
amortized time

O(log n).

Insert: Add as
usual, then splay

the new node.

 Splaying dramatically simplifies BST operations.

A splay tree is a
regular BST where
we splay the last

node touched after
each operation.

Theorem: The
amortized cost of
splaying a node is

O(log n).

Claim: Every splay
tree operation cost
is bounded by O(1)
splays and takes
amortized time

O(log n).

Insert: Add as
usual, then splay

the new node.

 Splaying dramatically simplifies BST operations.

A splay tree is a
regular BST where
we splay the last

node touched after
each operation.

Theorem: The
amortized cost of
splaying a node is

O(log n).

Claim: Every splay
tree operation cost
is bounded by O(1)
splays and takes
amortized time

O(log n).

Insert: Add as
usual, then splay

the new node.

 Splaying dramatically simplifies BST operations.

A splay tree is a
regular BST where
we splay the last

node touched after
each operation.

Theorem: The
amortized cost of
splaying a node is

O(log n).

Claim: Every splay
tree operation cost
is bounded by O(1)
splays and takes
amortized time

O(log n).

Insert: Add as
usual, then splay

the new node.

 Splaying dramatically simplifies BST operations.

A splay tree is a
regular BST where
we splay the last

node touched after
each operation.

Theorem: The
amortized cost of
splaying a node is

O(log n).

Claim: Every splay
tree operation cost
is bounded by O(1)
splays and takes
amortized time

O(log n).

Insert: Add as
usual, then splay

the new node.

 Splaying dramatically simplifies BST operations.

A splay tree is a
regular BST where
we splay the last

node touched after
each operation.

Theorem: The
amortized cost of
splaying a node is

O(log n).

Claim: Every splay
tree operation cost
is bounded by O(1)
splays and takes
amortized time

O(log n).

Insert: Add as
usual, then splay

the new node.

 Splaying dramatically simplifies BST operations.

A splay tree is a
regular BST where
we splay the last

node touched after
each operation.

Theorem: The
amortized cost of
splaying a node is

O(log n).

Claim: Every splay
tree operation cost
is bounded by O(1)
splays and takes
amortized time

O(log n).

Insert: Add as
usual, then splay

the new node.

 Splaying dramatically simplifies BST operations.

A splay tree is a
regular BST where
we splay the last

node touched after
each operation.

Theorem: The
amortized cost of
splaying a node is

O(log n).

Claim: Every splay
tree operation cost
is bounded by O(1)
splays and takes
amortized time

O(log n).

Insert: Add as
usual, then splay

the new node.

 Splaying dramatically simplifies BST operations.

A splay tree is a
regular BST where
we splay the last

node touched after
each operation.

Theorem: The
amortized cost of
splaying a node is

O(log n).

Claim: Every splay
tree operation cost
is bounded by O(1)
splays and takes
amortized time

O(log n).

Insert: Add as
usual, then splay

the new node.

 Splaying dramatically simplifies BST operations.

A splay tree is a
regular BST where
we splay the last

node touched after
each operation.

Theorem: The
amortized cost of
splaying a node is

O(log n).

Claim: Every splay
tree operation cost
is bounded by O(1)
splays and takes
amortized time

O(log n).

Insert: Add as
usual, then splay

the new node.

 Splaying dramatically simplifies BST operations.

A splay tree is a
regular BST where
we splay the last

node touched after
each operation.

Theorem: The
amortized cost of
splaying a node is

O(log n).

Claim: Every splay
tree operation cost
is bounded by O(1)
splays and takes
amortized time

O(log n).

Insert: Add as
usual, then splay

the new node.

 Splaying dramatically simplifies BST operations.

A splay tree is a
regular BST where
we splay the last

node touched after
each operation.

Theorem: The
amortized cost of
splaying a node is

O(log n).

Claim: Every splay
tree operation cost
is bounded by O(1)
splays and takes
amortized time

O(log n).

Lookup: Search,
then splay the
last node seen.

 Splaying dramatically simplifies BST operations.

A splay tree is a
regular BST where
we splay the last

node touched after
each operation.

Theorem: The
amortized cost of
splaying a node is

O(log n).

Claim: Every splay
tree operation cost
is bounded by O(1)
splays and takes
amortized time

O(log n).

Lookup: Search,
then splay the
last node seen.

 Splaying dramatically simplifies BST operations.

A splay tree is a
regular BST where
we splay the last

node touched after
each operation.

Theorem: The
amortized cost of
splaying a node is

O(log n).

Claim: Every splay
tree operation cost
is bounded by O(1)
splays and takes
amortized time

O(log n).

Lookup: Search,
then splay the
last node seen.

 Splaying dramatically simplifies BST operations.

A splay tree is a
regular BST where
we splay the last

node touched after
each operation.

Theorem: The
amortized cost of
splaying a node is

O(log n).

Claim: Every splay
tree operation cost
is bounded by O(1)
splays and takes
amortized time

O(log n).

Lookup: Search,
then splay the
last node seen.

 Splaying dramatically simplifies BST operations.

A splay tree is a
regular BST where
we splay the last

node touched after
each operation.

Theorem: The
amortized cost of
splaying a node is

O(log n).

Claim: Every splay
tree operation cost
is bounded by O(1)
splays and takes
amortized time

O(log n).

Lookup: Search,
then splay the
last node seen.

 Splaying dramatically simplifies BST operations.

A splay tree is a
regular BST where
we splay the last

node touched after
each operation.

Theorem: The
amortized cost of
splaying a node is

O(log n).

Claim: Every splay
tree operation cost
is bounded by O(1)
splays and takes
amortized time

O(log n).

