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New Stuff!



Representing Sutfix Trees



Representing a Suffix Tree

» We know that a ()
suffix tree has O(m) i o n
nodes, where m is 9
the number of S 3

characters in the
input string.

 This means that
there are O(m)
edges.
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* Question: Why can’t
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Representing a Suffix Tree

 Claim: Writing out AN

all suffixes of a string § e \n :
of length m requires 9
®(m?) characters. $

 Proof idea: Those
suffixes have length
1+2+ ...+ (m+1),
factoring in the
special $ character.
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 Problem: It is
indeed possible to
build a suffix tree
with ©(m?) total nonsenses

letters on the edges. 012345678

n

@mmm:



Representing a Suffix Tree

* By being clever with
our representation, we
can guarantee that a
suffix tree uses only
®(m) space, regardless
of the input string.

 Observation: Each
edge is labeled with a
substring of the
original input string.

« Idea: Don’t actually
write out the labels on
the edges. Just write
down the start and end
index!
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Representing a Suffix Tree
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Representing a Suffix Tree

* Space usage ()
required for a $ e 0 Z
suffix tree: Q
S s

* O(m) space for
all the nodes.

 O(m) space for
a copy of the
original string.
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 O(m) space for
the edges.
nonsense$

» Total space: O(m). 012345678
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Suftfix Tree Space Usage

» Suffix tree edges take up a lot of space.

« Two machine words per edge to denote the range of
characters visited.

 One machine word per edge for the pointer itself.

« Number of edges ranges from m to 2m - 1, so this is between
3m and 6m machine words for the whole string!

 Example: a human genome is about three billion
characters long.

« With clever techniques, that can be packed into about
800MB.

* On a 32-bit machine, the suffix tree needs about 48GB - too
big to fit into memory!

* On a 64-bit machine, the suffix tree needs about 96GB - way
more than a typical machine can hold!



Key Question: Can we get the benefits of
a suffix tree without the space penalty?



What is it about suffix trees that make
them so useful algorithmically?
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Theorem: There is a node labeled w in a suffix tree for T
if and only if
w is a suffix of T$ or w is a branching word in T'$.
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Theorem: There is a node labeled w in a suffix tree for T
if and only if
wisasuffixof T$ or wisa branching word in T$.
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Theorem: There is a node labeled w in a suffix tree for T
if and only if
w is a suffix of T'$ or wis a branching word in T'$.
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A string w i1s a
branching word in
T$ if there are distinct
characters a and b
where wa and wb are
substrings of T$.

Theorem: There is a node labeled w in a suffix tree for T
if and only if
w is a suffix of T'$ or wis a branching word in T'$.
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A string w i1s a
branching word in
T$ if there are distinct
characters a and b

where wa and wb are nonsense$
substrings of T$.

Theorem: There is a node labeled w in a suffix tree for T
if and only if
w is a suffix of T'$ or wis a branching word in T'$.
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Key Intuition: The efficiency in a suffix tree is largely due to
1. keeping the suffixes in sorted order, and
2. exposing branching words.



Where We're Going

» Today, we’ll see two data structures that
encode much of the same information as
suffix trees, but in much less space.

» The suffix array stores information about the
ordering of the suffixes of a string.

 The LCP array stores information about the
branching words of a string.

» Together, they’ll provide algorithms that
match or are comparable to the time
bounds from last time.



Suffix Arrays
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Theorem: There is a node labeled w in a suffix tree for T
if and only if
w is a suffix of T$ or w is a branching word in T'$.
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Suffix Arrays

S

* A suffix array for a string AS
T is a sorted array of the ABANANABANDANAS

suffixes of the string T'$. ABANDANAS

| o ANAS
 Suffix arrays distill out ANABANDANAS

just the first component of ANANABANDANAS
suffix trees: they store ANDANAS
suffixes in sorted order. BANANABANDANAS
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Suffix Arrays

* A suffix array for a string
T is a sorted array of the
suffixes of the string T'$.

