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  What does an “optimal” binary search tree look like?

Consider a discrete probability distribution with elements
x₁, …, xₙ, where element xᵢ has access probability pᵢ.

The Shannon entropy of this probability distribution, denoted 
Hₚ (or just H, where p is implicit) is the quantity

Hp = ∑
i=1

n

pi lg
1
pi

.

Theorem: The expected cost of a lookup in any BST with keys 
x₁, …, xₙ and access probabilities p₁, …, pₙ is Ω(1 + H).
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  What does an “optimal” binary search tree look like?

“Hot” 
elements 
(recently 
accessed)

“Cold” 
elements 

(haven’t used 
in a while)
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  Is there a single BST with all of these properties?
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  Yes!
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Entropy
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Lookups take time
O(log n).

Lookups take expected
time O(1 + H).

Lookups take O(log Δ).
Δ measures distance.

Lookups take O(log t),
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  How do we build a BST with the working set property?
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Idea 1: Get the 
working set property 
by choosing a clever 

BST shape.

Problem: We can 
always pick a set of 
hot elements deep 

in the tree.
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Idea 2: Get the 
working set property 

by adding a finger 
into our BST.

☞

Problem: What if 
those keys aren’t 

near each other in 
key space?
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Idea 3: Get the 
working set property 

by moving nodes 
around the BST.

Strategy: After 
querying a node, 
rotate it up to the 
root of the tree.
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Idea 3: Get the 
working set property 

by moving nodes 
around the BST.

Strategy: After 
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  Question: Does rotating each accessed key to the
root guarantee good overall performance?

Group R-type and L-type 
nodes into two chains.

 
Join them together 

using the rotated node.

Observation 1: This 
works really well on
zig-zag-shaped trees.
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This tree is about half 
as tall as it started.

 

Most nodes on the 
access path are much 

closer to the root.
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Total rotations: Θ(n2).
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on long chains.
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case.
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  Question: How do we fix rotate-to-root to
work well with long chains of nodes?

Intuition: We already 
handle zig-zags well. 

Let’s just fix the linear 
case.

Observation: This 
new rule roughly cuts 

the height of the 
access path in half.



  Question: How do we fix rotate-to-root to
work well with long chains of nodes?

This procedure for 
moving a node to 

the root of the tree 
is called splaying.

Intuition: Use 
rotate-to-root, 

except when nodes 
chain in the same 

direction.

Mechanics: Look 
back two steps in 
the tree and apply 

the appropriate 
rotation rules.

c

b

a

a

b

c

c

b

a
b ↷ c

c

b

a

c

b

a cb

a

b

a

(root)

a

b
a ↷ b

a ↷ c

a ↷ b

a ↶ b

“Zig”

“Zig-zag”

“Zig-zig”



  Splaying dramatically simplifies BST operations.

A splay tree is a 
regular BST where 
we splay the last 

node touched after 
each operation.

Theorem: The 
amortized cost of 
splaying a node is 

O(log n).

Claim: Every splay 
tree operation cost 
is bounded by O(1) 
splays and takes 
amortized time 

O(log n).

Insert: Add as 
usual, then splay 

the new node.
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  Splaying dramatically simplifies BST operations.

A splay tree is a 
regular BST where 
we splay the last 

node touched after 
each operation.

Theorem: The 
amortized cost of 
splaying a node is 

O(log n).

Claim: Every splay 
tree operation cost 
is bounded by O(1) 
splays and takes 
amortized time 

O(log n).

Lookup: Search, 
then splay the 
last node seen.

Important Fact 1:
We’re making no effort 
whatsoever to keep the 
tree balanced. The tree 

shape is purely the result 
of splaying.



  Splaying dramatically simplifies BST operations.

A splay tree is a 
regular BST where 
we splay the last 

node touched after 
each operation.

Theorem: The 
amortized cost of 
splaying a node is 

O(log n).

Claim: Every splay 
tree operation cost 
is bounded by O(1) 
splays and takes 
amortized time 

O(log n).

Lookup: Search, 
then splay the 
last node seen.

Important Fact 2:
Nodes in the tree store 

no extra information 
beyond left and right 

pointers. (Contrast with, 
say, a red/black tree.)
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  Splaying dramatically simplifies BST operations.