Lookup: Search,
then splay the
last node seen.

 Splaying dramatically simplifies BST operations.

A splay tree is a
regular BST where
we splay the last

node touched after
each operation.

Theorem: The
amortized cost of
splaying a node is

O(log n).

Claim: Every splay
tree operation cost
is bounded by O(1)
splays and takes
amortized time

O(log n).

Lookup: Search,
then splay the
last node seen.

Important Fact 1:
We’re making no effort
whatsoever to keep the
tree balanced. The tree

shape is purely the result
of splaying.

 Splaying dramatically simplifies BST operations.

A splay tree is a
regular BST where
we splay the last

node touched after
each operation.

Theorem: The
amortized cost of
splaying a node is

O(log n).

Claim: Every splay
tree operation cost
is bounded by O(1)
splays and takes
amortized time

O(log n).

Lookup: Search,
then splay the
last node seen.

Important Fact 2:
Nodes in the tree store

no extra information
beyond left and right

pointers. (Contrast with,
say, a red/black tree.)

 Splaying dramatically simplifies BST operations.

A splay tree is a
regular BST where
we splay the last

node touched after
each operation.

Theorem: The
amortized cost of
splaying a node is

O(log n).

Claim: Every splay
tree operation cost
is bounded by O(1)
splays and takes
amortized time

O(log n).

Split: How might
you do this?

Join: How might
you do this?

+

 Splaying dramatically simplifies BST operations.

A splay tree is a
regular BST where
we splay the last

node touched after
each operation.

Theorem: The
amortized cost of
splaying a node is

O(log n).

Claim: Every splay
tree operation cost
is bounded by O(1)
splays and takes
amortized time

O(log n).

Split: How might
you do this?

Join: How might
you do this?

+

Answer at
https://pollev.com/cs166spr23

https://pollev.com/cs166spr23

 Splaying dramatically simplifies BST operations.

A splay tree is a
regular BST where
we splay the last

node touched after
each operation.

Theorem: The
amortized cost of
splaying a node is

O(log n).

Claim: Every splay
tree operation cost
is bounded by O(1)
splays and takes
amortized time

O(log n).

Split: Search for the
smallest value bigger than
the split point. Splay it to
the root and cut one link.

 Splaying dramatically simplifies BST operations.

A splay tree is a
regular BST where
we splay the last

node touched after
each operation.

Theorem: The
amortized cost of
splaying a node is

O(log n).

Claim: Every splay
tree operation cost
is bounded by O(1)
splays and takes
amortized time

O(log n).

Split: Search for the
smallest value bigger than
the split point. Splay it to
the root and cut one link.

 Splaying dramatically simplifies BST operations.

A splay tree is a
regular BST where
we splay the last

node touched after
each operation.

Theorem: The
amortized cost of
splaying a node is

O(log n).

Claim: Every splay
tree operation cost
is bounded by O(1)
splays and takes
amortized time

O(log n).

Split: Search for the
smallest value bigger than
the split point. Splay it to
the root and cut one link.

 Splaying dramatically simplifies BST operations.

A splay tree is a
regular BST where
we splay the last

node touched after
each operation.

Theorem: The
amortized cost of
splaying a node is

O(log n).

Claim: Every splay
tree operation cost
is bounded by O(1)
splays and takes
amortized time

O(log n).

Split: Search for the
smallest value bigger than
the split point. Splay it to
the root and cut one link.

 Splaying dramatically simplifies BST operations.

A splay tree is a
regular BST where
we splay the last

node touched after
each operation.

Theorem: The
amortized cost of
splaying a node is

O(log n).

Claim: Every splay
tree operation cost
is bounded by O(1)
splays and takes
amortized time

O(log n).

Join: Splay the largest
value in the left tree to the

root, then add the right
tree as its right child.

 Splaying dramatically simplifies BST operations.

A splay tree is a
regular BST where
we splay the last

node touched after
each operation.

Theorem: The
amortized cost of
splaying a node is

O(log n).

Claim: Every splay
tree operation cost
is bounded by O(1)
splays and takes
amortized time

O(log n).

Join: Splay the largest
value in the left tree to the

root, then add the right
tree as its right child.

 Splaying dramatically simplifies BST operations.

A splay tree is a
regular BST where
we splay the last

node touched after
each operation.

Theorem: The
amortized cost of
splaying a node is

O(log n).

Claim: Every splay
tree operation cost
is bounded by O(1)
splays and takes
amortized time

O(log n).

Join: Splay the largest
value in the left tree to the

root, then add the right
tree as its right child.

 Splaying dramatically simplifies BST operations.

A splay tree is a
regular BST where
we splay the last

node touched after
each operation.

Theorem: The
amortized cost of
splaying a node is

O(log n).

Claim: Every splay
tree operation cost
is bounded by O(1)
splays and takes
amortized time

O(log n).

Join: Splay the largest
value in the left tree to the

root, then add the right
tree as its right child.

 Splaying dramatically simplifies BST operations.

A splay tree is a
regular BST where
we splay the last

node touched after
each operation.

Claim: Every splay
tree operation cost
is bounded by O(1)
splays and takes
amortized time

O(log n).

Join: Splay the largest
value in the left tree to the

root, then add the right
tree as its right child.

Theorem: The
amortized cost of
splaying a node is

O(log n).

 Question: Why is splaying fast?

 Question: Why is splaying fast?

Let s(x) denote the number of
nodes in the subtree rooted at x.

 Question: Why is splaying fast?

12

18

5

4

1

8

7

3 3

1 1

1

2

1

2

3

1

2

Let s(x) denote the number of
nodes in the subtree rooted at x.