« Suffix arrays distill out
just the first component of
suffix trees: they store
suffixes in sorted order.

« Non-obvious fact: Suffix
arrays can be built in time
O(m). We can cover this
later in the quarter if
you're interested.
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Suffix Arrays

S
 The way we’ve AS :
. ABANANABANDANA

drawn suffIX | ABANDANAS
arrays is terribly ANAS
space-ineftficient. ﬁ:ﬁﬁﬁ:ﬁﬁgﬁﬁm
. ANDANAS

It always uses BANANABANDANAS

space ©(m?), since BANDANAS

that’s how many DANAS

total characters NAS

A NABANDANAS
occgr In a NANABANDANAS
suffixes. NDANAS

« Can we do better? ABANANABANDANAS



Suffix Arrays

* We reduced the space f\s
usage of suffix trees by ABANANABANDANAS
representing substrings, ABANDANAS
implicitly, as ranges ﬁmgANDANAS
within the original string. ANANABANDANAS

» Idea: Don’t store the ANDANAS
suffixes themselves. Just BANANABANDANAS
store the starting BANDANAS
positions of the suffixes. 322‘“5

 Space: ©(m), and with NABANDANAS
only one machine word NANABANDANAS
used per character of NDANAS

input. ABANANABANDANAS



Suffix Arrays

* We reduced the space f\s
usage of suffix trees by ABANANABANDANAS
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Suffix Arrays

« We reduced the space ig
usage of suffix trees by 0]
representing substrings, 6
implicitly, as ranges 11
within the original string. ‘21

» Idea: Don’t store the 8
suffixes themselves. Just 1
store the starting 7
positions of the suffixes. ig

 Space: ©(m), and with 5
only one machine word 3
used per character of 9

input. ABANANABANDANAS
012345678901234



Suffix Arrays

14

» Although the picture 13
to the right is how 0
we’d represent the 161
suffix array in 4
memory, for this g
lecture we’ll draw 1
things out the longer 7
way. 19
12

* This is just to build 5
intuition; we 3

wouldn’t actually do

that in practice. ABANANABANDANAS
012345678901234



Using Suffix Arrays

. S
 Last time, we saw AS $
ABANANABANDANA
instances of a ANAS -
: ANABANDANA
T using suffix ANDANAS :
BANANABANDANA
lrees. BANDANAS
* How could we do ﬂﬁgAs
that with suffix NABANDANAS .
9 NANABANDANA
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Using Sutfix Arrays

* Reminder: Our text string T §$
has length m. Our pattern ABANANABANDANAS
string P has length n. ABANDANAS
* Claim: With a suffix array, we ANAS
can determine whether P ANABANDANAS
appears in T in time O(n log m). ANANABANDANAS
ANDANAS
BANANABANDANAS
BANDANAS
DANAS
How? NAS
NABANDANAS
Answer at NANABANDANAS
https://pollev.com/cs166spr23 NDANAS

ABANANABANDANAS
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Using Sutfix Arrays

S
* Reminder: Our text string T AS
has length m. Our pattern ABANANABANDANAS
string P has length n. ABANDANAS
* Claim: With a suffix array, we ANAS
can determine whether P ANABANDANAS
appears in T in time O(n log m). ANANABANDANAS
« Binary search has O(log m) ANDANAS
rounds. BANANABANDANAS
« Each probe takes time O(n). BANDANAS
« This bound can be made tight. DANAS
(How?) NAS
« Figure that m is often much NABANDANAS
bigger than n, so this is a huge NANABANDANAS
win over a raw scan. NDANAS
ABANANABANDANAS
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Using Suffix Arrays

 Claim: With a suffix
array, we can find all
matches of a pattern P in
T in time O(n log m + 2),
where 7 is the number of
matches.