A splay tree is a 
regular BST where 
we splay the last 

node touched after 
each operation.

Theorem: The 
amortized cost of 
splaying a node is 

O(log n).

Claim: Every splay 
tree operation cost 
is bounded by O(1) 
splays and takes 
amortized time 

O(log n).

Split: How might 
you do this?

Join: How might 
you do this?

+

Answer at
https://pollev.com/cs166spr23

https://pollev.com/cs166spr23
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  Splaying dramatically simplifies BST operations.

A splay tree is a 
regular BST where 
we splay the last 

node touched after 
each operation.

Claim: Every splay 
tree operation cost 
is bounded by O(1) 
splays and takes 
amortized time 

O(log n).

Join: Splay the largest 
value in the left tree to the 

root, then add the right 
tree as its right child.

Theorem: The 
amortized cost of 
splaying a node is 

O(log n).
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Let s(x) denote the number of 
nodes in the subtree rooted at x.

Mark each edge as blue or red:
 

               s(child) ≤ ½ · s(parent) 
              s(child) > ½ · s(parent)

 

Blue edges make lots of progress.
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Cost of visiting a node:
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Mark each edge as blue or red:
 

               s(child) ≤ ½ · s(parent) 
              s(child) > ½ · s(parent)

 

Blue edges make lots of progress.
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Let s(x) denote the number of 
nodes in the subtree rooted at x.
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Cost of visiting a node:
 

O(#blue-used + #red-used)

Idea: Bound the cost of blue 
edges, then amortize away the 

cost of red edges. This is called a 
heavy/light decomposition.

Mark each edge as blue or red:
 

               s(child) ≤ ½ · s(parent) 
              s(child) > ½ · s(parent)

 

Blue edges make lots of progress.
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Let s(x) denote the number of 
nodes in the subtree rooted at x.
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Cost of visiting a node:
 

O(#blue-used + #red-used)

Mark each edge as blue or red:
 

               s(child) ≤ ½ · s(parent) 
              s(child) > ½ · s(parent)

 

Blue edges make lots of progress.

Give a bound on O(#blue-used) and explain
your reasoning.

Answer at https://pollev.com/cs166spr23
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Let s(x) denote the number of 
nodes in the subtree rooted at x.

1
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2

Cost of visiting a node:
 

O(log n + #red-used)

Intuition: Blue edges discard 
half the remaining nodes. You can 
only do that O(log n) times before 

running out of nodes.

Mark each edge as blue or red:
 

               s(child) ≤ ½ · s(parent) 
              s(child) > ½ · s(parent)

 

Blue edges make lots of progress.
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Let s(x) denote the number of 
nodes in the subtree rooted at x.

1

2

3

1

2

Cost of visiting a node:
 

O(log n + #red-used)

Goal: Find a potential function 
that penalizes red edges and 

rewards blue edges.

Mark each edge as blue or red:
 

               s(child) ≤ ½ · s(parent) 
              s(child) > ½ · s(parent)

 

Blue edges make lots of progress.
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Let s(x) denote the number of 
nodes in the subtree rooted at x.

Mark each edge as blue or red:
 

         lg s(child) ≤ lg s(parent) – 1
         lg s(child) > lg s(parent) – 1

 

Blue edges make lots of progress.
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Cost of visiting a node:
 

O(log n + #red-used)

Goal: Find a potential function 
that penalizes red edges and 

rewards blue edges.
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Let s(x) denote the number of 
nodes in the subtree rooted at x.
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Cost of visiting a node:
 

O(log n + #red-used)

Observation: If there are a lot of 
red edges, then lg s(x) will 

frequently be large.

Mark each edge as blue or red:
 

         lg s(child) ≤ lg s(parent) – 1
         lg s(child) > lg s(parent) – 1

 

Blue edges make lots of progress.
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Let s(x) denote the number of 
nodes in the subtree rooted at x.
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Cost of visiting a node:
 

O(log n + #red-used)

Choose our potential to be

Φ = ∑
i=1

n

lg s(xi) .