 Question: Why is splaying fast?

12

18

5

4

1

8

7

3 3

1 1

1

2

1

2

3

1

2

Let s(x) denote the number of
nodes in the subtree rooted at x.

Mark each edge as blue or red:

 s(child) ≤ ½ · s(parent)
 s(child) > ½ · s(parent)

Blue edges make lots of progress.

 Question: Why is splaying fast?

12

18

5

4

1

8

7

3 3

1 1

1

2

Let s(x) denote the number of
nodes in the subtree rooted at x.

1

2

3

1

2

Mark each edge as blue or red:

 s(child) ≤ ½ · s(parent)
 s(child) > ½ · s(parent)

Blue edges make lots of progress.

 Question: Why is splaying fast?

12

18

5

4

1

8

7

3 3

1 1

1

2

Let s(x) denote the number of
nodes in the subtree rooted at x.

1

2

3

1

2

Cost of visiting a node:

O(#blue-used + #red-used)

Mark each edge as blue or red:

 s(child) ≤ ½ · s(parent)
 s(child) > ½ · s(parent)

Blue edges make lots of progress.

 Question: Why is splaying fast?

12

18

5

4

1

8

7

3 3

1 1

1

2

Let s(x) denote the number of
nodes in the subtree rooted at x.

1

2

3

1

2

Cost of visiting a node:

O(#blue-used + #red-used)

Idea: Bound the cost of blue
edges, then amortize away the

cost of red edges. This is called a
heavy/light decomposition.

Mark each edge as blue or red:

 s(child) ≤ ½ · s(parent)
 s(child) > ½ · s(parent)

Blue edges make lots of progress.

 Question: Why is splaying fast?

12

18

5

4

1

8

7

3 3

1 1

1

2

Let s(x) denote the number of
nodes in the subtree rooted at x.

1

2

3

1

2

Cost of visiting a node:

O(#blue-used + #red-used)

Mark each edge as blue or red:

 s(child) ≤ ½ · s(parent)
 s(child) > ½ · s(parent)

Blue edges make lots of progress.

Give a bound on O(#blue-used) and explain
your reasoning.

Answer at https://pollev.com/cs166spr23

https://pollev.com/cs166spr23

 Question: Why is splaying fast?

12

18

5

4

1

8

7

3 3

1 1

1

2

Let s(x) denote the number of
nodes in the subtree rooted at x.

1

2

3

1

2

Cost of visiting a node:

O(log n + #red-used)

Intuition: Blue edges discard
half the remaining nodes. You can
only do that O(log n) times before

running out of nodes.

Mark each edge as blue or red:

 s(child) ≤ ½ · s(parent)
 s(child) > ½ · s(parent)

Blue edges make lots of progress.

 Question: Why is splaying fast?

12

18

5

4

1

8

7

3 3

1 1

1

2

Let s(x) denote the number of
nodes in the subtree rooted at x.

1

2

3

1

2

Cost of visiting a node:

O(log n + #red-used)

Goal: Find a potential function
that penalizes red edges and

rewards blue edges.

Mark each edge as blue or red:

 s(child) ≤ ½ · s(parent)
 s(child) > ½ · s(parent)

Blue edges make lots of progress.

 Question: Why is splaying fast?

12

18

5

4

1

8

7

3 3

1 1

1

2

Let s(x) denote the number of
nodes in the subtree rooted at x.

Mark each edge as blue or red:

 lg s(child) ≤ lg s(parent) – 1
 lg s(child) > lg s(parent) – 1

Blue edges make lots of progress.

1

2

3

1

2

Cost of visiting a node:

O(log n + #red-used)

Goal: Find a potential function
that penalizes red edges and

rewards blue edges.

 Question: Why is splaying fast?

12

18

5

4

1

8

7

3 3

1 1

1

2

Let s(x) denote the number of
nodes in the subtree rooted at x.

1

2

3

1

2

Cost of visiting a node:

O(log n + #red-used)

Observation: If there are a lot of
red edges, then lg s(x) will

frequently be large.

Mark each edge as blue or red:

 lg s(child) ≤ lg s(parent) – 1
 lg s(child) > lg s(parent) – 1

Blue edges make lots of progress.

 Question: Why is splaying fast?

12

18

5

4

1

8

7

3 3

1 1

1

2

Let s(x) denote the number of
nodes in the subtree rooted at x.

1

2

3

1

2

Cost of visiting a node:

O(log n + #red-used)

Choose our potential to be

Φ = ∑
i=1

n

lg s(xi) .

Mark each edge as blue or red:

 lg s(child) ≤ lg s(parent) – 1
 lg s(child) > lg s(parent) – 1

Blue edges make lots of progress.

 Question: Why is splaying fast?

12

18

5

4

1

8

7

3 3

1 1

1

2

1

2

3

1

2

Cost of visiting a node:

O(log n + #red-used)

Choose our potential to be

Φ = ∑
i=1

n

lg s(xi) .

 Question: Why is splaying fast?

12

18

5

4

1

8

7

3 3

1 1

1

2

1

2

3

1

2

Cost of visiting a node:

O(log n + #red-used)

Choose our potential to be

Φ = ∑
i=1

n

lg s(xi) .

Proving Φ amortizes away the
#red-used term involves some
detail-oriented math. Check the
Sleator-Tarjan paper for details.

 Question: Why is splaying fast?

12

18

5

4

1

8

7

3 3

1 1

1

2

1

2

3

1

2

Cost of visiting a node:

O(log n + #red-used)

Choose our potential to be

Φ = ∑
i=1

n

lg s(xi) .