Idea: Binary search can
be used to find a range of
values equal to some key.
Adapt that idea to find all
suffixes beginning with
the same prefix.
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Using Sutfix Arrays

S
* Claim: With a suffix AS
array, we can find all ABANANABANDANAS
matches of a pattern P in ABANDANAS
T in time O(n log m + 2), ANAS
where z is the number of ﬁ:ﬁmg?\ﬁgﬁﬁA &
matches. ANDANAS
* Idea: Binary search can BANANABANDANAS
be used to find a range of BANDANAS
values equal to some key. DANAS
Adapt that idea to find all NAS
suffixes beginning with mﬁﬁgzﬁgﬁﬁ AS
the same prefix. NDANAS
ABANANABANDANAS

NA



The Story So Far

« Suffix arrays store all the suffixes of a string in
sorted order.

 They provide an
(O(m), O(n log m + 2))
solution to the substring search problem.

 Intuition: Suffix trees are valuable in large
part because they just keep the suffixes sorted.

« What else are suffix trees doing?
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Theorem: There is a node labeled w in a suffix tree for T
if and only if
w is a suffix of T$ or w is a branching word in T'$.
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Branching Words

* Recall: If T'is a
string, then w is a
branching word
in T'$ if there are
characters a # b
such that wa and

wb are substrings
of T'S.
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such that wa and

wb are substrings
of T'S.

BANA''“BAND



Branching Words

* Recall: If T'is a
string, then w is a
branching word
in T'$ if there are
characters a # b
such that wa and

wb are substrings
of T'S.



Branching Words

* Recall: If T'is a
string, then w is a
branching word
in T'$ if there are
characters a # b
such that wa and

wb are substrings
of T'S.

ANA ANA



Branching Words

* Recall: If T'is a
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Branching Words

* Recall: If T'is a
string, then w is a
branching word
in T'$ if there are
characters a # b
such that wa and

wb are substrings
of T'S.
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Branching Words

* Recall: If T'is a
string, then w is a
branching word
in T'$ if there are
characters a # b
such that wa and ,
Although ABA is a

wb are substrings repeated substring, it is

of T'S. not a branching word
because all appearances
are followed by N.

ABAN/'ABA



Branching Words

* Recall: If T'is a
string, then w is a
branching word
in T'$ if there are
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such that wa and

wb are substrings
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Branching Words

* Recall: If T'is a
string, then w is a
branching word
in T'$ if there are
characters a # b
such that wa and

wb are substrings
of T'S.
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Branching Words

* Recall: If T'is a
string, then w is a
branching word
in T'$ if there are
characters a # b
such that wa and
wb are SU_bStI"ngS The substring ANANA only

of T$. appears once, so it’s not
a branching word.

ANANA



Branching Words
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e Recall: If T is a ﬁg TTOTIE
. ) ANANABANDANA
string, t?len w is a ABANDANAS
branching word ANAS :
- - ANABANDANA
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such that wa and BANDANAZ
wb are substrings DANAS
NAS
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Branching Words

* Notice that, by sorting
suffixes, we’ve made it
easier to spot branching
words.

Specifically, all suffixes
starting with a
branching word will be
adjacent in the suffix
array.

 The branching word will

be the longest common
prefix (or LCP) of those

adjacent suffixes.
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Branching Words

* Notice that, by sorting
suffixes, we’ve made it
easier to spot branching
words.

» Specifically, all suffixes
starting with a
branching word will be
adjacent in the suffix
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« The branching word will NABANDANAS
be the longest common NANABANDANAS
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Branching Words

* Notice that, by sorting
suffixes, we’ve made it
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words.

» Specifically, all suffixes
starting with a
branching word will be
adjacent in the suffix
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Branching Words

« Theorem: A string w is a
branching word in string T'$ if
and only if it’s the longest
common prefix of two adjacent
suffixes in T’s suffix array.