Mark each edge as blue or red:
 

         lg s(child) ≤ lg s(parent) – 1
         lg s(child) > lg s(parent) – 1

 

Blue edges make lots of progress.
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Cost of visiting a node:
 

O(log n + #red-used)

Choose our potential to be

Φ = ∑
i=1

n

lg s(xi) .

Proving Φ amortizes away the 
#red-used term involves some 
detail-oriented math. Check the 
Sleator-Tarjan paper for details.
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Cost of visiting a node:
 

O(log n + #red-used)

Choose our potential to be

Φ = ∑
i=1

n

lg s(xi) .

Proving Φ amortizes away the 
#red-used term involves some 
detail-oriented math. Check the 
Sleator-Tarjan paper for details.

Theorem: The amortized cost of 
a splay operation is O(log n).



  Question: Why is splaying fast?

Balance

Entropy

Dynamic
Finger

Working Set

Lookups take time
O(log n).

Lookups take expected
time O(1 + H).

Lookups take O(log Δ).
Δ measures distance.

Lookups take O(log t),
t measures recency.

Property Description
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Some nodes are more important 
than others. Assign each a weight 
wᵢ and let the total weight be W.
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Some nodes are more important 
than others. Assign each a weight 
wᵢ and let the total weight be W.

Mark each edge as blue or red:
 

          lg s(child) ≤ lg s(parent) – 1
          lg s(child) > lg s(parent) – 1
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Let s(xᵢ) be the sum of the 
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Theorem: The amortized cost of 
a splay is O(1 + log (W / wᵢ)).

Let s(xᵢ) be the sum of the 
weights in the tree rooted at xᵢ.
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The Access Lemma
● Assign weights w₁, …, wₙ to the nodes in the 

tree.
● These weights are purely for accounting purposes 

and don’t actually appear anywhere on the tree.
● Let W = w₁ + … + wₙ.
● Lemma: The amortized cost of splaying at a 

node xᵢ is
O(1 + log (W / wᵢ))
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The Access Lemma
● Assign weights w₁, …, wₙ to the nodes in the 

tree.
● These weights are purely for accounting purposes 

and don’t actually appear anywhere on the tree.
● Let W = w₁ + … + wₙ.
● Lemma: The amortized cost of splaying at a 

node xᵢ is
O(1 + log W + log (1/ wᵢ))   

The total weight across
all nodes should be small
to keep this term small.

The weight of frequent
items should be high to

make this term low.



  
Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Balance

Entropy

Dynamic
Finger

Working Set

Lookups take time
O(log n).

Lookups take expected
time O(1 + H).

Lookups take O(log Δ).
Δ measures distance.

Lookups take O(log t),
t measures recency.

Property Description



  
Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Balance Property: The cost of 
any lookup in the binary search 
tree is O(log n), where n is the 

number of nodes.

Assign each node weight ¹/ₙ.

W = 1
wᵢ = ¹/ₙ

Amortized cost of a lookup:
     = O(1 + log W + log (1/wᵢ))
     = O(1 + log 1 + log n)
     = O(log n).



  
Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Entropy Property: Expected 
cost of a lookup is O(1 + H), 
assuming lookups are drawn 

from a fixed distribution.

 

H = ∑
i=1

n

pi lg
1
pi

.

Probability 
of looking 
up key xᵢ.

Goal: Make this 
the cost of 

looking up key xᵢ.



  
Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Entropy Property: Expected 
cost of a lookup is O(1 + H), 
assuming lookups are drawn 

from a fixed distribution.

 

H = ∑
i=1

n

pi lg
1
pi

.

Pick wᵢ = pᵢ.
 

W = 1.
 

Cost of looking up key xᵢ:
 

= O(1 + log W + log (1/wᵢ))
= O(1 + log 1 + log (1/pᵢ))
= O(1 + log (1/pᵢ))

 

So expected cost is O(1 + H).



  
Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Working Set Property: 
Lookups take time O(log t), 

where t is the number of keys 
queried since the last time 

element was queried. 1

2 3

5

10

6

8

9

4

7

 

For now, let’s set that aside and 
focus on one snapshot in time.

 

Each key xᵢ is annotated with its 
value of tᵢ. How do we pick 

weights?

It doesn’t immediately seem like 
we can use the theorem below, 
since the value of t depends on 
what accesses have been done 

recently.