Proving Φ amortizes away the
#red-used term involves some
detail-oriented math. Check the
Sleator-Tarjan paper for details.

Theorem: The amortized cost of
a splay operation is O(log n).

 Question: Why is splaying fast?

Balance

Entropy

Dynamic
Finger

Working Set

Lookups take time
O(log n).

Lookups take expected
time O(1 + H).

Lookups take O(log Δ).
Δ measures distance.

Lookups take O(log t),
t measures recency.

Property Description

 Question: Why is splaying fast?

Some nodes are more important
than others. Assign each a weight
wᵢ and let the total weight be W.

1

7

15 1

22

2

1

2

9

9

6

1

4

2

5

6

 Question: Why is splaying fast?

Some nodes are more important
than others. Assign each a weight
wᵢ and let the total weight be W.

Let s(xᵢ) be the sum of the
weights in the tree rooted at xᵢ.

1

7

15 1

22

2

1

2

9

9

6

1

4

2

5

6

 Question: Why is splaying fast?

30

66

34

28

9

18

16

9 6

2 2

1

10

Some nodes are more important
than others. Assign each a weight
wᵢ and let the total weight be W.

5

7

8

1

8

Let s(xᵢ) be the sum of the
weights in the tree rooted at xᵢ.

1

7

15 1

22

2

1

2

9

9

6

1

4

2

5

6

 Question: Why is splaying fast?

30

66

34

28

9

18

16

9 6

2 2

1

10

Some nodes are more important
than others. Assign each a weight
wᵢ and let the total weight be W.

Mark each edge as blue or red:

 lg s(child) ≤ lg s(parent) – 1
 lg s(child) > lg s(parent) – 1

5

7

8

1

8

Let s(xᵢ) be the sum of the
weights in the tree rooted at xᵢ.

1

7

15 1

22

2

1

2

9

9

6

1

4

2

5

6

 Question: Why is splaying fast?

30

66

34

28

9

18

16

9 6

2 2

1

10

Some nodes are more important
than others. Assign each a weight
wᵢ and let the total weight be W.

5

7

8

1

8

Let s(xᵢ) be the sum of the
weights in the tree rooted at xᵢ.

1

7

15 1

22

2

1

2

9

9

6

1

4

2

5

6

Mark each edge as blue or red:

 lg s(child) ≤ lg s(parent) – 1
 lg s(child) > lg s(parent) – 1

 Question: Why is splaying fast?

30

66

34

28

9

18

16

9 6

2 2

1

10

Some nodes are more important
than others. Assign each a weight
wᵢ and let the total weight be W.

5

7

8

1

8

Cost of visiting a node:

O(#blue-used + #red-used)

Let s(xᵢ) be the sum of the
weights in the tree rooted at xᵢ.

1

7

15 1

22

2

1

2

9

9

6

1

4

2

5

6

Mark each edge as blue or red:

 lg s(child) ≤ lg s(parent) – 1
 lg s(child) > lg s(parent) – 1

 Question: Why is splaying fast?

30

66

34

28

9

18

16

9 6

2 2

1

10

Some nodes are more important
than others. Assign each a weight
wᵢ and let the total weight be W.

5

7

8

1

8

Cost of visiting a node:

O(#blue-used + #red-used)

Let s(xᵢ) be the sum of the
weights in the tree rooted at xᵢ.

How do we bound #blue-used?1

7

15 1

22

2

1

2

9

9

6

1

4

2

5

6

Mark each edge as blue or red:

 lg s(child) ≤ lg s(parent) – 1
 lg s(child) > lg s(parent) – 1

 Question: Why is splaying fast?

30

66

34

28

9

18

16

9 6

2 2

1

10

Some nodes are more important
than others. Assign each a weight
wᵢ and let the total weight be W.

5

7

8

1

8

Cost of visiting a node:

O(#blue-used + #red-used)

Let s(xᵢ) be the sum of the
weights in the tree rooted at xᵢ.

How do we bound #blue-used?
https://pollev.com/cs166spr231

7

15 1

22

2

1

2

9

9

6

1

4

2

5

6

Mark each edge as blue or red:

 lg s(child) ≤ lg s(parent) – 1
 lg s(child) > lg s(parent) – 1

https://pollev.com/cs166spr23

 Question: Why is splaying fast?

30

66

34

28

9

18

16

9 6

2 2

1

10

Some nodes are more important
than others. Assign each a weight
wᵢ and let the total weight be W.

5

7

8

1

8

Cost of visiting a node:

O(log (W / wᵢ) + #red-used)

Let s(xᵢ) be the sum of the
weights in the tree rooted at xᵢ.

1

7

15 1

22

2

1

2

9

9

6

1

4

2

5

6

Mark each edge as blue or red:

 lg s(child) ≤ lg s(parent) – 1
 lg s(child) > lg s(parent) – 1

 Question: Why is splaying fast?

30

66

34

28

9

18

16

9 6

2 2

1

10

Some nodes are more important
than others. Assign each a weight
wᵢ and let the total weight be W.

5

7

8

1

8

Cost of visiting a node:

O(log (W / wᵢ) + #red-used)

Let s(xᵢ) be the sum of the
weights in the tree rooted at xᵢ.

Set Φ = ∑
i=1

n

lg s(xi) .1

7

15 1

22

2

1

2

9

9

6

1

4

2

5

6

Mark each edge as blue or red:

 lg s(child) ≤ lg s(parent) – 1
 lg s(child) > lg s(parent) – 1

 Question: Why is splaying fast?

