Suffix and LCP Arrays

Recap from Last Time

Suffix Trees

nonsense

Suffix Trees

-

2 e
nonsense$
onsense$ 9 &

nsense$
sense$
ense$
nse$
se$

eS

S

</

Theorem: w is a
substring of x if and
only if w is a prefix of
a suffix of x.

n

@mmm:
Qmmm:mmzo

nonsenses
012345678

@mmm:mm:o

n

@-«nmm:

Suffix Trees

nonsense$
onsense$
nsenses .
sense$

ense$ & A
nses <
se$ o
e$ &

¥ 2
Theorem: w is a

substring of x if and nonsense$
only if w is a prefix of

a suffix of x. 012345678

New Stuff!

Representing Sutfix Trees

Representing a Suffix Tree

» We know that a ()
suffix tree has O(m) i o n
nodes, where m is 9
the number of S 3

characters in the
input string.

 This means that
there are O(m)
edges.

@mmm:
Qmmm:mm:o
@mmm:

* Question: Why can’t
we immediately

claim that the space
usage of the suffix nonsenses
tree is O(m)? 012345678

@mmm:mm:o

n

@mmm:

Representing a Suffix Tree

 Claim: Writing out AN

all suffixes of a string § e \n :
of length m requires 9
®(m?) characters. $

 Proof idea: Those
suffixes have length
1+2+ ...+ (m+1),
factoring in the
special $ character.

n

@mmm:mm:o

@mmm:
Qmmm:mm:o
@mmm:

 Problem: It is
indeed possible to
build a suffix tree
with ©(m?) total nonsenses

letters on the edges. 012345678

n

@mmm:

Representing a Suffix Tree

* By being clever with
our representation, we
can guarantee that a
suffix tree uses only
®(m) space, regardless
of the input string.

 Observation: Each
edge is labeled with a
substring of the
original input string.

« Idea: Don’t actually
write out the labels on
the edges. Just write
down the start and end
index!

-

</

P,

@mmm:

rO 0O MO®Wwn oo

C)
@mmm:

n

n

nonsenses$
012345678

@mmm:mm:o

n

@mmm:

Representing a Suffix Tree

) S
S e oa 0 5
n
S
e
n
S
e
S e n o s S,
start | 8 4 | 0 1 3
end 8 4 0 8 4
child

D v v v otzaasers

Representing a Suffix Tree

* Space usage ()
required for a $ e 0 Z
suffix tree: Q
S s

* O(m) space for
all the nodes.

 O(m) space for
a copy of the
original string.

@mmm:mm:o

@mmm:
Qmmm:mm:o
@mmm:

 O(m) space for
the edges.
nonsense$

» Total space: O(m). 012345678

@mmm:

Suftfix Tree Space Usage

» Suffix tree edges take up a lot of space.

« Two machine words per edge to denote the range of
characters visited.

 One machine word per edge for the pointer itself.

« Number of edges ranges from m to 2m - 1, so this is between
3m and 6m machine words for the whole string!

 Example: a human genome is about three billion
characters long.

« With clever techniques, that can be packed into about
800MB.

* On a 32-bit machine, the suffix tree needs about 48GB - too
big to fit into memory!

* On a 64-bit machine, the suffix tree needs about 96GB - way
more than a typical machine can hold!

Key Question: Can we get the benefits of
a suffix tree without the space penalty?

What is it about suffix trees that make
them so useful algorithmically?

LA
U
M
:/
N
D n

@mmm:mm:o
@mmm:

Qmmm:mw:o

Theorem: There is a node labeled w in a suffix tree for T
if and only if
w is a suffix of T$ or w is a branching word in T'$.

PN VRN
| N / \ J | —
. | .
:“ -

o .t

4

Theorem: There is a node labeled w in a suffix tree for T
if and only if
wisasuffixof T$ or wisa branching word in T$.

n

<
J/

<

<

Theorem: There is a node labeled w in a suffix tree for T
if and only if
w is a suffix of T'$ or wis a branching word in T'$.

n

A string w i1s a
branching word in
T$ if there are distinct
characters a and b
where wa and wb are
substrings of T$.

Theorem: There is a node labeled w in a suffix tree for T
if and only if
w is a suffix of T'$ or wis a branching word in T'$.

n

A string w i1s a
branching word in
T$ if there are distinct
characters a and b

where wa and wb are nonsense$
substrings of T$.

Theorem: There is a node labeled w in a suffix tree for T
if and only if
w is a suffix of T'$ or wis a branching word in T'$.

)

N

0n

\

.0
S n
e s
$ e
@n
S
e
S

n

@mmm:mm:o
@mmm:

@mmm:

Key Intuition: The efficiency in a suffix tree is largely due to
1. keeping the suffixes in sorted order, and
2. exposing branching words.

Where We're Going

» Today, we’ll see two data structures that
encode much of the same information as
suffix trees, but in much less space.

» The suffix array stores information about the
ordering of the suffixes of a string.

 The LCP array stores information about the
branching words of a string.

» Together, they’ll provide algorithms that
match or are comparable to the time
bounds from last time.

Suffix Arrays

LA
U
M
:/
N
D n

@mmm:mm:o
@mmm:

Qmmm:mw:o

Theorem: There is a node labeled w in a suffix tree for T
if and only if
w is a suffix of T$ or w is a branching word in T'$.

T 3
S
3 @ ®
s o @
nsensesS @

onsense$
se$ nonsense$

sense$ 012345678

Theorem: There is a node labeled w in a suffix tree for T
if and only if
wisasuffixof T$ or wisa branching word in T$.

Suffix Arrays

S

* A suffix array for a string AS
T is a sorted array of the ABANANABANDANAS

suffixes of the string T'$. ABANDANAS

| o ANAS
 Suffix arrays distill out ANABANDANAS

just the first component of ANANABANDANAS
suffix trees: they store ANDANAS
suffixes in sorted order. BANANABANDANAS

BANDANAS
DANAS

NAS
NABANDANAS
NANABANDANAS
NDANAS

ABANANABANDANAS

Suffix Arrays

* A suffix array for a string
T is a sorted array of the
suffixes of the string T'$.

« Suffix arrays distill out
just the first component of
suffix trees: they store
suffixes in sorted order.

« Non-obvious fact: Suffix
arrays can be built in time
O(m). We can cover this
later in the quarter if
you're interested.

S

AS

ABANANABANDANAS

ABANDANAS

ANAS

ANABANDANAS

ANANABANDANAS

ANDANAS

BANANABANDANAS

BANDANAS

DANAS

NAS

NABANDANAS

NANABANDANAS

NDANAS

ABANANABANDANAS

Suffix Arrays

S
 The way we’ve AS :
. ABANANABANDANA

drawn suffIX | ABANDANAS
arrays is terribly ANAS
space-ineftficient. ﬁ:ﬁﬁﬁ:ﬁﬁgﬁﬁm
. ANDANAS

It always uses BANANABANDANAS

space ©(m?), since BANDANAS

that’s how many DANAS

total characters NAS

A NABANDANAS
occgr In a NANABANDANAS
suffixes. NDANAS

« Can we do better? ABANANABANDANAS

Suffix Arrays

* We reduced the space f\s
usage of suffix trees by ABANANABANDANAS
representing substrings, ABANDANAS
implicitly, as ranges ﬁmgANDANAS
within the original string. ANANABANDANAS

» Idea: Don’t store the ANDANAS
suffixes themselves. Just BANANABANDANAS
store the starting BANDANAS
positions of the suffixes. 322‘“5

 Space: ©(m), and with NABANDANAS
only one machine word NANABANDANAS
used per character of NDANAS

input. ABANANABANDANAS

Suffix Arrays

* We reduced the space f\s
usage of suffix trees by ABANANABANDANAS
representing substrings, ABANDANAS
implicitly, as ranges ANAS
within the original string. ﬁmﬁﬁ:mgﬁﬁ AS

» Idea: Don’t store the ANDANAS
suffixes themselves. Just BANANABANDANAS
store the starting BANDANAS
positions of the suffixes. 322‘“5

 Space: ©(m), and with NABANDANAS
only one machine word NANABANDANAS
used per character of NDANAS
mput. ABANANABANDANAS

012345678901234

Suffix Arrays

« We reduced the space ig
usage of suffix trees by 0]
representing substrings, 6
implicitly, as ranges 11
within the original string. ‘21

» Idea: Don’t store the 8
suffixes themselves. Just 1
store the starting 7
positions of the suffixes. ig

 Space: ©(m), and with 5
only one machine word 3
used per character of 9

input. ABANANABANDANAS
012345678901234

Suffix Arrays

14

» Although the picture 13
to the right is how 0
we’d represent the 161
suffix array in 4
memory, for this g
lecture we’ll draw 1
things out the longer 7
way. 19
12

* This is just to build 5
intuition; we 3

wouldn’t actually do

that in practice. ABANANABANDANAS
012345678901234

Using Suffix Arrays

. S
 Last time, we saw AS $
ABANANABANDANA
instances of a ANAS -
: ANABANDANA
T using suffix ANDANAS :
BANANABANDANA
lrees. BANDANAS
* How could we do ﬂﬁgAs
that with suffix NABANDANAS .
9 NANABANDANA

ABANANABANDANAS

Using Sutfix Arrays

* Reminder: Our text string T §$
has length m. Our pattern ABANANABANDANAS
string P has length n. ABANDANAS
* Claim: With a suffix array, we ANAS
can determine whether P ANABANDANAS
appears in T in time O(n log m). ANANABANDANAS
ANDANAS
BANANABANDANAS
BANDANAS
DANAS
How? NAS
NABANDANAS
Answer at NANABANDANAS
https://pollev.com/cs166spr23 NDANAS