  
Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Working Set Property: 
Lookups take time O(log t), 

where t is the number of keys 
queried since the last time 

element was queried. 1

2 3

5

10
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4

7

 
Balance: Target is O(log n). 

Picked wᵢ = ¹/ₙ.
 

Entropy: Target is O(log (1/pᵢ)). 
Picked wᵢ = pᵢ.

 
Working Set: Target is O(log tᵢ). 

Pick wᵢ = 1 / tᵢ.
 

Question: Does this work?

1-1

2-1 3-1

5-1

10-1

6-1

8-1

9-1

4-1

7-1

Reasoning by analogy:



  
Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Working Set Property: 
Lookups take time O(log t), 

where t is the number of keys 
queried since the last time 

element was queried.

 
            W = 1/1 + 1/2 + 1/3 + … + 1/n

       W = Θ(log n)

This is the nth harmonic 
number, denoted Hₙ.

 
Useful fact:

ln (n+1) ≤ Hₙ ≤ (ln n)+1.
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2-1 3-1

5-1

10-1

6-1

8-1

9-1

4-1

7-1

wᵢ = 1 / tᵢ



  
Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Working Set Property: 
Lookups take time O(log t), 

where t is the number of keys 
queried since the last time 

element was queried.

       W = 1/1 + 1/2 + 1/3 + … + 1/n

       W = Θ(log n)
 
        = O(1 + log W + log (1/wᵢ))
        = O(log tᵢ + log log n).
 

Close! can we do better?
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7-1

wᵢ = 1 / tᵢ



  
Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Working Set Property: 
Lookups take time O(log t), 

where t is the number of keys 
queried since the last time 

element was queried.

       W = 1/1 + 1/2 + 1/3 + … + 1/n

       W = Θ(log n)
 
        = O(1 + log W + log (1/wᵢ))
        = O(log tᵢ + log log n).
 

Close! can we do better?
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2-1 3-1
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6-1

8-1

9-1

4-1

7-1

wᵢ = 1 / tᵢ
Can we can pick 
weights so that
W = O(1) and

log (1 / wᵢ) = O(log tᵢ)?

The sum of the weights 
is too large for W to 
work out the way we 

want.



  
Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Working Set Property: 
Lookups take time O(log t), 

where t is the number of keys 
queried since the last time 

element was queried.

 
          W = 1/1² + 1/2² + 1/3² + … + 1/n² 
     W = O(1)
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wᵢ = 1 / tᵢ²



  
Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Working Set Property: 
Lookups take time O(log t), 

where t is the number of keys 
queried since the last time 

element was queried.

 
          W = 1/1² + 1/2² + 1/3² + … + 1/n² 
     W = O(1)

Useful fact:

∑
i =1

∞ 1
i2

= π2

6
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Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Working Set Property: 
Lookups take time O(log t), 

where t is the number of keys 
queried since the last time 

element was queried.

     W = 1/1² + 1/2² + 1/3² + … + 1/n² 
     W = O(1)
 
        = O(1 + log W + log (1/wᵢ))
        = O(1 + log 1 + log tᵢ2)
        = O(log tᵢ).
 

But we’re not done just yet.
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wᵢ = 1 / tᵢ²



  
Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Working Set Property: 
Lookups take time O(log t), 

where t is the number of keys 
queried since the last time 

element was queried.

If we pick a fixed snapshot in 
time and assign each key 

weight 1/tᵢ2, then the amortized 
cost of a lookup, at that 
snapshot, is O(log tᵢ).

 

But after doing this, all the tᵢ 
values change. What happens 

as a result?
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element was queried.

If we pick a fixed snapshot in 
time and assign each key 
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as a result?
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Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Working Set Property: 
Lookups take time O(log t), 

where t is the number of keys 
queried since the last time 

element was queried.

If we pick a fixed snapshot in 
time and assign each key 

weight 1/tᵢ2, then the amortized 
cost of a lookup, at that 
snapshot, is O(log tᵢ).