30

66

34

28

9

18

16

9 6

2 2

1

10

Some nodes are more important
than others. Assign each a weight
wᵢ and let the total weight be W.

5

7

8

1

8

Theorem: The amortized cost of
a splay is O(1 + log (W / wᵢ)).

Let s(xᵢ) be the sum of the
weights in the tree rooted at xᵢ.

Set Φ = ∑
i=1

n

lg s(xi) .1

7

15 1

22

2

1

2

9

9

6

1

4

2

5

6

Mark each edge as blue or red:

 lg s(child) ≤ lg s(parent) – 1
 lg s(child) > lg s(parent) – 1

The Access Lemma
● Assign weights w₁, …, wₙ to the nodes in the

tree.
● These weights are purely for accounting purposes

and don’t actually appear anywhere on the tree.
● Let W = w₁ + … + wₙ.
● Lemma: The amortized cost of splaying at a

node xᵢ is
O(1 + log (W / wᵢ))

The Access Lemma
● Assign weights w₁, …, wₙ to the nodes in the

tree.
● These weights are purely for accounting purposes

and don’t actually appear anywhere on the tree.
● Let W = w₁ + … + wₙ.
● Lemma: The amortized cost of splaying at a

node xᵢ is
O(1 + log W + log (1/ wᵢ))

The Access Lemma
● Assign weights w₁, …, wₙ to the nodes in the

tree.
● These weights are purely for accounting purposes

and don’t actually appear anywhere on the tree.
● Let W = w₁ + … + wₙ.
● Lemma: The amortized cost of splaying at a

node xᵢ is
O(1 + log W + log (1/ wᵢ))

The total weight across
all nodes should be small
to keep this term small.

The weight of frequent
items should be high to

make this term low.

Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Balance

Entropy

Dynamic
Finger

Working Set

Lookups take time
O(log n).

Lookups take expected
time O(1 + H).

Lookups take O(log Δ).
Δ measures distance.

Lookups take O(log t),
t measures recency.

Property Description

Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Balance Property: The cost of
any lookup in the binary search
tree is O(log n), where n is the

number of nodes.

Assign each node weight ¹/ₙ.

W = 1
wᵢ = ¹/ₙ

Amortized cost of a lookup:
 = O(1 + log W + log (1/wᵢ))
 = O(1 + log 1 + log n)
 = O(log n).

Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Entropy Property: Expected
cost of a lookup is O(1 + H),
assuming lookups are drawn

from a fixed distribution.

H = ∑
i=1

n

pi lg
1
pi

.

Probability
of looking
up key xᵢ.

Goal: Make this
the cost of

looking up key xᵢ.

Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Entropy Property: Expected
cost of a lookup is O(1 + H),
assuming lookups are drawn

from a fixed distribution.

H = ∑
i=1

n

pi lg
1
pi

.

Pick wᵢ = pᵢ.

W = 1.

Cost of looking up key xᵢ:

= O(1 + log W + log (1/wᵢ))
= O(1 + log 1 + log (1/pᵢ))
= O(1 + log (1/pᵢ))

So expected cost is O(1 + H).

Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Working Set Property:
Lookups take time O(log t),

where t is the number of keys
queried since the last time

element was queried. 1

2 3

5

10

6

8

9

4

7

For now, let’s set that aside and
focus on one snapshot in time.

Each key xᵢ is annotated with its
value of tᵢ. How do we pick

weights?

It doesn’t immediately seem like
we can use the theorem below,
since the value of t depends on
what accesses have been done

recently.

Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Working Set Property:
Lookups take time O(log t),

where t is the number of keys
queried since the last time

element was queried. 1

2 3

5

10

6

8

9

4

7

Balance: Target is O(log n).

Picked wᵢ = ¹/ₙ.

Entropy: Target is O(log (1/pᵢ)).
Picked wᵢ = pᵢ.

Working Set: Target is O(log tᵢ).

Pick wᵢ = 1 / tᵢ.

Question: Does this work?

1-1

2-1 3-1

5-1

10-1

6-1

8-1

9-1

4-1

7-1

Reasoning by analogy:

Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Working Set Property:
Lookups take time O(log t),

where t is the number of keys
queried since the last time

element was queried.

 W = 1/1 + 1/2 + 1/3 + … + 1/n

 W = Θ(log n)

This is the nth harmonic
number, denoted Hₙ.

Useful fact:

ln (n+1) ≤ Hₙ ≤ (ln n)+1.

1-1

2-1 3-1

5-1

10-1

6-1

8-1

9-1

4-1

7-1

wᵢ = 1 / tᵢ

Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Working Set Property:
Lookups take time O(log t),

where t is the number of keys
queried since the last time

element was queried.

 W = 1/1 + 1/2 + 1/3 + … + 1/n

 W = Θ(log n)

 = O(1 + log W + log (1/wᵢ))
 = O(log tᵢ + log log n).

Close! can we do better?

1-1

2-1 3-1

5-1

10-1

6-1

8-1

9-1

4-1

7-1

wᵢ = 1 / tᵢ

Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Working Set Property:
Lookups take time O(log t),

where t is the number of keys
queried since the last time

element was queried.

 W = 1/1 + 1/2 + 1/3 + … + 1/n

 W = Θ(log n)

 = O(1 + log W + log (1/wᵢ))
 = O(log tᵢ + log log n).

Close! can we do better?

1-1

2-1 3-1

5-1

10-1

6-1

8-1

9-1

4-1

7-1

wᵢ = 1 / tᵢ
Can we can pick
weights so that
W = O(1) and

log (1 / wᵢ) = O(log tᵢ)?

The sum of the weights
is too large for W to
work out the way we

want.

Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Working Set Property:
Lookups take time O(log t),

where t is the number of keys
queried since the last time

element was queried.

 W = 1/1² + 1/2² + 1/3² + … + 1/n²
 W = O(1)

1-1

2-1 3-1

5-1

10-1

6-1

8-1

9-1

4-1

7-1

1-2

2-2 3-2

5-2

10-2

6-2

8-2

9-2

4-2

7-2

wᵢ = 1 / tᵢ²

Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Working Set Property:
Lookups take time O(log t),

where t is the number of keys
queried since the last time

element was queried.

 W = 1/1² + 1/2² + 1/3² + … + 1/n²
 W = O(1)

Useful fact:

∑
i =1

∞ 1
i2

= π2

6

1-1

2-1 3-1

5-1

10-1

6-1

8-1

9-1

4-1

7-1

1-2

2-2 3-2

5-2

10-2

6-2

8-2

9-2

4-2

7-2

wᵢ = 1 / tᵢ²

Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Working Set Property:
Lookups take time O(log t),

where t is the number of keys
queried since the last time

element was queried.

 W = 1/1² + 1/2² + 1/3² + … + 1/n²
 W = O(1)

 = O(1 + log W + log (1/wᵢ))
 = O(1 + log 1 + log tᵢ2)
 = O(log tᵢ).

But we’re not done just yet.

1-2

2-2 3-2

5-2

10-2

6-2

8-2

9-2

4-2

7-2

wᵢ = 1 / tᵢ²

Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Working Set Property:
Lookups take time O(log t),

where t is the number of keys
queried since the last time

element was queried.

If we pick a fixed snapshot in
time and assign each key

weight 1/tᵢ2, then the amortized
cost of a lookup, at that
snapshot, is O(log tᵢ).

But after doing this, all the tᵢ
values change. What happens

as a result?

1-2

2-2 3-2

5-2

10-2

6-2

8-2

9-2

4-2

7-2

Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Working Set Property:
Lookups take time O(log t),

where t is the number of keys
queried since the last time

element was queried.

If we pick a fixed snapshot in
time and assign each key

weight 1/tᵢ2, then the amortized
cost of a lookup, at that
snapshot, is O(log tᵢ).

But after doing this, all the tᵢ
values change. What happens

as a result?

1-2

2-2 3-2

5-2

10-2

6-2

8-2

9-2

4-2

7-2

Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Working Set Property:
Lookups take time O(log t),

where t is the number of keys
queried since the last time

element was queried.

If we pick a fixed snapshot in
time and assign each key

weight 1/tᵢ2, then the amortized
cost of a lookup, at that
snapshot, is O(log tᵢ).

But after doing this, all the tᵢ
values change. What happens

as a result?

1-2

2-2

5-2

8-2

9-2

4-2

7-2

3-2

10-2

6-2

Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Working Set Property:
Lookups take time O(log t),

where t is the number of keys
queried since the last time

element was queried. 1-2

2-2

5-24-2

7-2

If we pick a fixed snapshot in
time and assign each key

weight 1/tᵢ2, then the amortized
cost of a lookup, at that
snapshot, is O(log tᵢ).

But after doing this, all the tᵢ
values change. What happens

as a result?
8-2

9-2

3-2

10-2

6-2

Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Working Set Property:
Lookups take time O(log t),

where t is the number of keys
queried since the last time

element was queried. 1-2

2-2

4-2

7-2

If we pick a fixed snapshot in
time and assign each key

weight 1/tᵢ2, then the amortized
cost of a lookup, at that
snapshot, is O(log tᵢ).

But after doing this, all the tᵢ
values change. What happens

as a result?

8-2

9-2

5-2

10-2

6-23-2

8-2

9-2

Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Working Set Property:
Lookups take time O(log t),

where t is the number of keys
queried since the last time

element was queried.

2-2

4-2

7-2

If we pick a fixed snapshot in
time and assign each key

weight 1/tᵢ2, then the amortized
cost of a lookup, at that
snapshot, is O(log tᵢ).

But after doing this, all the tᵢ
values change. What happens

as a result?

5-2

6-23-2

10-2

1-2

8-2

9-2

Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Working Set Property:
Lookups take time O(log t),

where t is the number of keys
queried since the last time

element was queried.

2-2

4-2

7-2

If we pick a fixed snapshot in
time and assign each key

weight 1/tᵢ2, then the amortized
cost of a lookup, at that
snapshot, is O(log tᵢ).

But after doing this, all the tᵢ
values change. What happens

as a result?

5-2

6-2

3-2

10-2

1-2

Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Working Set Property:
Lookups take time O(log t),

where t is the number of keys
queried since the last time

element was queried.

If we pick a fixed snapshot in
time and assign each key

weight 1/tᵢ2, then the amortized
cost of a lookup, at that
snapshot, is O(log tᵢ).

But after doing this, all the tᵢ
values change. What happens

as a result?

8-2

9-2

2-2

4-2

7-2

5-2

6-2

3-2

10-2

1-2

Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Working Set Property:
Lookups take time O(log t),

where t is the number of keys
queried since the last time

element was queried.

If we pick a fixed snapshot in
time and assign each key

weight 1/tᵢ2, then the amortized
cost of a lookup, at that
snapshot, is O(log tᵢ).

But after doing this, all the tᵢ
values change. What happens

as a result?

9-2

10-2

3-2

5-2

8-2

6-2

7-2

4-2

1-2

2-2

Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Working Set Property:
Lookups take time O(log t),

where t is the number of keys
queried since the last time

element was queried.

 Φ = ∑

i=1

n

lg s(xi).