Proof idea: If w is the longest
common prefix of two adjacent
suffixes, let a and b be the
characters immediately following
w in those two suffixes. Then wa
and wb are substrings of T'$.

If w is branching, choose the
lexicographically smallest a and
b making the definition work.
Then the last suffix starting with
wa and the first suffix starting
with wb are adjacent in the suffix
array. i
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w is an internal node in the suffix tree for T
if and only if
w is a branching word in T$
if and only if

w is the LCP of two adjacent suffixes in the suffix array for T




Key Intuition: Adjacent sutfixes with long
shared prefixes correspond to subtrees of
the suffix tree.



Harnessing this Connection



Longest Repeated Substring

o

- A

« Last time, we
saw how to solve
the longest
repeated
substring
problem by
using suffix
trees.

« Algorithm: Find
the internal node
in the suffix tree
with the longest
label.

* Question: Can
we do this with
just a suffix

array? ABANANABANDANAS

= > W™



Longest Repeated Substring

 We can list all branching $
words from a suffix array ﬁg ANANABANDANAS
. . 2
in time O(m?). ABANDANAS
« O(m) pairs; each pair ANAS
takes time O(m) to ANABANDANAS
DLOCESS. ANANABANDANAS
. ANDANAS
This worst—pase bound BANANABANDANAS
can be realized. BANDANAS
DANAS
'p NAS
NABANDANAS
HOW ° NANABANDANAS
NDANAS

Answer at

https://pollev.com/cs166spr23 ABANANABANDAN A$
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Longest Repeated Substring

« We can list all branching S
words from a suffix array ﬁgANANABANDANA g
o )
in time O(m?). ABANDANAS
* O(m) pairs; each pair ANAS
takes time O(m) to ANABANDANAS
process. ANANABANDANAS
 This worst-case bound gxmmgAND ANAS
can be realized. BANDANAS
DANAS
NAS
NABANDANAS
NANABANDANAS
NDANAS
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Longest Repeated Substring

We can list all branching
words from a suffix array
in time O(m?).

 O(m) pairs; each pair
takes time O(m) to
process.

This worst-case bound
can be realized.

Contrast this with O(m)
for a suffix tree.

Can we do better?
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Longest Repeated Substring

« Observation: We don’t f\ :
actually need to knqw ABANANABANDANAS
what all the branchmg ABANDANAS
words are to find the ANAS
longest repeated ﬁmﬁﬁgzﬁgﬁﬁ‘\s
substring. ANDANAS
 We just need to know BANANABANDANAS
how long they are. BANDANAS
DANAS
 That way, we can figure NAS
out which is longest. NABANDANAS
. NANABANDANAS
 Is there some nice way NDANAS
to do this?

ABANANABANDANAS
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L.CP Arrays

« The LCP array, 02
often denoted H, is + [ ABANANABANDANAS
an array where HJ[i] 1 ﬁﬁﬁgm‘"“s
is the length of the g ANABANDANAS
LCP of the ith and 5 ﬁ:gxﬁ?\gNDANAs
(i+1)st suifixes in > [BANANABANDANAS
the suffix array. = BANms\NAs
DANA
- (The letter H comes > [NAS :
" ) NABANDANA
from “height.”) = [NANABANDANAS
NDANAS

ABANANABANDANAS
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Key intuition: The suffix array gives the leaves of the suffix tree.

The LCP array gives the internal nodes of the suffix tree.




Using LCP Arrays

 If you already have a 0 i :
suffix array and LCP 1 BANANABANDANAS
array, you can solve 4 " ABANDANAS
longest repeated ; ANAS
substring in time O(m): 3 ANABANDANAS
. ANANABANDANAS
 Find the largest element 2 ANDANAS
in the LCP array. > [BANANABANDANAS
 Return the string it o | BANDANAS
corresponds to. o | DANAS
. NAS
* Question: How fast can 2 "NABANDANAS
we construct an LCP i NANABANDANAS
array? NDANAS

ABANANABANDANAS
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Building LCP Arrays

It never hurts to start with
the naive algorithm and see
what happens!