 

But after doing this, all the tᵢ 
values change. What happens 

as a result?
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Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Working Set Property: 
Lookups take time O(log t), 

where t is the number of keys 
queried since the last time 

element was queried. 1-2

2-2

5-24-2

7-2

If we pick a fixed snapshot in 
time and assign each key 

weight 1/tᵢ2, then the amortized 
cost of a lookup, at that 
snapshot, is O(log tᵢ).

 

But after doing this, all the tᵢ 
values change. What happens 

as a result?
8-2
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Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Working Set Property: 
Lookups take time O(log t), 

where t is the number of keys 
queried since the last time 

element was queried. 1-2

2-2

4-2

7-2

If we pick a fixed snapshot in 
time and assign each key 

weight 1/tᵢ2, then the amortized 
cost of a lookup, at that 
snapshot, is O(log tᵢ).

 

But after doing this, all the tᵢ 
values change. What happens 

as a result?
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8-2

9-2

Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Working Set Property: 
Lookups take time O(log t), 

where t is the number of keys 
queried since the last time 

element was queried.

2-2

4-2

7-2

If we pick a fixed snapshot in 
time and assign each key 

weight 1/tᵢ2, then the amortized 
cost of a lookup, at that 
snapshot, is O(log tᵢ).

 

But after doing this, all the tᵢ 
values change. What happens 

as a result?

5-2

6-23-2

10-2

1-2
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Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Working Set Property: 
Lookups take time O(log t), 

where t is the number of keys 
queried since the last time 

element was queried.
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7-2

If we pick a fixed snapshot in 
time and assign each key 

weight 1/tᵢ2, then the amortized 
cost of a lookup, at that 
snapshot, is O(log tᵢ).

 

But after doing this, all the tᵢ 
values change. What happens 

as a result?
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Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Working Set Property: 
Lookups take time O(log t), 

where t is the number of keys 
queried since the last time 

element was queried.

If we pick a fixed snapshot in 
time and assign each key 

weight 1/tᵢ2, then the amortized 
cost of a lookup, at that 
snapshot, is O(log tᵢ).

 

But after doing this, all the tᵢ 
values change. What happens 

as a result?
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Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Working Set Property: 
Lookups take time O(log t), 

where t is the number of keys 
queried since the last time 

element was queried.

If we pick a fixed snapshot in 
time and assign each key 

weight 1/tᵢ2, then the amortized 
cost of a lookup, at that 
snapshot, is O(log tᵢ).

 

But after doing this, all the tᵢ 
values change. What happens 

as a result?
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Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Working Set Property: 
Lookups take time O(log t), 

where t is the number of keys 
queried since the last time 

element was queried.

 
 Φ = ∑

i=1

n

lg s(xi).

Changing weights this way can’t 
increase s(xᵢ) for any node, so Φ 
can’t increase after the splay.

 

The amortized cost is the real 
cost plus ΔΦ. Dropping Φ this 
way still gives O(log tᵢ) costs!

9-2

10-2

3-2

5-2

8-2

6-2

7-2

4-2

1-2

2-2Recall: Each node’s size is the 
weight of its subtree.



  
Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Working Set Property: 
Lookups take time O(log t), 

where t is the number of keys 
queried since the last time 

element was queried.

Φ = ∑
i=1

n

lg s(xi).

Changing weights this way can’t 
increase s(xᵢ) for any node, so Φ 
can’t increase after the splay.

 

The amortized cost is the real 
cost plus ΔΦ. Dropping Φ this 
way still gives O(log tᵢ) costs!
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5-2

6-2

3-2
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1-2

Size of the root 
is still

 
1/1² + … + … 1/n²

Recall: Each node’s size is the 
weight of its subtree.



  
Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Working Set Property: 
Lookups take time O(log t), 

where t is the number of keys 
queried since the last time 

element was queried.

Φ = ∑
i=1

n

lg s(xi).

Changing weights this way can’t 
increase s(xᵢ) for any node, so Φ 
can’t increase after the splay. 9-2

10-2

3-2

5-2

8-2

6-2

7-2

4-2

1-2

2-2

8-2

9-2

2-2

4-2

7-2

5-2

6-2

3-2

10-2

1-2

Size of each 
other node 

decreases as 
weights drop.

Recall: Each node’s size is the 
weight of its subtree.



  
Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Working Set Property: 
Lookups take time O(log t), 

where t is the number of keys 
queried since the last time 

element was queried.