ABANANABANDANAS

https://pollev.com/cs166spr23

Using Sutfix Arrays

S

* Reminder: Our text string T AS

has length m. Our pattern ABANANABANDANAS
string P has length n. ABANDANAS

* Claim: With a suffix array, we ANAS
can determine whether P ANABANDANAS

appears in T in time O(n log m). ANANABANDANAS

ANDANAS
BANANABANDANAS
BANDANAS

DANAS

NAS

NABANDANAS
NANABANDANAS
NDANAS

ABANANABANDANAS

ANAN

Using Sutfix Arrays

S

* Reminder: Our text string T AS

has length m. Our pattern ABANANABANDANAS
string P has length n. ABANDANAS

* Claim: With a suffix array, we ANAS
can determine whether P ANABANDANAS
appears in T in time O(n log m). ANANABANDANAS

ANDANAS
BANANABANDANAS
BANDANAS

DANAS

NAS

NABANDANAS
NANABANDANAS
NDANAS

ABANANABANDANAS

ANAN

Using Sutfix Arrays

S

* Reminder: Our text string T AS

has length m. Our pattern ABANANABANDANAS
string P has length n. ABANDANAS

* Claim: With a suffix array, we ANAS
can determine whether P ANABANDANAS

appears in T in time O(n log m). ANANABANDANAS

ANDANAS
BANANABANDANAS
BANDANAS

DANAS

NAS

NABANDANAS
NANABANDANAS
NDANAS

ABANANABANDANAS

ANAN

Using Sutfix Arrays

S

* Reminder: Our text string T AS

has length m. Our pattern ABANANABANDANAS
string P has length n. ABANDANAS

* Claim: With a suffix array, we ANAS
can determine whether P ANABANDANAS

appears in T in time O(n log m). ANANABANDANAS

ANDANAS
BANANABANDANAS
BANDANAS

DANAS

NAS

NABANDANAS
NANABANDANAS
NDANAS

ABANANABANDANAS

ANAN

Using Sutfix Arrays

S
* Reminder: Our text string T AS

has length m. Our pattern ABANANABANDANAS
string P has length n. ABANDANAS

* Claim: With a suffix array, we ANAS
can determine whether P ANABANDANAS

appears in T in time O(n log m). ANANABANDANAS

ANDANAS
BANANABANDANAS
BANDANAS

DANAS

NAS

NABANDANAS
NANABANDANAS
NDANAS

ABANANABANDANAS

ANAN

Using Sutfix Arrays

S
* Reminder: Our text string T AS

has length m. Our pattern ABANANABANDANAS
string P has length n. ABANDANAS

* Claim: With a suffix array, we ANAS
can determine whether P ANABANDANAS

appears in T in time O(n log m). ANANABANDANAS

ANDANAS
BANANABANDANAS
BANDANAS

DANAS

NAS

NABANDANAS
NANABANDANAS
NDANAS

ABANANABANDANAS

ANAN

Using Sutfix Arrays

S
* Reminder: Our text string T AS

has length m. Our pattern ABANANABANDANAS
string P has length n. ABANDANAS

* Claim: With a suffix array, we ANAS
can determine whether P ANABANDANAS

appears in T in time O(n log m). ANANABANDANAS

ANDANAS
BANANABANDANAS
BANDANAS

DANAS

NAS

NABANDANAS
NANABANDANAS
NDANAS

ABANANABANDANAS

ANAN

Using Sutfix Arrays

S
* Reminder: Our text string T AS
has length m. Our pattern ABANANABANDANAS
string P has length n. ABANDANAS
* Claim: With a suffix array, we ANAS
can determine whether P ANABANDANAS
appears in T in time O(n log m). ANANABANDANAS
« Binary search has O(log m) ANDANAS
rounds. BANANABANDANAS
« Each probe takes time O(n). BANDANAS
« This bound can be made tight. DANAS
(How?) NAS
« Figure that m is often much NABANDANAS
bigger than n, so this is a huge NANABANDANAS
win over a raw scan. NDANAS
ABANANABANDANAS

ANAN

Using Suffix Arrays

 Claim: With a suffix
array, we can find all
matches of a pattern P in
T in time O(n log m + 2),
where 7 is the number of
matches.

Idea: Binary search can
be used to find a range of
values equal to some key.
Adapt that idea to find all
suffixes beginning with
the same prefix.

NA

S

AS

ABANANABANDANAS

ABANDANAS

ANAS

ANABANDANAS

ANANABANDANAS

ANDANAS

BANANABANDANAS

BANDANAS

DANAS

NAS

NABANDANAS

NANABANDANAS

NDANAS

ABANANABANDANAS

Using Sutfix Arrays

S
* Claim: With a suffix AS
array, we can find all ABANANABANDANAS
matches of a pattern P in ABANDANAS
T in time O(n log m + 2), ANAS
where z is the number of ﬁ:ﬁmg?\ﬁgﬁﬁA &
matches. ANDANAS
* Idea: Binary search can BANANABANDANAS
be used to find a range of BANDANAS
values equal to some key. DANAS
Adapt that idea to find all NAS
suffixes beginning with mﬁﬁgzﬁgﬁﬁ AS
the same prefix. NDANAS
ABANANABANDANAS

NA

The Story So Far

« Suffix arrays store all the suffixes of a string in
sorted order.

 They provide an
(O(m), O(n log m + 2))
solution to the substring search problem.

 Intuition: Suffix trees are valuable in large
part because they just keep the suffixes sorted.

« What else are suffix trees doing?

<)
2e ; J
S n e e S
e s n
5 e § n: g
4! 58 3.
c s @
2
nonsense$
012345678

Theorem: There is a node labeled w in a suffix tree for T
if and only if
w is a suffix of T$ or w is a branching word in T'$.

T 6

@ (5
@ 3

2

nonsensesS
012345678

Theorem: There is a node labeled w in a suffix tree for T
if and only if
wisasuffixof T$ or wisa branching word in T$.

0n

@

n

nonsensesS
012345678

Theorem: There is a node labeled w in a suffix tree for T
if and only if
wis a suffix of T$ or wis a branching word in T$.

Branching Words

* Recall: If T'is a
string, then w is a
branching word
in T'$ if there are
characters a # b
such that wa and

wb are substrings
of T'S.

ABANANABANDANAS

Branching Words

* Recall: If T'is a
string, then w is a
branching word
in T'$ if there are
characters a # b
such that wa and

wb are substrings
of T'S.

BAN/ ' “BAN

Branching Words

* Recall: If T'is a
string, then w is a
branching word
in T'$ if there are
characters a # b
such that wa and

wb are substrings
of T'S.

BANA''“BAND

Branching Words

* Recall: If T'is a
string, then w is a
branching word
in T'$ if there are
characters a # b
such that wa and

wb are substrings
of T'S.

Branching Words

* Recall: If T'is a
string, then w is a
branching word
in T'$ if there are
characters a # b
such that wa and

wb are substrings
of T'S.

ANA ANA

Branching Words

* Recall: If T'is a
string, then w is a
branching word
in T'$ if there are
characters a # b
such that wa and

wb are substrings
of T'S.

ANAB/'DANAS

Branching Words

* Recall: If T'is a
string, then w is a
branching word
in T'$ if there are
characters a # b
such that wa and

wb are substrings
of T'S.

Branching Words

* Recall: If T'is a
string, then w is a
branching word
in T'$ if there are
characters a # b
such that wa and

wb are substrings
of T'S.

ABA' /" "ABA

Branching Words

* Recall: If T'is a
string, then w is a
branching word
in T'$ if there are
characters a # b
such that wa and ,
Although ABA is a

wb are substrings repeated substring, it is

of T'S. not a branching word
because all appearances
are followed by N.

ABAN/'ABA

Branching Words

* Recall: If T'is a
string, then w is a
branching word
in T'$ if there are
characters a # b
such that wa and

wb are substrings
of T'S.

Branching Words

* Recall: If T'is a
string, then w is a
branching word
in T'$ if there are
characters a # b
such that wa and

wb are substrings
of T'S.

ANANA

Branching Words

* Recall: If T'is a
string, then w is a
branching word
in T'$ if there are
characters a # b
such that wa and
wb are SU_bStI"ngS The substring ANANA only

of T$. appears once, so it’s not
a branching word.

ANANA

Branching Words

S
e Recall: If T is a ﬁg TTOTIE
.) ANANABANDANA
string, t?len w is a ABANDANAS
branching word ANAS :
- - ANABANDANA
characters a # b ANDANAS :
BANANABANDANA
such that wa and BANDANAZ
wb are substrings DANAS
NAS
of T'S. NABANDANAS
NANABANDANAS
NDANAS

ABANANABANDANAS

Branching Words

* Notice that, by sorting
suffixes, we’ve made it
easier to spot branching
words.

Specifically, all suffixes
starting with a
branching word will be
adjacent in the suffix
array.

 The branching word will

be the longest common
prefix (or LCP) of those

adjacent suffixes.

S

AS

ABANANABANDANAS

ABANDANAS

ANAS

ANABANDANAS

ANANABANDANAS

ANDANAS

BANANABANDANAS

BANDANAS

DANAS

NAS

NABANDANAS

NANABANDANAS

NDANAS

ABANANABANDANAS

Branching Words

* Notice that, by sorting

suffixes, we’'ve made it ABANANABANDANAS
easier to spot branching ABANDANAS
words.