» Algorithm: For each
consecutive pair of strings
in the suffix array, compute
the length of their longest
common prefix.

« We can upper-bound the
runtime at O(m?).

* Question: Can we realize
this upper bound?
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Building LCP Arrays

 Why is our naive 0 f\s
algorithm slow? + [ ABANANABANDANAS
. [ABANDANAS
* Intuition: We 3| ANAS
't able t - [ANABANDANAS
aren't able to carry > [ANANABANDANAS
work from one 5| ANDANAS
suffix over to the 3 gﬁﬂﬁxﬁﬁ’g"”‘"“s
0
next. o | DANAS
> [NAS
2 [NABANDANAS
£ [NANABANDANAS
NDANAS

ABANANABANDANAS



Building LCP Arrays

 Key intuition: Suffixes
overlap one another! It
should be possible to
share LCP information
across suffixes.
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« For example, suppose we
compute the LCP entry
shown here.
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Building LCP Arrays

 Key intuition: Suffixes

v
overlap one another! It ABANANABANDANAS

should be possible to 4 "ABANDANAS

share LCP information
across suffixes.

« For example, suppose we
compute the LCP entry
shown here.

 L.ook at the suffixes
formed by dropping the
first letter of these two
suffixes.



Building LCP Arrays

* Key intuition: Suffixes »?\S
overlap one another! It ABANANABANDANAS
should be possible to 4 " ABANDANAG
share LCP information ANAS
across suffixes. ANABANDANAS

« For example, suppose we ANANABANDANAS
compute the LCP entry g?\ﬁﬁmg ANDANAS
shown here. BANDANAS

* Look at the suffixes DANAS
formed by dropping the NAS
first letter of these two NABANDANAS
suffixes. NANABANDANAS
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* Key intuition: Suffixes iS
overlap one another! It ABANANABANDANAS
should be possible to 4 " ABANDANAG
share LCP information ANAS
across suffixes. ANABANDANAS

« For example, suppose we ANANABANDANAS
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* Key intuition: Suffixes »f\$
overlap one another! It ABANANABANDANAS
should be possible to 4 " ABANDANAG
share LCP information ANAS
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Building LCP Arrays

* Key intuition: Suffixes f\S
overlap one another! It ABANANABANDANAS
should be possible to 4 ABANDANAS
share LCP information ANAS
across suffixes. ANABANDANAS

« For example, suppose we ANANABANDANAS
compute the LCP entry gxmmg ANDANAS
shown here. 3 BANDANA$

» Look at the suffixes DANAS
formed by dropping the NAS
first letter of these two NABANDANAS
suffixes. :SRG&QNDANM

« What do we know about

their LCP? BANANABANDANAS
BANDANAS



Building LCP Arrays

 L.et’s do another
example. Suppose
we know the LCP of
these suffixes.
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* Let’s do another
example. Suppose

we know the LCP of ANAS

these suffixes. 3 ANABANDANAS

* As before, drop the
first letter from
each suffix.
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Building LCP Arrays

e Let’s do another
example. Suppose
we know the LCP of

ANAS

these suffixes. 3 T ANABANDANAS
* As before, drop the

first letter from

each suffix.
« What can we say EQEANDANAs

about the LCP of
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NABANDANAS



Building LCP Arrays

e Let’s do another
example. Suppose
we know the LCP of

ANAS

these suffixes. 3 T ANABANDANAS
* As before, drop the
first letter from
each suffix.
NA
* What can we say 2 NAgANDANA$

about the LCP of

the resulting

suffixes? NAS
NABANDANAS



Building LCP Arrays

* Let’s do another f\s
example. Suppose ABANANABANDANAS
we know the L.CP of ﬁﬁﬁgDANAS
these suffixes. 3T ANABANDANAS
ANANABANDANA
* As before, drop the ANDANAS $
first letter from BANANABANDANAS
each suffix. BQERQNAS
NA
« What can we say 2
about the LCP of NANABANDANAS
the resulting NDANAS
suffixes? NAS
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Building LCP Arrays