Changing weights this way can’t
increase s(xᵢ) for any node, so Φ
can’t increase after the splay.

The amortized cost is the real
cost plus ΔΦ. Dropping Φ this
way still gives O(log tᵢ) costs!

9-2

10-2

3-2

5-2

8-2

6-2

7-2

4-2

1-2

2-2Recall: Each node’s size is the
weight of its subtree.

Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Working Set Property:
Lookups take time O(log t),

where t is the number of keys
queried since the last time

element was queried.

Φ = ∑
i=1

n

lg s(xi).

Changing weights this way can’t
increase s(xᵢ) for any node, so Φ
can’t increase after the splay.

The amortized cost is the real
cost plus ΔΦ. Dropping Φ this
way still gives O(log tᵢ) costs!

9-2

10-2

3-2

5-2

8-2

6-2

7-2

4-2

1-2

2-2

8-2

9-2

2-2

4-2

7-2

5-2

6-2

3-2

10-2

1-2

Size of the root
is still

1/1² + … + … 1/n²

Recall: Each node’s size is the
weight of its subtree.

Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Working Set Property:
Lookups take time O(log t),

where t is the number of keys
queried since the last time

element was queried.

Φ = ∑
i=1

n

lg s(xi).

Changing weights this way can’t
increase s(xᵢ) for any node, so Φ
can’t increase after the splay. 9-2

10-2

3-2

5-2

8-2

6-2

7-2

4-2

1-2

2-2

8-2

9-2

2-2

4-2

7-2

5-2

6-2

3-2

10-2

1-2

Size of each
other node

decreases as
weights drop.

Recall: Each node’s size is the
weight of its subtree.

Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Working Set Property:
Lookups take time O(log t),

where t is the number of keys
queried since the last time

element was queried.

Φ = ∑
i=1

n

lg s(xi).

Changing weights this way can’t
increase s(xᵢ) for any node, so Φ
can’t increase after the splay.

So the amortized cost of each
operation is still O(log tᵢ), even

in the dynamic case!

Decreasing Φ after
the operation can
only reduce the
amortized cost.

Amortized Cost

=

Real Cost + ΔΦ
Recall: Each node’s size is the

weight of its subtree.

Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Dynamic Finger Property:
Lookups take time O(log Δ),

where Δ is the number of keys
between the last key queried
and the current key queried.

3

4

5

7

6

3

2

2

1

4

☞

For now, let’s set that aside and
focus on one snapshot in time.

Each key xᵢ is annotated with its
value Δᵢ, the rank difference to
the last element. How do we

pick weights?

It doesn’t immediately seem like
we can use the theorem below,
since the value of Δ depends on
what accesses have been done

recently.

Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Dynamic Finger Property:
Lookups take time O(log Δ),

where Δ is the number of keys
between the last key queried
and the current key queried.

3

4

5

7

6

3

2

2

1

4

☞

 W ≤ 2/1² + 2/2² + 2/3² + … + 2/n²
 W = O(1)

3-2

4-2

5-2

7-2

6-2

3-2

2-2

2-2

1-2

4-2Pick wᵢ = 1 / Δᵢ²

Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Dynamic Finger Property:
Lookups take time O(log Δ),

where Δ is the number of keys
between the last key queried
and the current key queried.

3

4

5

7

6

3

2

2

1

4

☞

 W ≤ 2/1² + 2/2² + 2/3² + … + 2/n²
 W = O(1)

There are at most two
keys at distance k from
the finger, one in each

direction.

3-2

4-2

5-2

7-2

6-2

3-2

2-2

2-2

1-2

4-2Pick wᵢ = 1 / Δᵢ²

Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Dynamic Finger Property:
Lookups take time O(log Δ),

where Δ is the number of keys
between the last key queried
and the current key queried.

☞
 W ≤ 2/1² + 2/2² + 2/3² + … + 2/n²
 W = O(1)

 = O(1 + log W + log (1/wᵢ))
 = O(1 + log 1 + log Δᵢ2)
 = O(log Δᵢ).

But we’re not done just yet.

3-2

4-2

5-2

7-2

6-2

3-2

2-2

2-2

1-2

4-2Pick wᵢ = 1 / Δᵢ²

Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Dynamic Finger Property:
Lookups take time O(log Δ),

where Δ is the number of keys
between the last key queried
and the current key queried.

☞
If we pick a fixed snapshot in

time and assign each key
weight 1/Δᵢ2, then the amortized

cost of a lookup, at that
snapshot, is O(log Δᵢ).

But after doing this, all the Δᵢ
values change. What happens

as a result?

3-2

4-2

5-2

7-2

6-2

3-2

2-2

2-2

1-2

4-2

☞

Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Dynamic Finger Property:
Lookups take time O(log Δ),

where Δ is the number of keys
between the last key queried
and the current key queried.

3-2

4-2

5-2

7-2

6-2

3-2

2-2

2-2

If we pick a fixed snapshot in
time and assign each key

weight 1/Δᵢ2, then the amortized
cost of a lookup, at that
snapshot, is O(log Δᵢ).

But after doing this, all the Δᵢ
values change. What happens

as a result?

1-2

4-2

3-2

2-2

3-2

4-2

2-2

☞

Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Dynamic Finger Property:
Lookups take time O(log Δ),

where Δ is the number of keys
between the last key queried
and the current key queried.

5-2

7-2

6-2

If we pick a fixed snapshot in
time and assign each key

weight 1/Δᵢ2, then the amortized
cost of a lookup, at that
snapshot, is O(log Δᵢ).

But after doing this, all the Δᵢ
values change. What happens

as a result?