Φ = ∑
i=1

n

lg s(xi).

Changing weights this way can’t 
increase s(xᵢ) for any node, so Φ 
can’t increase after the splay.

 

So the amortized cost of each 
operation is still O(log tᵢ), even 

in the dynamic case!

Decreasing Φ after 
the operation can 
only reduce the 
amortized cost.

Amortized Cost 

= 

Real Cost + ΔΦ
Recall: Each node’s size is the 

weight of its subtree.



  
Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Dynamic Finger Property: 
Lookups take time O(log Δ), 

where Δ is the number of keys 
between the last key queried 
and the current key queried.

3

4

5

7

6

3

2

2

1

4

☞

For now, let’s set that aside and 
focus on one snapshot in time.

 

Each key xᵢ is annotated with its 
value Δᵢ, the rank difference to 
the last element. How do we 

pick weights?

It doesn’t immediately seem like 
we can use the theorem below, 
since the value of Δ depends on 
what accesses have been done 

recently.



  
Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Dynamic Finger Property: 
Lookups take time O(log Δ), 

where Δ is the number of keys 
between the last key queried 
and the current key queried.
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          W ≤ 2/1² + 2/2² + 2/3² + … + 2/n² 
     W = O(1)
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Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Dynamic Finger Property: 
Lookups take time O(log Δ), 

where Δ is the number of keys 
between the last key queried 
and the current key queried.
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          W ≤ 2/1² + 2/2² + 2/3² + … + 2/n² 
     W = O(1)

There are at most two 
keys at distance k from 
the finger, one in each 

direction.
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Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Dynamic Finger Property: 
Lookups take time O(log Δ), 

where Δ is the number of keys 
between the last key queried 
and the current key queried.

☞
     W ≤ 2/1² + 2/2² + 2/3² + … + 2/n² 
     W = O(1)
 
        = O(1 + log W + log (1/wᵢ))
        = O(1 + log 1 + log Δᵢ2)
        = O(log Δᵢ).
 

But we’re not done just yet.
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Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Dynamic Finger Property: 
Lookups take time O(log Δ), 

where Δ is the number of keys 
between the last key queried 
and the current key queried.

☞
If we pick a fixed snapshot in 

time and assign each key 
weight 1/Δᵢ2, then the amortized 

cost of a lookup, at that 
snapshot, is O(log Δᵢ).

 

But after doing this, all the Δᵢ 
values change. What happens 

as a result?
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Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Dynamic Finger Property: 
Lookups take time O(log Δ), 

where Δ is the number of keys 
between the last key queried 
and the current key queried.
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If we pick a fixed snapshot in 
time and assign each key 

weight 1/Δᵢ2, then the amortized 
cost of a lookup, at that 
snapshot, is O(log Δᵢ).

 

But after doing this, all the Δᵢ 
values change. What happens 

as a result?
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Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Dynamic Finger Property: 
Lookups take time O(log Δ), 

where Δ is the number of keys 
between the last key queried 
and the current key queried.
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If we pick a fixed snapshot in 
time and assign each key 

weight 1/Δᵢ2, then the amortized 
cost of a lookup, at that 
snapshot, is O(log Δᵢ).

 

But after doing this, all the Δᵢ 
values change. What happens 

as a result?
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Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Dynamic Finger Property: 
Lookups take time O(log Δ), 

where Δ is the number of keys 
between the last key queried 
and the current key queried.

If we pick a fixed snapshot in 
time and assign each key 

weight 1/Δᵢ2, then the amortized 
cost of a lookup, at that 
snapshot, is O(log Δᵢ).

 

But after doing this, all the Δᵢ 
values change. What happens 

as a result?
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Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Dynamic Finger Property: 
Lookups take time O(log Δ), 

where Δ is the number of keys 
between the last key queried 
and the current key queried.

If we pick a fixed snapshot in 
time and assign each key 

weight 1/Δᵢ2, then the amortized 
cost of a lookup, at that 
snapshot, is O(log Δᵢ).

 

But after doing this, all the Δᵢ 
values change. What happens 

as a result?
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Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Dynamic Finger Property: 
Lookups take time O(log Δ), 

where Δ is the number of keys 
between the last key queried 
and the current key queried.