» Specifically, all suffixes
starting with a
branching word will be
adjacent in the suffix
array.

* The branching word will
be the longest common
prefix (or LCP) of those

adjacent suffixes. ABANANABANDANAS

Branching Words

* Notice that, by sorting

suffixes, we’'ve made it ABAN
easier to spot branching ABAN
words.

» Specifically, all suffixes
starting with a
branching word will be
adjacent in the suffix
array.

* The branching word will
be the longest common
prefix (or LCP) of those

adjacent suffixes. ABANANABANDANAS

Branching Words

* Notice that, by sorting
suffixes, we’ve made it
easier to spot branching
words.

Specifically, all suffixes
starting with a
branching word will be
adjacent in the suffix
array.

* The branching word will
be the longest common

prefix (or LCP) of those
adjacent suffixes.

S

AS

ABANANABANDANAS

ABANDANAS

ANAS

ANABANDANAS

ANANABANDANAS

ANDANAS

BANANABANDANAS

BANDANAS

DANAS

NAS

NABANDANAS

NANABANDANAS

NDANAS

ABANANABANDANAS

Branching Words

* Notice that, by sorting
suffixes, we’ve made it
easier to spot branching
words.

» Specifically, all suffixes
starting with a
branching word will be
adjacent in the suffix

array. =
« The branching word will NABANDANAS
be the longest common NANABANDANAS

prefix (or LCP) of those
adjacent suffixes. ABANANABANDANA$

Branching Words

* Notice that, by sorting
suffixes, we’ve made it
easier to spot branching
words.

» Specifically, all suffixes
starting with a
branching word will be
adjacent in the suffix

array. NA
* The branching word will NA
be the longest common NA

prefix (or LCP) of those
adjacent suffixes. ABANANABANDANA$

Branching Words

* Notice that, by sorting
suffixes, we’ve made it
easier to spot branching
words.

Specifically, all suffixes
starting with a
branching word will be
adjacent in the suffix
array.

* The branching word will
be the longest common

prefix (or LCP) of those
adjacent suffixes.

S

AS

ABANANABANDANAS

ABANDANAS

ANAS

ANABANDANAS

ANANABANDANAS

ANDANAS

BANANABANDANAS

BANDANAS

DANAS

NAS

NABANDANAS

NANABANDANAS

NDANAS

ABANANABANDANAS

Branching Words

« Theorem: A string w is a
branching word in string T'$ if
and only if it’s the longest
common prefix of two adjacent
suffixes in T’s suffix array.

Proof idea: If w is the longest
common prefix of two adjacent
suffixes, let a and b be the
characters immediately following
w in those two suffixes. Then wa
and wb are substrings of T'$.

If w is branching, choose the
lexicographically smallest a and
b making the definition work.
Then the last suffix starting with
wa and the first suffix starting
with wb are adjacent in the suffix
array. i

S

AS

ABANANABANDANAS

ABANDANAS

ANAS

ANABANDANAS

ANANABANDANAS

ANDANAS

BANANABANDANAS

BANDANAS

DANAS

NAS

NABANDANAS

NANABANDANAS

NDANAS

ABANANABANDANAS

Y

=
)%

o
o

= > W
¢

C><-(.I)-J>Z>UZ>W>Z>

@U}>Z>U

S

AS

ABANANABANDANAS

ABANDANAS

ANAS

ANABANDANAS

ANANABANDANAS

ANDANAS

BANANABANDANAS

BANDANAS

DANAS

NAS

NABANDANAS

NANABANDANAS

NDANAS

. 0N
A <o
D S A 5% | N
§ AAA “p $ R A N
N 55 B A A N O
A S D
A n© N O x A
$é ;“\ N §
A
S 3 O
© ¢
ABANANABANDANAS
w is an internal node in the suffix tree for T
if and only if
w is a branching word in T$
if and only if

w is the LCP of two adjacent suffixes in the suffix array for T

Key Intuition: Adjacent sutfixes with long
shared prefixes correspond to subtrees of
the suffix tree.

Harnessing this Connection

Longest Repeated Substring

o

- A

« Last time, we
saw how to solve
the longest
repeated
substring
problem by
using suffix
trees.

« Algorithm: Find
the internal node
in the suffix tree
with the longest
label.

* Question: Can
we do this with
just a suffix

array? ABANANABANDANAS

= > W™

Longest Repeated Substring

 We can list all branching $
words from a suffix array ﬁg ANANABANDANAS
. . 2
in time O(m?). ABANDANAS
« O(m) pairs; each pair ANAS
takes time O(m) to ANABANDANAS
DLOCESS. ANANABANDANAS
. ANDANAS
This worst—pase bound BANANABANDANAS
can be realized. BANDANAS
DANAS
'p NAS
NABANDANAS
HOW ° NANABANDANAS
NDANAS

Answer at

https://pollev.com/cs166spr23 ABANANABANDAN A$

https://pollev.com/cs166spr23

Longest Repeated Substring

« We can list all branching S
words from a suffix array ﬁgANANABANDANA g
o)
in time O(m?). ABANDANAS
* O(m) pairs; each pair ANAS
takes time O(m) to ANABANDANAS
process. ANANABANDANAS
 This worst-case bound gxmmgAND ANAS
can be realized. BANDANAS
DANAS
NAS
NABANDANAS
NANABANDANAS
NDANAS

ABANANABANDANAS

Longest Repeated Substring

We can list all branching
words from a suffix array
in time O(m?).

 O(m) pairs; each pair
takes time O(m) to
process.

This worst-case bound
can be realized.

Contrast this with O(m)
for a suffix tree.

Can we do better?

S

AS

ABANANABANDANAS

ABANDANAS

ANAS

ANABANDANAS

ANANABANDANAS

ANDANAS

BANANABANDANAS

BANDANAS

DANAS

NAS

NABANDANAS

NANABANDANAS

NDANAS

ABANANABANDANAS

Longest Repeated Substring

« Observation: We don’t f\ :
actually need to knqw ABANANABANDANAS
what all the branchmg ABANDANAS
words are to find the ANAS
longest repeated ﬁmﬁﬁgzﬁgﬁﬁ‘\s
substring. ANDANAS
 We just need to know BANANABANDANAS
how long they are. BANDANAS
DANAS
 That way, we can figure NAS
out which is longest. NABANDANAS
. NANABANDANAS
 Is there some nice way NDANAS
to do this?

ABANANABANDANAS

L.CP Arrays

L.CP Arrays

« The LCP array, 02
often denoted H, is + [ABANANABANDANAS
an array where HJ[i] 1 ﬁﬁﬁgm‘"“s
is the length of the g ANABANDANAS
LCP of the ith and 5 ﬁ:gxﬁ?\gNDANAs
(i+1)st suifixes in > [BANANABANDANAS
the suffix array. = BANms\NAs
DANA
- (The letter H comes > [NAS :
") NABANDANA
from “height.”) = [NANABANDANAS
NDANAS

ABANANABANDANAS

y

Nr>»Z>r>»0Z>0>Z>

O+

NH>ZPoOZ>m
O

#zj
= 2> |

yi D N;
A D
N A D
A
XA ®p A%smﬁ ;)
A A N D A 5
$ B A Al N
éﬁ % N D
Al A
D $ N
A é A
N 3
A ks
O
ABANANABANDANAS

S

AS

ABANANABANDANAS

ABANDANAS

ANAS

ANABANDANAS

ANANABANDANAS

ANDANAS

BANANABANDANAS

BANDANAS

DANAS

NAS

NABANDANAS

R NNOOWONWWEPR~RELO

NANABANDANAS

NDANAS

Key intuition: The suffix array gives the leaves of the suffix tree.

The LCP array gives the internal nodes of the suffix tree.

Using LCP Arrays

 If you already have a 0 i :
suffix array and LCP 1 BANANABANDANAS
array, you can solve 4 " ABANDANAS
longest repeated ; ANAS
substring in time O(m): 3 ANABANDANAS
. ANANABANDANAS
 Find the largest element 2 ANDANAS
in the LCP array. > [BANANABANDANAS
 Return the string it o | BANDANAS
corresponds to. o | DANAS
. NAS
* Question: How fast can 2 "NABANDANAS
we construct an LCP i NANABANDANAS
array? NDANAS

ABANANABANDANAS

Building LCP Arrays

Building LCP Arrays

It never hurts to start with
the naive algorithm and see
what happens!

» Algorithm: For each
consecutive pair of strings
in the suffix array, compute
the length of their longest
common prefix.

« We can upper-bound the
runtime at O(m?).

* Question: Can we realize
this upper bound?

S

AS

ABANANABANDANAS

ABANDANAS

ANAS

ANABANDANAS

ANANABANDANAS

ANDANAS

BANANABANDANAS

BANDANAS

DANAS

NAS

NABANDANAS

R NNOOWONWWE PR~REFEO

NANABANDANAS

NDANAS

ABANANABANDANAS

Building LCP Arrays

 Why is our naive 0 f\s
algorithm slow? + [ABANANABANDANAS
. [ABANDANAS
* Intuition: We 3| ANAS
't able t - [ANABANDANAS
aren't able to carry > [ANANABANDANAS
work from one 5| ANDANAS
suffix over to the 3 gﬁﬂﬁxﬁﬁ’g"”‘"“s
0
next. o | DANAS
> [NAS
2 [NABANDANAS
£ [NANABANDANAS
NDANAS

ABANANABANDANAS

Building LCP Arrays

 Key intuition: Suffixes
overlap one another! It
should be possible to
share LCP information
across suffixes.