4-2

1-2

☞

Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Dynamic Finger Property:
Lookups take time O(log Δ),

where Δ is the number of keys
between the last key queried
and the current key queried.

If we pick a fixed snapshot in
time and assign each key

weight 1/Δᵢ2, then the amortized
cost of a lookup, at that
snapshot, is O(log Δᵢ).

But after doing this, all the Δᵢ
values change. What happens

as a result?

3-2

2-2

3-2

4-2

2-2

5-2

7-2

6-2

4-2

1-2

☞

Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Dynamic Finger Property:
Lookups take time O(log Δ),

where Δ is the number of keys
between the last key queried
and the current key queried.

If we pick a fixed snapshot in
time and assign each key

weight 1/Δᵢ2, then the amortized
cost of a lookup, at that
snapshot, is O(log Δᵢ).

But after doing this, all the Δᵢ
values change. What happens

as a result?

2-2

3-2

6-2

7-2

5-2

2-2

4-2

3-2

1-2

4-2

☞

Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Dynamic Finger Property:
Lookups take time O(log Δ),

where Δ is the number of keys
between the last key queried
and the current key queried.

Problem: Unlike before, the
sizes of subtrees can both grow
and shrink after splaying. There

isn’t a clear way to proceed.

2-2

3-2

6-2

7-2

5-2

2-2

4-2

3-2

1-2

4-2

☞

Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Dynamic Finger Property:
Lookups take time O(log Δ),

where Δ is the number of keys
between the last key queried
and the current key queried.

Problem: Unlike before, the
sizes of subtrees can both grow
and shrink after splaying. There

isn’t a clear way to proceed.

2-2

3-2

6-2

7-2

5-2

2-2

4-2

3-2

1-2

4-2

☞

3-2

2-2

3-2

4-2

2-2

5-2

7-2

6-2

4-2

1-2

☞

Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Dynamic Finger Property:
Lookups take time O(log Δ),

where Δ is the number of keys
between the last key queried
and the current key queried.

Problem: Unlike before, the
sizes of subtrees can both grow
and shrink after splaying. There

isn’t a clear way to proceed.

2-2

3-2

6-2

7-2

5-2

2-2

4-2

3-2

1-2

4-2

☞

3-2

2-2

3-2

4-2

2-2

5-2

7-2

6-2

4-2

1-2

However, we did just prove the
static finger property: if you
fix some key in advance and let

δᵢ be the number of keys
between xᵢ and that key, then
lookups take time O(log δᵢ).

Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Dynamic Finger Property:
Lookups take time O(log Δ),

where Δ is the number of keys
between the last key queried
and the current key queried.

Proof: 85 pages of analysis. See
Cole et al, “On the Dynamic
Finger Conjecture for Splay

Trees.”

Open Problem: Find a simpler
proof that splay trees have the

dynamic finger property.

☞

2-2

3-2

6-2

7-2

5-2

2-2

4-2

3-2

1-2

4-2

☞

3-2

2-2

3-2

4-2

2-2

5-2

7-2

6-2

4-2

1-2

Theorem: Splay trees have the
dynamic finger property.

 Just how fast are splay trees?

11 13 17 19 23 29 31 37

11 – 13 17 – 19 23 – 29 31 – 37

11 – 19 23 – 37

11 – 37

☞

a c
b

d
f

e h
g

queried
element

least

recent

least

recent

Is all the creativity that
goes into each of these

structures captured by a
single, simple binary

search tree?

 Just how fast are splay trees?

Pick any (long) sequence of operations. Pick any BST T, including
one that, like a splay tree, is allowed to reshape itself.

Dynamic Optimality Conjecture:

Cost of performing those operations on a splay tree

≤

O(1) · Cost of performing those operations on T

Stated differently: no matter how clever you are with your BST
design, you will never be able to beat a splay tree by more than a

constant factor.

This is an open problem! And it’s a big one!

 Just how fast are splay trees?

So… if splay trees are so great, why aren’t we using
them everywhere instead of other tree structures?

1. Amortized versus worst-case bounds are
not always acceptable in practice.

2. Poor support for concurrency, especially
in lookup-heavy loads.

3. Slightly higher constant factors than some
other trees, due to the number of memory

writes per operation.

Many of drawbacks can be mitigated in practice, and
we do see splay trees used fairly extensively in

practice alongside red/black and B-trees.

Excellent Idea: Code up splay trees and measure
their performance!

 To Summarize…

● Worst-case efficiency (the
balance property) isn’t the only
metric we can use to measure
BST performance.

● Specialized data structures like
weight-balanced trees, level-
linked finger search trees, and
Iacono’s structure can be
designed to meet these bounds.

● For a BST to have all these
properties at once, it needs to
be able to move nodes around.

● Rotate-to-root is a plausible but
inefficient mechanism for
reordering nodes.

● Splaying corrects for rotate-to-
root by handling linear chains
more intelligently.

● Splaying provides simple
implementations of all common
BST operations.

● By using a heavy/light
decomposition, we can isolate
the effects of poor tree shapes.

● Using a sum-of-logs potential
allows us to amortize away
heavy edges.

● Splay trees have the balance
property, entropy property,
dynamic finger property, and
working set property.

● It’s an open problem in data
structure theory whether it’s
possible to improve upon splay
trees in an amortized sense.

Next Time
● Dynamic Connectivity

● Answering questions about graphs as those
graphs change.

● Disjoint-Set Forests
● Solving a special case of dynamic connectivity.

● The Ackermann Inverse Function
● A shockingly slowly-growing function with a

more fearsome reputation than it deserves.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 163
	Slide 164
	Slide 165
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207