 Sometimes, in dropping
the first letter, two
adjacent suffixes get
spread out.
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Building LCP Arrays

* Sometimes, in dropping .t$\$
thg first lette}", two ABANANABANDANAS
adjacent suffixes get ABANDANAS
spread out. ANAS
 Claim: Look at the second ANABANDANAS
suffix in the pair. Its LCP ANANABANDANAS
with the suffix before it is g?\zﬁmgANDANM
at least the previous LCP BANDANAS
minus one. DANAS
NAS
5 NABANDANAS
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Building LCP Arrays

* Sometimes, in dropping f\ 3
tlzf? first lettf?.r' two ABANANABANDANAS
adjacent suirixes get ABANDANAS
spread out. ANAS
e Claim: Look at the second ANABANDANAS
suffix in the pair. Its LCP ANANABANDANAS
with the suffix before it is g?\ﬁﬁmgANDANA g
at.least the previous LCP BANDANAS
minus one. DANAS
NAS
Wh o 5 NABANDANAS
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Building LCP Arrays
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Building LCP Arrays

 Sometimes, in dropping
the first letter, two

adjacent suffixes get
spread out. ANAS
e Claim: Look at the second ANABANDANAS

suffix in the pair. Its LCP
with the suffix before it is
at least the previous LCP

minus one.

« Think about the suffix
tree. The two shorter 5> | NABANDANAS
suffixes are in the same NANABANDANAS
subtree, so everything
between them is also in ABANDANAS

that subtree. ANABANDANAS
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Building LCP Arrays

e We know that these two
new suffixes must have

an LCP of at least 1, A
because the two old ANAS
suffixes have an LCP of 2. ANABANDANAS

 However, the LCP may be
longer than 1, since
we’ve never seen one of
these two suffixes.

« We still need to some NABANDANAS
some scanning, but we 2 "NANABANDAN AS
won’t necessarily have to
rescan the entire suffix.

ABANDANAS
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Building LCP Arrays

e We know that these two
new suffixes must have

an LCP of at least 1, A

because the two old 2 ANAS

suffixes have an LCP of 2. ANABANDANAS
« However, the LCP may be

longer than 1, since

we’ve never seen one of

these two suffixes.
« We still need to some NABANDANAS

some scanning, but we 2 "NANABANDAN AS
won’t necessarily have to
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Kasai’s Algorithm

 For each suffix of the f\S
{)rlg.mal string, except the ABANANABANDANAS
ast: ABANDANAS
 Find that suffix in the suffix ANAS
array. ANABANDANAS
 Look at the suffix that ANANABANDANAS
comes before it. gxzﬁmﬁg ANDANAS
« (%) Find the length of the
BANDANAS
longest common prefix of DANAS
those suffixes. NAS
 Write that down in the H NABANDANAS
array. NANABANDANAS
» Use the insight from the NDANAS

previous slides to speed ABANANABANDANAS
up step ().
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More to Explore

* We could easily spend a whole quarter talking
about suffix arrays. Here’s what we didn’t cover:

 Bottom-up tree simulations: Using LCP arrays,
you can simulate any O(m)-time suffix tree algorithm
that works with a bottom-up DFS in time O(m).

» Faster substring searching: Using LCP arrays,

plus RMQ, you can improve the cost of a substring
search to O(n + z + log m).

 Burrows-Wheeler transforms: Suffix arrays, plus
LCP arrays, can be used to significantly improve the
performance of text compressors.

* Check these out - they’re super interesting!



Next Time

- Amortized Analysis
 Lying in a runtime analysis.
 The Potential Method

* Physics meets data structure design.
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