S

AS

ABANANABANDANAS

ABANDANAS

ANAS

ANABANDANAS

ANANABANDANAS

ANDANAS

BANANABANDANAS

BANDANAS

DANAS

NAS

NABANDANAS

NANABANDANAS

NDANAS

Building LCP Arrays

 Key intuition: Suffixes
overlap one another! It
should be possible to
share LCP information
across suffixes.

« For example, suppose we
compute the LCP entry
shown here.

S

AS

ABANANABANDANAS

ABANDANAS

ANAS

ANABANDANAS

ANANABANDANAS

ANDANAS

BANANABANDANAS

BANDANAS

DANAS

NAS

NABANDANAS

NANABANDANAS

NDANAS

Building LCP Arrays

 Key intuition: Suffixes
overlap one another! It
should be possible to
share LCP information
across suffixes.

« For example, suppose we
compute the LCP entry
shown here.

S

AS

ABANANABANDANAS

ABANDANAS

ANAS

ANABANDANAS

ANANABANDANAS

ANDANAS

BANANABANDANAS

BANDANAS

DANAS

NAS

NABANDANAS

NANABANDANAS

NDANAS

Building LCP Arrays

 Key intuition: Suffixes
overlap one another! It
should be possible to
share LCP information
across suffixes.

« For example, suppose we
compute the LCP entry
shown here.

S

AS

ABANANABANDANAS

ABANDANAS

ANAS

ANABANDANAS

ANANABANDANAS

ANDANAS

BANANABANDANAS

BANDANAS

DANAS

NAS

NABANDANAS

NANABANDANAS

NDANAS

Building LCP Arrays

 Key intuition: Suffixes

v
overlap one another! It ABANANABANDANAS

should be possible to 4 "ABANDANAS

share LCP information
across suffixes.

« For example, suppose we
compute the LCP entry
shown here.

 L.ook at the suffixes
formed by dropping the
first letter of these two
suffixes.

Building LCP Arrays

* Key intuition: Suffixes »?\S
overlap one another! It ABANANABANDANAS
should be possible to 4 " ABANDANAG
share LCP information ANAS
across suffixes. ANABANDANAS

« For example, suppose we ANANABANDANAS
compute the LCP entry g?\ﬁﬁmg ANDANAS
shown here. BANDANAS

* Look at the suffixes DANAS
formed by dropping the NAS
first letter of these two NABANDANAS
suffixes. NANABANDANAS

NDANAS
ABANANABANDANAS

ABANDANAS

Building LCP Arrays

* Key intuition: Suffixes iS
overlap one another! It ABANANABANDANAS
should be possible to 4 " ABANDANAG
share LCP information ANAS
across suffixes. ANABANDANAS

« For example, suppose we ANANABANDANAS
compute the LCP entry memg ANDANAS
shown here. BANDANAS

* Look at the suffixes DANAS
formed by dropping the NAS
first letter of these two NABANDANAS
suffixes. NANABANDANAS

NDANAS
ABANANABANDANAS

ABANDANAS

Building LCP Arrays

* Key intuition: Suffixes »f\$
overlap one another! It ABANANABANDANAS
should be possible to 4 " ABANDANAG
share LCP information ANAS
across suffixes. ANABANDANAS

« For example, suppose we ﬁmgmﬁgNDANAS
compute the LCP entry BANANABANDANAS
ShOWIl heI‘e. BANDANA$

» Look at the suffixes DANAS
formed by dropping the NAS
first letter of these two NABANDANAS
suffixes. :SXQ?\QNDANAS

ABANANABANDANAS

ABANDANAS

Building LCP Arrays

 Key intuition: Suffixes
|
overlap one anpther. It ABANANABANDANAS
should be possible to 4 ABANDANAG
share LCP information
across suffixes.

« For example, suppose we
compute the LCP entry
shown here.

BANANABANDANAS
BANDANAS

 L.ook at the suffixes
formed by dropping the
first letter of these two
suffixes.

« What do we know about

their LCP? BANANABANDANAS
BANDANAS

Building LCP Arrays

 Key intuition: Suffixes
v
overlap one anpther. It ABANANABANDANAS
should be possible to 4 ABANDANAG
share LCP information
across suffixes.

« For example, suppose we
compute the LCP entry
shown here. 3

BANANABANDANAS
BANDANAS

 L.ook at the suffixes
formed by dropping the
first letter of these two
suffixes.

« What do we know about

their LCP? BANANABANDANAS
BANDANAS

Building LCP Arrays

* Key intuition: Suffixes f\S
overlap one another! It ABANANABANDANAS
should be possible to 4 ABANDANAS
share LCP information ANAS
across suffixes. ANABANDANAS

« For example, suppose we ANANABANDANAS
compute the LCP entry gxmmg ANDANAS
shown here. 3 BANDANA$

» Look at the suffixes DANAS
formed by dropping the NAS
first letter of these two NABANDANAS
suffixes. :SRG&QNDANM

« What do we know about

their LCP? BANANABANDANAS
BANDANAS

Building LCP Arrays

 L.et’s do another
example. Suppose
we know the LCP of
these suffixes.

S

AS

ABANANABANDANAS

ABANDANAS

ANAS

ANABANDANAS

ANANABANDANAS

ANDANAS

BANANABANDANAS

BANDANAS

DANAS

NAS

NABANDANAS

NANABANDANAS

NDANAS

Building LCP Arrays

* Let’s do another
example. Suppose

we know the LCP of
these suffixes.

S

AS

ABANANABANDANAS

ABANDANAS

ANAS

ANABANDANAS

ANANABANDANAS

ANDANAS

BANANABANDANAS

BANDANAS

DANAS

NAS

NABANDANAS

NANABANDANAS

NDANAS

Building LCP Arrays

* Let’s do another
example. Suppose

we know the LCP of
these suffixes.

S

AS

ABANANABANDANAS

ABANDANAS

ANAS

ANABANDANAS

ANANABANDANAS

ANDANAS

BANANABANDANAS

BANDANAS

DANAS

NAS

NABANDANAS

NANABANDANAS

NDANAS

Building LCP Arrays

* Let’s do another
example. Suppose

we know the LCP of ANAS

these suffixes. 3 ANABANDANAS

* As before, drop the
first letter from
each suffix.

Building LCP Arrays

 L.et’s do another
example. Suppose
we know the LCP of
these suffixes.

* As before, drop the
first letter from
each suffix.

S

AS

ABANANABANDANAS

ABANDANAS

ANAS

ANABANDANAS

ANANABANDANAS

ANDANAS

BANANABANDANAS

BANDANAS

DANAS

NAS

NABANDANAS

NANABANDANAS

NDANAS

ANAS
ANABANDANAS

Building LCP Arrays

 L.et’s do another
example. Suppose
we know the LCP of
these suffixes.

* As before, drop the
first letter from
each suffix.

S

AS

ABANANABANDANAS

ABANDANAS

ANAS

ANABANDANAS

ANANABANDANAS

ANDANAS

BANANABANDANAS

BANDANAS

DANAS

NAS

NABANDANAS

NANABANDANAS

NDANAS

ANAS
ANABANDANAS

Building LCP Arrays

 L.et’s do another
example. Suppose
we know the LCP of
these suffixes.

* As before, drop the
first letter from
each suffix.

S

AS

ABANANABANDANAS

ABANDANAS

ANAS

ANABANDANAS

ANANABANDANAS

ANDANAS

BANANABANDANAS

BANDANAS

DANAS

NAS

NABANDANAS

NANABANDANAS

NDANAS

ANAS
ANABANDANAS

Building LCP Arrays

e Let’s do another
example. Suppose
we know the LCP of

ANAS

these suffixes. 3 T ANABANDANAS
* As before, drop the

first letter from

each suffix.
« What can we say EQEANDANAs

about the LCP of

the resulting

suffixes? NAS
NABANDANAS

Building LCP Arrays

e Let’s do another
example. Suppose
we know the LCP of

ANAS

these suffixes. 3 T ANABANDANAS
* As before, drop the
first letter from
each suffix.
NA
* What can we say 2 NAgANDANA$

about the LCP of

the resulting

suffixes? NAS
NABANDANAS

Building LCP Arrays

* Let’s do another f\s
example. Suppose ABANANABANDANAS
we know the L.CP of ﬁﬁﬁgDANAS
these suffixes. 3T ANABANDANAS
ANANABANDANA
* As before, drop the ANDANAS $
first letter from BANANABANDANAS
each suffix. BQERQNAS
NA
« What can we say 2
about the LCP of NANABANDANAS
the resulting NDANAS
suffixes? NAS

NABANDANAS

Building LCP Arrays

 Sometimes, in dropping
the first letter, two
adjacent suffixes get
spread out.

S

AS

ABANANABANDANAS

ABANDANAS

ANAS

ANABANDANAS

ANANABANDANAS

ANDANAS

BANANABANDANAS

BANDANAS

DANAS

NAS

NABANDANAS

NANABANDANAS

NDANAS

Building LCP Arrays

 Sometimes, in dropping
the first letter, two
adjacent suffixes get
spread out.

S

AS

ABANANABANDANAS

ABANDANAS

ANAS

ANABANDANAS

ANANABANDANAS

ANDANAS

BANANABANDANAS

BANDANAS

DANAS

NAS

NABANDANAS

NANABANDANAS

NDANAS

Building LCP Arrays

 Sometimes, in dropping
the first letter, two
adjacent suffixes get
spread out.