Problem: Unlike before, the 
sizes of subtrees can both grow 
and shrink after splaying. There 

isn’t a clear way to proceed.
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Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Dynamic Finger Property: 
Lookups take time O(log Δ), 

where Δ is the number of keys 
between the last key queried 
and the current key queried.

Problem: Unlike before, the 
sizes of subtrees can both grow 
and shrink after splaying. There 

isn’t a clear way to proceed.
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Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Dynamic Finger Property: 
Lookups take time O(log Δ), 

where Δ is the number of keys 
between the last key queried 
and the current key queried.

Problem: Unlike before, the 
sizes of subtrees can both grow 
and shrink after splaying. There 

isn’t a clear way to proceed.
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However, we did just prove the 
static finger property: if you 
fix some key in advance and let 

δᵢ be the number of keys 
between xᵢ and that key, then 
lookups take time O(log δᵢ).



  
Lemma: Using the sum-of-logs potential, the amortized cost
of splaying a node with weight wᵢ is O(1 + log W + log (1/wᵢ)),

 where W is the sum of all the weights.

Dynamic Finger Property: 
Lookups take time O(log Δ), 

where Δ is the number of keys 
between the last key queried 
and the current key queried.

 

Proof: 85 pages of analysis. See 
Cole et al, “On the Dynamic 
Finger Conjecture for Splay 

Trees.”
 

Open Problem: Find a simpler 
proof that splay trees have the 

dynamic finger property.
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Theorem: Splay trees have the 
dynamic finger property.



  Just how fast are splay trees?

11 13 17 19 23 29 31 37

11 – 13 17 – 19 23 – 29 31 – 37

11 – 19 23 – 37

11 – 37
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queried
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Is all the creativity that 
goes into each of these 

structures captured by a 
single, simple binary 

search tree?



  Just how fast are splay trees?

Pick any (long) sequence of operations. Pick any BST T, including 
one that, like a splay tree, is allowed to reshape itself.

Dynamic Optimality Conjecture: 
  

Cost of performing those operations on a splay tree
  

≤
  

O(1) · Cost of performing those operations on T

Stated differently: no matter how clever you are with your BST 
design, you will never be able to beat a splay tree by more than a 

constant factor.

This is an open problem! And it’s a big one!



  Just how fast are splay trees?

So… if splay trees are so great, why aren’t we using 
them everywhere instead of other tree structures?

 

1. Amortized versus worst-case bounds are
not always acceptable in practice.

 

2. Poor support for concurrency, especially
in lookup-heavy loads.

 

3. Slightly higher constant factors than some
other trees, due to the number of memory

writes per operation.
 

Many of drawbacks can be mitigated in practice, and 
we do see splay trees used fairly extensively in 

practice alongside red/black and B-trees.
 

Excellent Idea: Code up splay trees and measure 
their performance!



  To Summarize…

● Worst-case efficiency (the 
balance property) isn’t the only 
metric we can use to measure 
BST performance.

● Specialized data structures like 
weight-balanced trees, level-
linked finger search trees, and 
Iacono’s structure can be 
designed to meet these bounds.

● For a BST to have all these 
properties at once, it needs to 
be able to move nodes around.

● Rotate-to-root is a plausible but 
inefficient mechanism for 
reordering nodes.

● Splaying corrects for rotate-to-
root by handling linear chains 
more intelligently.

● Splaying provides simple 
implementations of all common 
BST operations.

● By using a heavy/light 
decomposition, we can isolate 
the effects of poor tree shapes.

● Using a sum-of-logs potential 
allows us to amortize away 
heavy edges.

● Splay trees have the balance 
property, entropy property, 
dynamic finger property, and 
working set property.

● It’s an open problem in data 
structure theory whether it’s 
possible to improve upon splay 
trees in an amortized sense.



  

Next Time
● Dynamic Connectivity

● Answering questions about graphs as those 
graphs change.

● Disjoint-Set Forests
● Solving a special case of dynamic connectivity.

● The Ackermann Inverse Function
● A shockingly slowly-growing function with a 

more fearsome reputation than it deserves.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 163
	Slide 164
	Slide 165
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207