S

AS

ABANANABANDANAS

ABANDANAS

ANAS

ANABANDANAS

ANANABANDANAS

ANDANAS

BANANABANDANAS

BANDANAS

DANAS

NAS

NABANDANAS

NANABANDANAS

NDANAS

Building LCP Arrays

 Sometimes, in dropping >

AS
the first letter, two ABANANABANDANAS
adjacent suffixes get ABANDANAS

spread out. ANAS

ANABANDANAS
ANANABANDANAS
ANDANAS
BANANABANDANAS
BANDANAS

DANAS

NAS

NABANDANAS
NANABANDANAS
NDANAS

NABANDANAS
NANABANDANAS

Building LCP Arrays

 Sometimes, in dropping >

AS
the first letter, two ABANANABANDANAS
adjacent suffixes get ABANDANAS

spread out. ANAS

ANABANDANAS
ANANABANDANAS
ANDANAS
BANANABANDANAS
BANDANAS

DANAS

NAS

NABANDANAS
NANABANDANAS
NDANAS

NABANDANAS
NANABANDANAS

Building LCP Arrays

 Sometimes, in dropping >

AS
the first letter, two ABANANABANDANAS
adjacent suffixes get ABANDANAS

spread out. ANAS

ANABANDANAS
ANANABANDANAS
ANDANAS
BANANABANDANAS
BANDANAS

DANAS

NAS

NABANDANAS
NANABANDANAS
NDANAS

NABANDANAS
NANABANDANAS

Building LCP Arrays

* Sometimes, in dropping .t$\$
thg first lette}", two ABANANABANDANAS
adjacent suffixes get ABANDANAS
spread out. ANAS
 Claim: Look at the second ANABANDANAS
suffix in the pair. Its LCP ANANABANDANAS
with the suffix before it is g?\zﬁmgANDANM
at least the previous LCP BANDANAS
minus one. DANAS
NAS
5 NABANDANAS
NANABANDANAS
NDANAS
NABANDANAS

NANABANDANAS

Building LCP Arrays

* Sometimes, in dropping f\S
t}(lf first lettf?}: two ABANANABANDANAS
adjacent suirxes get ABANDANAS
spread out. ANAS
e Claim: Look at the second ANABANDANAS
suffix in the pair. Its LCP ANANABANDANAS
with the suffix before it is memg ANDANAS
at.least the previous LCP BANDANAS
minus one. DANAS
NAS
5 NABANDANAS
NANABANDANAS
NDANAS
NABANDANAS

NANABANDANAS

Building LCP Arrays

* Sometimes, in dropping f\S
thg first lette}", two ABANANABANDANAS
adjacent suffixes get ABANDANAS
spread out. ANAS
e Claim: Look at the second ANABANDANAS
suffix in the pair. Its LCP ANANABANDANAS
with the suffix before it is gxzﬁmg ANDANAS
at least the previous LCP BANDANAS
minus one. DANAS
NAS
5 NABANDANAS
NANABANDANAS
NDANAS
NABANDANAS

NANABANDANAS

Building LCP Arrays

* Sometimes, in dropping f\S
tl(lie' first lettf?p two ABANANABANDANAS
adjacent suirixes get ABANDANAS
spread out. ANAS
e Claim: Look at the second ANABANDANAS
suffix in the pair. Its LCP ANANABANDANAS
with the suffix before it is gxzﬁmg ANDANAS
at. least the previous LCP BANDANAS
minus one. DANAS
NAS
5 NABANDANAS
NANABANDANAS
NDANAS
NABANDANAS

NANABANDANAS

Building LCP Arrays

* Sometimes, in dropping f\ 3
tlzf? first lettf?.r' two ABANANABANDANAS
adjacent suirixes get ABANDANAS
spread out. ANAS
e Claim: Look at the second ANABANDANAS
suffix in the pair. Its LCP ANANABANDANAS
with the suffix before it is g?\ﬁﬁmgANDANA g
at.least the previous LCP BANDANAS
minus one. DANAS
NAS
Wh o 5 NABANDANAS
Y NANABANDANAS
NDANAS
Answer at
https://pollev.com/cs166spr23 NABAN DANA$

NANABANDANAS

https://pollev.com/cs166spr23

Building LCP Arrays

* Sometimes, in dropping f\S
t}cl:le’ first lettf?}: two ABANANABANDANAS
adjacent suirxes get ABANDANAS
spread out. ANAS
e Claim: Look at the second ANABANDANAS
suffix in the pair. Its LCP ANANABANDANAS
with the suffix before it is gxzﬁmg ANDANAS
at.least the previous LCP BANDANAS
minus one. DANAS
NAS
5 NABANDANAS
NANABANDANAS
NDANAS
NABANDANAS

NANABANDANAS

Building LCP Arrays

 Sometimes, in dropping
the first letter, two

adjacent suffixes get
spread out. ANAS
e Claim: Look at the second ANABANDANAS

suffix in the pair. Its LCP
with the suffix before it is
at least the previous LCP

minus one.

« Think about the suffix
tree. The two shorter 5> | NABANDANAS
suffixes are in the same NANABANDANAS
subtree, so everything
between them is also in ABANDANAS

that subtree. ANABANDANAS

Building LCP Arrays

« Sometimes, in dropping
the first letter, two

adjacent suffixes get A
spread out. ANAS
e Claim: Look at the second ANABANDANAS

suffix in the pair. Its LCP
with the suffix before it is
at least the previous LCP

minus one.

« Think about the suffix
tree. The two shorter 5> | NABANDANAS
suffixes are in the same NANABANDANAS
subtree, so everything
between them is also in ABANDANAS

that subtree. ANABANDANAS

Building LCP Arrays

e We know that these two
new suffixes must have

an LCP of at least 1, A
because the two old ANAS
suffixes have an LCP of 2. ANABANDANAS

 However, the LCP may be
longer than 1, since
we’ve never seen one of
these two suffixes.

« We still need to some NABANDANAS
some scanning, but we 2 "NANABANDAN AS
won’t necessarily have to
rescan the entire suffix.

ABANDANAS
ANABANDANAS

Building LCP Arrays

e We know that these two
new suffixes must have

an LCP of at least 1, A
because the two old ANAS
suffixes have an LCP of 2. ANABANDANAS

 However, the LCP may be
longer than 1, since
we’ve never seen one of
these two suffixes.

« We still need to some NABANDANAS
some scanning, but we 2 "NANABANDAN AS
won’t necessarily have to
rescan the entire suffix.

ABANDANAS
ANABANDANAS

Building LCP Arrays

e We know that these two
new suffixes must have

an LCP of at least 1, A

because the two old 2 ANAS

suffixes have an LCP of 2. ANABANDANAS
« However, the LCP may be

longer than 1, since

we’ve never seen one of

these two suffixes.
« We still need to some NABANDANAS

some scanning, but we 2 "NANABANDAN AS
won’t necessarily have to
rescan the entire suffix.

ABANDANAS
ANABANDANAS

Kasai’s Algorithm

 For each suffix of the f\S
{)rlg.mal string, except the ABANANABANDANAS
ast: ABANDANAS
 Find that suffix in the suffix ANAS
array. ANABANDANAS
 Look at the suffix that ANANABANDANAS
comes before it. gxzﬁmﬁg ANDANAS
« (%) Find the length of the
BANDANAS
longest common prefix of DANAS
those suffixes. NAS
 Write that down in the H NABANDANAS
array. NANABANDANAS
» Use the insight from the NDANAS

previous slides to speed ABANANABANDANAS
up step ().

Kasai’s Algorithm

 For each suffix of the f\S
i)rlgmal string, except the ABANANABANDANAS
ast: ABANDANAS
 Find that suffix in the suffix ANAS
array. ANABANDANAS
 Look at the suffix that ANANABANDANAS
comes before it. gxﬁﬁmﬁg ANDANAS
« (%) Find the length of the BANDANAS
longest common prefix of DANAS
those suffixes. NAS
 Write that down in the H NABANDANAS
array. NANABANDANAS
» Use the insight from the NDANAS

previous slides to speed ABANANABANDANAS
up step ().

Kasai’s Algorithm

 For each suffix of the f\$
original string, except the ABANANABANDANAS
last: ABANDANAS
 Find that suffix in the suffix ANAS
array. ANABANDANAS
 Look at the suffix that ANANABANDANAS
comes before it. gxﬁﬁmﬁg ANDANAS
« (%) Find the length of the BANDANAS
longest common prefix of DANAS
those suffixes. NAS
 Write that down in the H NABANDANAS
array. NANABANDANAS
+ Use the insight from the NDANAS

previous slides to speed ABANANABANDANAS
up step ().

Kasai’s Algorithm

 For each suffix of the I$\$
last: ABANDANAS
 Find that suffix in the suffix ANAS
array. ANABANDANAS
, ANANABANDANAS
 Look at the suffix that
comes before it. QRBQEQEANDANA g
« (%) Find the length of the
BANDANAS
longest common prefix of
. DANAS
those suffixes. NAS
« Write that down in the H NABANDANAS
array. NANABANDANAS
« Use the insight from the NDANAS

previous slides to speed ABANANABANDANAS
up step ().

Kasai’s Algorithm

 For each suffix of the I$\$
original string, except the ABANANABANDANAS
last: ABANDANAS
 Find that suffix in the suffix ANAS
array. ANABANDANAS
, ANANABANDANAS
 Look at the suffix that
comes before it. szﬁ:ﬁg ANDANAS
« (%) Find the length of the BANDANAS
longest common prefix of DANAS
those suffixes. NAS
 Write that down in the H NABANDANAS
array. NANABANDANAS
* Use the insight from the NDANAS

previous slides to speed ABANANABANDANAS
up step ().

Kasai’s Algorithm

 For each suffix of the I$\$
original string, except the 1 - ABANANABANDANAS
last: ABANDANAS
 Find that suffix in the suffix ANAS
array. ANABANDANAS
, ANANABANDANAS
 Look at the suffix that
comes before it. szﬁ:ﬁg ANDANAS
« (%) Find the length of the BANDANAS
longest common prefix of DANAS
those suffixes. NAS
 Write that down in the H NABANDANAS
array. NANABANDANAS
* Use the insight from the NDANAS

previous slides to speed ABANANABANDANAS
up step ().

Kasai’s Algorithm

 For each suffix of the I$\$
original string, except the =1 -Errmerieie
last: ABANDANAS
 Find that suffix in the suffix ANAS
array. ANABANDANAS
: ANANABANDANAS
 Look at the suffix that
comes before it. szﬁ:ﬁg ANDANAS
« (%) Find the length of the BANDANAS
longest common prefix of DANAS
those suffixes. NAS
 Write that down in the H NABANDANAS
array. NANABANDANAS
* Use the insight from the NDANAS

previous slides to speed ABANANABANDANAS
up step ().

Kasai’s Algorithm

 For each suffix of the 3
original string, except the =1 AS
| g g, ABANANABANDANAS
ast: ABANDANAS
 Find that suffix in the suffix ANAS
array. ANABANDANAS
 Look at the suffix that ANANABANDANAS
comes before it. gxﬁﬁmﬁg ANDANAS
« (%) Find the length of the BANDANAS
longest common prefix of DANAS
those suffixes. NAS
 Write that down in the H NABANDANAS
array. NANABANDANAS
» Use the insight from the NDANAS

previous slides to speed ABANANABANDANAS
up step ().

Kasai’s Algorithm

 For each suffix of the 3
original string, except the =1 AS
| g g, ABANANABANDANAS
ast: ABANDANAS
 Find that suffix in the suffix ANAS
array. ANABANDANAS
 Look at the suffix that ANANABANDANAS
comes before it. gxﬁﬁmﬁg ANDANAS
« (%) Find the length of the BANDANAS
longest common prefix of DANAS
those suffixes. NAS
 Write that down in the H NABANDANAS
array. NANABANDANAS
» Use the insight from the NDANAS

previous slides to speed BANANABANDANAS
up step ().

Kasai’s Algorithm

 For each suffix of the 3
original string, except the =1 AS
| g g, ABANANABANDANAS
ast: ABANDANAS
 Find that suffix in the suffix ANAS
array. ANABANDANAS
 Look at the suffix that ANANABANDANAS
comes before it. ‘gxzﬁ:ﬁg ANDANAS
« (%) Find the length of the BANDANAS
longest common prefix of DANAS
those suffixes. NAS
 Write that down in the H NABANDANAS
array. NANABANDANAS
+ Use the insight from the NDANAS

previous slides to speed BANANABANDANAS
up step ().

Kasai’s Algorithm

 For each suffix of the f\S
original string, except the — ==[1 = ABANDANAS
last: ABANDANAS
 Find that suffix in the suffix ANAS
array. ANABANDANAS
, ANANABANDANAS
 Look at the suffix that
comes before it. ST\RQEIA\EANDANA g
« (%) Find the length of the
BANDANAS
longest common prefix of
: DANAS
those suffixes. NAS
« Write that down in the H NABANDANAS
array. NANABANDANAS
« Use the insight from the NDANAS

previous slides to speed BANANABANDANAS
up step ().

Kasai’s Algorithm

 For each suffix of the »f\S
original string, except the — ==[1 = ABANDANAS
last: ABANDANAS
 Find that suffix in the suffix ANAS
array. ANABANDANAS
 Look at the suffix that ANANABANDANAS
comes before it. 0 ei\l\zﬁmt\\gANDANA g
« (%) Find the length of the
BANDANAS
longest common prefix of
: DANAS
those suffixes. NAS
« Write that down in the H NABANDANAS
array. NANABANDANAS
« Use the insight from the NDANAS

previous slides to speed BANANABANDANAS
up step ().

Kasai’s Algorithm

« For each suffix of the »f\S
original string, except the L ABANANABANDANAS
last: ABANDANAS
e Find that suffix in the suffix ANAS
array. ANABANDANAS
* Look at the suffix that ANANABANDANAS
comes before it. 0 ANDANAS
, BANANABANDANAS
« (%) Find the length of the BANDANAS
longest common prefix of DANAS
those suffixes. NAS
 Write that down in the H NABANDANAS
array. NANABANDANAS
* Use the insight from the NDANAS

previous slides to speed BANANABANDANAS
up step ().

Kasai’s Algorithm

« For each suffix of the f\S
original string, except the L ABANANABANDANAS
last: ABANDANAS
- Find that suffix in the suffix ANAS
array. ANABANDANAS
* Look at the suffix that QESXQIB\QNDANAS
comes before it. 0 BANANABANDANAS
« (%) Find the length of the BANDANAS
longest common prefix of DANAS
those suffixes. NAS
 Write that down in the H NABANDANAS
array. NANABANDANAS
» Use the insight from the NDANAS

previous slides to speed BANANABANDANAS
up step ().

Kasai’s Algorithm

* For each suffix of the f\S
original string, except the L ABANANABANDANAS
last: ABANDANAS
- Find that suffix in the suffix ANAS
array. ANABANDANAS
« Look at the suffix that QESXQIB\QNDANAS
comes before it. 0 BANANABANDANAS
* (%) Find the length of the BANDANAS
longest common prefix of DANAS
those suffixes. NAS
 Write that down in the H NABANDANAS
array. NANABANDANAS
« Use the insight from the NDANAS
previous slides to speed ANANABANDANAS

up step ().

Kasai’s Algorithm

* For each suffix of the f\$
original string, except the L ABANANABANDANAS
last: ABANDANAS
- Find that suffix in the suffix ANAS
array. ANABANDANAS
« Look at the suffix that IA\:II-)\XL\‘?\QNDANAS
comes before it. 0 BANANABANDANAS
* (%) Find the length of the BANDANAS
longest common prefix of DANAS
those suffixes. NAS
 Write that down in the H NABANDANAS
array. NANABANDANAS
« Use the insight from the NDANAS
previous slides to speed ANANABANDANAS

up step ().

Kasai’s Algorithm

* For each suffix of the »?\$
original string, except the L ABANANABANDANAS
last: ABANDANAS
« Find that suffix in the suffix ANAS
array. ANABANDANAS
« Look at the suffix that ﬁmgxsﬁgNDANAs
comes before it. 0 BANANABANDANAS
* (%) Find the length of the BANDANAS
longest common prefix of DANAS
those suffixes. NAS
« Write that down in the H NABANDANAS
array. NANABANDANAS
« Use the insight from the NDANAS
previous slides to speed ANANABANDANAS

up step ().

Kasai’s Algorithm

 For each suffix of the
original string, except the 1
last:

 Find that suffix in the suffix
array. ANABANDANAS

« Look at the suffix that ANANABANDANAS
comes before it. 0

« (%) Find the length of the
longest common prefix of
those suffixes.

« Write that down in the H
array.

* Use the insight from the

previous slides to speed ANANABANDANAS
up step ().

Kasai’s Algorithm

 For each suffix of the

original string, except the 1

last:

« Find that suffix in the suffix
array. 3 ANABANDANAS

* Look at the suffix that ANANABANDANAS
comes before it. 0

« (%) Find the length of the
longest common prefix of
those suffixes.

« Write that down in the H
array.

* Use the insight from the

previous slides to speed ANANABANDANAS
up step ().

Kasai’s Algorithm

 For each suffix of the

original string, except the 1
last:
 Find that suffix in the suffix
array. =3 ANABANDANAS
 Look at the suffix that ANANABANDANAS
comes before it. 0

« (%) Find the length of the
longest common prefix of
those suffixes.

« Write that down in the H
array.

* Use the insight from the

previous slides to speed ANANABANDANAS
up step ().

Kasai’s Algorithm

 For each suffix of the f\S
original string, except the L ABANANABANDANAS
last: ABANDANAS
 Find that suffix in the suffix ANAS
array. ANABANDANAS
| == 3 ANANABANDANAS
 Look at the suffix that ANDANAS
comes before it. 0 BANANABANDANAS
* (%) Find the length of the BANDANAS
longest common prefix of DANAS
those suffixes. NAS
 Write that down in the H NABANDANAS
array. NANABANDANAS
« Use the insight from the NDANAS
previous slides to speed ANANABANDANAS

up step ().

Kasai’s Algorithm

 For each suffix of the f\S
original string, except the 1 ABANANABANDANAS
last: ABANDANAS
 Find that suffix in the suffix ANAS
array. ANABANDANAS
== 3 ANANABANDANAS
 Look at the suffix that ANDANAS
comes before it. 0 BANANABANDANAS
* (%) Find the length of the BANDANAS
longest common prefix of DANAS
those suffixes. NAS
 Write that down in the H NABANDANAS
array. NANABANDANAS
« Use the insight from the NDANAS
previous slides to speed NANABANDANAS

up step ().

Kasai’s Algorithm

 For each suffix of the f\$
original string, except the 1 ABANANABANDANAS
last: ABANDANAS
 Find that suffix in the suffix ANAS
array. ANABANDANAS
== 3 ANANABANDANAS
 Look at the suffix that ANDANAS
comes before it. 0 BANANABANDANAS
* (%) Find the length of the BANDANAS
longest common prefix of DANAS
those suffixes. NAS
 Write that down in the H NABANDANAS
array. NANABANDANAS
« Use the insight from the NDANAS
previous slides to speed NANABANDANAS

up step ().

Kasai’s Algorithm

 For each suffix of the »f\S
original string, except the L ABANANABANDANAS
last: ABANDANAS
« Find that suffix in the suffix ANAS
array. =[3 ANABANDANAS
 Look at the suffix that ANANABANDANAS
comes before it. 0 szﬁmﬁg ANDANAS
« (%) Find the length of the BANDANAS
longest common prefix of DANAS
those suffixes. NAS
 Write that down in the H NABANDANAS
array. NANABANDANAS
* Use the insight from the NDANAS
previous slides to speed NANABANDANA$

up step ().

Kasai’s Algorithm

 For each suffix of the

original string, except the 1
last:
 Find that suffix in the suffix

array. ==)[3
* Look at the suffix that

comes before it. 0

« (%) Find the length of the
longest common prefix of
those suffixes.

 Write that down in the H NABANDANAS
array. NANABANDANAS
* Use the insight from the
previous slides to speed NANABANDANA$

up step ().

Kasai’s Algorithm

 For each suffix of the

original string, except the 1
last:
 Find that suffix in the suffix

array. ==)[3
* Look at the suffix that

comes before it. 0

« (%) Find the length of the
longest common prefix of
those suffixes.

 Write that down in the H 5 NABANDANAS
array. NANABANDANAS
* Use the insight from the
previous slides to speed NANABANDANA$

up step ().

Kasai’s Algorithm

 For each suffix of the

original string, except the 1
last:
 Find that suffix in the suffix

array. 3
 Look at the suffix that

comes before it. 0

« (%) Find the length of the
longest common prefix of
those suffixes.

« Write that down in the H

=2 NABANDANAS

array. NANABANDANAS
* Use the insight from the
previous slides to speed NANABANDANAS

up step ().

Kasai’s Algorithm

 For each suffix of the f\S
i)rlgmal string, except the 1 ABANANABANDANAS
ast: ABANDANAS
 Find that suffix in the suffix ANAS
array. 3 ANABANDANAS
 Look at the suffix that ANANABANDANAS
comes before it. 0 gxﬁﬁmﬁg ANDANAS
* (%) Find the length of the BANDANAS
longest common prefix of DANAS
those suffixes. NAS
 Write that down in the H . NABANDANAS
array. NANABANDANAS
« Use the insight from the NDANAS
previous slides to speed NANABANDANAS

up step ().

Kasai’s Algorithm

 For each suffix of the f\S
i)rlgmal string, except the 1 ABANANABANDANAS
ast: ABANDANAS
 Find that suffix in the suffix ANAS
array. 3 ANABANDANAS
 Look at the suffix that ANANABANDANAS
comes before it. 0 gxﬁﬁmﬁg ANDANAS
* (%) Find the length of the BANDANAS
longest common prefix of DANAS
those suffixes. NAS
 Write that down in the H . NABANDANAS
array. NANABANDANAS
« Use the insight from the NDANAS
previous slides to speed ANABANDANAS

up step ().

Kasai’s Algorithm

 For each suffix of the f\$
i)rlgmal string, except the L ABANANABANDANAS
ast: ABANDANAS
 Find that suffix in the suffix ANAS
array. 3 ANABANDANAS
 Look at the suffix that ANANABANDANAS
comes before it. 0 g?\ﬁﬁmg ANDANAS
* (%) Find the length of the BANDANAS
longest common prefix of DANAS
those suffixes. NAS
 Write that down in the H . NABANDANAS
array. NANABANDANAS
« Use the insight from the NDANAS
previous slides to speed ANABANDANAS

up step ().

Kasai’s Algorithm

 For each suffix of the

original string, except the 1
last:
 Find that suffix in the suffix ANAS
array. 3 ANABANDANAS
 Look at the suffix that
comes before it. 0

« (%) Find the length of the
longest common prefix of
those suffixes.

« Write that down in the H
array. =2

* Use the insight from the

previous slides to speed ANABANDANAS
up step ().

Kasai’s Algorithm

 For each suffix of the

original string, except the 1
last:
 Find that suffix in the suffix ANAS
array. 3 ANABANDANAS
 Look at the suffix that
comes before it. 0

« (%) Find the length of the
longest common prefix of
those suffixes.

« Write that down in the H
array. =2

* Use the insight from the

previous slides to speed ANABANDANAS
up step ().

Kasai’s Algorithm

 For each suffix of the

original string, except the 1
last:
 Find that suffix in the suffix ANAS
array. 3 ANABANDANAS
* Look at the suffix that
comes before it. 0

(%) Find the length of the
longest common prefix of
those suffixes.

« Write that down in the H
array. =2

* Use the insight from the

previous slides to speed ANABANDANAS
up step ().

Kasai’s Algorithm

 For each suffix of the

original string, except the 1
last:
« Find that suffix in the suffix 3 LANAS
array. 3 ANABANDANAS
* Look at the suffix that
comes before it. 0

(%) Find the length of the
longest common prefix of
those suffixes.

« Write that down in the H
array. =2

* Use the insight from the

previous slides to speed ANABANDANAS
up step ().

Kasai’s Algorithm

 For each suffix of the
original string, except the 1
last:

ANAS
ANABANDANAS

w

 Find that suffix in the suffix R
array.

* Look at the suffix that
comes before it. 0

(%) Find the length of the
longest common prefix of
those suffixes.

« Write that down in the H
array.

* Use the insight from the

previous slides to speed ANABANDANAS
up step ().

w

Kasai’s Algorithm

 For each suffix of the f\S
original string, except the 1 ABANANABANDANAS
last: ABANDANAS
* Find that suffix in the suffix 3 ANAS
array. 3 ANABANDANAS
 Look at the suffix that ANANABANDANAS
comes before it. 0 gxﬁﬁmﬁg ANDANAS
« (%) Find the length of the BANDANAS
longest common prefix of DANAS
those suffixes. NAS
 Write that down in the H 5 NABANDANAS
array. NANABANDANAS
» Use the insight from the NDANAS
previous slides to speed ANABANDANAS

up step ().

Kasai’s Algorithm

 For each suffix of the f\S
i)rlgmal string, except the L ABANANABANDANAS
ast: ABANDANAS
 Find that suffix in the suffix —[3 ANAS
array. 3 ANABANDANAS
 Look at the suffix that QESXQIB\QNDANAS
comes before it. 0 BANANABANDANAS
« (%) Find the length of the BANDANAS
longest common prefix of DANAS
those suffixes. NAS
 Write that down in the H 5 NABANDANAS
array. NANABANDANAS
» Use the insight from the NDANAS

previous slides to speed
up step ().

NABANDANAS

Kasai’s Algorithm

 For each suffix of the f\$
i)rlgmal string, except the L ABANANABANDANAS
ast: ABANDANAS
 Find that suffix in the suffix —[3 ANAS
array. 3 ANABANDANAS
 Look at the suffix that ﬁ:gkﬁﬁgNDANAs
comes before it. 0 BANANABANDANAS
« (%) Find the length of the BANDANAS
longest common prefix of DANAS
those suffixes. NAS
 Write that down in the H 5 NABANDANAS
array. NANABANDANAS
+ Use the insight from the NDANAS

previous slides to speed
up step ().

NABANDANAS

Kasai’s Algorithm

 For each suffix of the
original string, except the 1
last:

w

 Find that suffix in the suffix R
array.

 Look at the suffix that
comes before it. 0

« (%) Find the length of the
longest common prefix of
those suffixes. NAS

« Write that down in the H NABANDANAS
array.

* Use the insight from the

previous slides to speed NABANDANAS
up step ().

w

Kasai’s Algorithm

 For each suffix of the
original string, except the 1
last:

w

 Find that suffix in the suffix R
array.

* Look at the suffix that
comes before it. 0

(%) Find the length of the
longest common prefix of
those suffixes. NAS

« Write that down in the H NABANDANAS
array.

* Use the insight from the

previous slides to speed NABANDANAS
up step ().

w

Kasai’s Algorithm

 For each suffix of the

original string, except the 1

last:

* Find that suffix in the suffix
array. = g

* Look at the suffix that
comes before it. 0

(%) Find the length of the
longest common prefix of
those suffixes. NAS

 Write that down in the H 2 NABANDANAS
array. 2

* Use the insight from the
previous slides to speed NABANDANAS

up step ().

Kasai’s Algorithm

 For each suffix of the

original string, except the 1
last:
* Find that suffix in the suffix 3
array. 3
* Look at the suffix that
comes before it. 0

(%) Find the length of the
longest common prefix of

those suffixes.
— NAS
« Write that down in the H NABANDANAS
array. 2
* Use the insight from the
previous slides to speed NABANDANA$

up step ().

Kasai’s Algorithm

 For each suffix of the
original string, except the
last:

 Find that suffix in the suffix
array.

 Look at the suffix that
comes before it.

« (%) Find the length of the
longest common prefix of
those suffixes.

« Write that down in the H
array.

« Use the insight from the
previous slides to speed
up step ().

S

AS

ABANANABANDANAS

ABANDANAS

w

ANAS

w

ANABANDANAS

ANANABANDANAS

ANDANAS

BANANABANDANAS

BANDANAS

DANAS

N

NAS

N

NABANDANAS

NANABANDANAS

NDANAS

NABANDANAS

Kasai’s Algorithm

 For each suffix of the f\S
i)rlgmal string, except the L ABANANABANDANAS
ast: ABANDANAS
 Find that suffix in the suffix 3 ANAS
array. 3 ANABANDANAS
 Look at the suffix that ANANABANDANAS
comes before it. 0 gxﬁﬁmﬁg ANDANAS
* (%) Find the length of the BANDANAS
longest common prefix of DANAS
those suffixes. NAS
 Write that down in the H v g NABANDANAS
array. NANABANDANAS
« Use the insight from the NDANAS
previous slides to speed ABANDANAS

up step ().

Kasai’s Algorithm

 For each suffix of the

original string, except the 1
last: ABANDANAS
 Find that suffix in the suffix 3
array. 3
 L.ook at the suffix that
comes before it. 0

(%) Find the length of the
longest common prefix of
those suffixes.

« Write that down in the H 12
array. 2
* Use the insight from the
previous slides to speed ABANDANAS

up step ().

Kasai’s Algorithm

 For each suffix of the

last: ABANDANAS
 Find that suffix in the suffix 3

array. 3
 Look at the suffix that

comes before it. 0

« (%) Find the length of the
longest common prefix of
those suffixes.

« Write that down in the H 12
array. 2
* Use the insight from the
previous slides to speed ABANDANAS

up step ().

Kasai’s Algorithm

 For each suffix of the

last: ABANDANAS
 Find that suffix in the suffix 3

array. 3
 Look at the suffix that

comes before it. 0

« (%) Find the length of the
longest common prefix of
those suffixes.

« Write that down in the H 12
array. 2
* Use the insight from the
previous slides to speed ABANDANAS

up step ().

Kasai’s Algorithm

 For each suffix of the

last: ABANDANAS
 Find that suffix in the suffix 3

array. 3
 Look at the suffix that

comes before it. 0

« (%) Find the length of the
longest common prefix of
those suffixes.

« Write that down in the H 12
array. 2
* Use the insight from the
previous slides to speed ABANDANAS

up step ().

Kasai’s Algorithm

 For each suffix of the

last: 4 "ABANDANAS
 Find that suffix in the suffix 3
array. 3
 Look at the suffix that
comes before it. 0
« (%) Find the length of the
longest common prefix of
those suffixes.
 Write that down in the H =2
array. 2
* Use the insight from the
previous slides to speed ABANDANAS

up step ().

Kasai’s Algorithm

 For each suffix of the

last: 4T ABANDANAS
 Find that suffix in the suffix 3
array. 3
 Look at the suffix that
comes before it. 0
« (%) Find the length of the
longest common prefix of
those suffixes.
 Write that down in the H 2
array. 2
* Use the insight from the
previous slides to speed ABANDANAS

up step ().

Kasai’s Algorithm

 For each suffix of the f\S
original string, except the L BANANABANDANAS
last: == [\BANDANAS
 Find that suffix in the suffix 3 ANAS
array. 3 ANABANDANAS
 Look at the suffix that QESXQIB\QNDANAS
comes before it. 0 BANANABANDANAS
* (%) Find the length of the BANDANAS
longest common prefix of DANAS
those suffixes. NAS
 Write that down in the H g NABANDANAS
array. NANABANDANAS
« Use the insight from the NDANAS
previous slides to speed ABANDANAS

up step ().

Kasai’s Algorithm

 For each suffix of the

original string, except the 1
last: 4
* Find that suffix in the suffix 3
array. 3
* Look at the suffix that
comes before it. 0
(%) Find the length of the
longest common prefix of
those suffixes.
 Write that down in the H 2
array. 2
* Use the insight from the
previous slides to speed BANDANAS

up step ().

Kasai’s Algorithm

 For each suffix of the

original string, except the 1

last: /4

* Find that suffix in the suffix 3
array. 3

« Look at the suffix that
comes before it. 0

(%) Find the length of the BANDANAS
longest common prefix of
those suffixes.

 Write that down in the H 2
array. 2

* Use the insight from the
previous slides to speed BANDANAS

up step ().

Kasai’s Algorithm

 For each suffix of the

original string, except the 1
last: /4
* Find that suffix in the suffix 3
array. 3
* Look at the suffix that
comes before it. 0 BANANABANDANAS
« (%) Find the length of the BANDANAS
longest common prefix of
those suffixes.
 Write that down in the H 2
array. 2
* Use the insight from the
previous slides to speed BANDANAS

up step ().

Kasai’s Algorithm

 For each suffix of the

original string, except the 1
last: /4
* Find that suffix in the suffix 3
array. 3
« Look at the suffix that
comes before it. 0 BANANABANDANAS
(%) Find the length of the BANDANAS
longest common prefix of
those suffixes.
 Write that down in the H 2
array. 2
* Use the insight from the
previous slides to speed BANDANAS

up step ().

Kasai’s Algorithm

 For each suffix of the

original string, except the 1
last: /4
* Find that suffix in the suffix 3
array. 3
« Look at the suffix that
comes before it. 0 BANANABANDANAS
» (%) Find the length of the 3 "BANDAN AS
longest common prefix of
those suffixes.
 Write that down in the H 2
array. 2
* Use the insight from the
previous slides to speed BANDANAS

up step ().

Kasai’s Algorithm

 For each suffix of the

original string, except the 1

last: 4

* Find that suffix in the suffix 3
array. 3

* Look at the suffix that
comes before it. 0 BANANABANDANAS
longest common prefix of
those suffixes.

 Write that down in the H 2
array. 2

* Use the insight from the
previous slides to speed BANDANAS

up step ().

Kasai’s Algorithm

 For each suffix of the

original string, except the 1
last: 4
* Find that suffix in the suffix 3
array. 3
* Look at the suffix that
comes before it. 0
» (%) Find the length of the =) |3
longest common prefix of
those suffixes.
 Write that down in the H 2
array. 2
* Use the insight from the
previous slides to speed BANDANAS

up step ().

Kasai’s Algorithm

 For each suffix of the

original string, except the 1
last: 4
* Find that suffix in the suffix 3
array. 3
* Look at the suffix that
comes before it. 0
» (%) Find the length of the =) |3
longest common prefix of
those suffixes.
 Write that down in the H 2
array. 2
* Use the insight from the
previous slides to speed ANDANAS

up step ().

Kasai’s Algorithm

 For each suffix of the

original string, except the 1
last: 4
* Find that suffix in the suffix 3
array. 3
* Look at the suffix that
comes before it. 0 ANDANAS
» (%) Find the length of the =) |3
longest common prefix of
those suffixes.
 Write that down in the H 2
array. 2
* Use the insight from the
previous slides to speed ANDANAS

up step ().

Kasai’s Algorithm

 For each suffix of the

original string, except the 1

last: 4

« Find that suffix in the suffix 3
array. 3

* Look at the suffix that ANANABANDANAS
comes before it. 0 ANDANAS

* (%) Find the length of the =) |3
longest common prefix of
those suffixes.

 Write that down in the H 2
array. 2

* Use the insight from the
previous slides to speed ANDANAS

up step ().

Kasai’s Algorithm

 For each suffix of the

original string, except the 1

last: 4

* Find that suffix in the suffix 3
array. 3

« Look at the suffix that ANANABANDANAS
comes before it. 0 ANDANAS

» (%) Find the length of the =) |3
longest common prefix of
those suffixes.

 Write that down in the H 2
array. 2

* Use the insight from the
previous slides to speed ANDANAS

up step ().

Kasai’s Algorithm

 For each suffix of the
original string, except the
last:

 Find that suffix in the suffix
array.

 Look at the suffix that
comes before it.

(%) Find the length of the)
longest common prefix of
those suffixes.

« Write that down in the H
array.

* Use the insight from the

previous slides to speed ANDANAS
up step ().

AR

ANANABANDANAS
ANDANAS

wonNnN W W

N

N

Kasai’s Algorithm

 For each suffix of the
original string, except the
last:

 Find that suffix in the suffix
array.

* Look at the suffix that >
comes before it.

(%) Find the length of the
longest common prefix of
those suffixes.

« Write that down in the H
array.

* Use the insight from the

previous slides to speed ANDANAS
up step ().

AR

ANANABANDANAS
ANDANAS

wonNnN W W

N

N

Kasai’s Algorithm

 For each suffix of the
original string, except the
last:

 Find that suffix in the suffix
array.

* Look at the suffix that >
comes before it.

(%) Find the length of the
longest common prefix of
those suffixes.

« Write that down in the H
array.

* Use the insight from the

previous slides to speed ANDANAS
up step ().

NG

wonNnN W W

N

N

Kasai’s Algorithm

 For each suffix of the
original string, except the
last:

 Find that suffix in the suffix
array.

* Look at the suffix that >
comes before it.

(%) Find the length of the
longest common prefix of
those suffixes.

« Write that down in the H
array.

* Use the insight from the

previous slides to speed NDANAS
up step ().

NG

wonNnN W W

N

N

Kasai’s Algorithm

 For each suffix of the
original string, except the
last:

 Find that suffix in the suffix
array.

 Look at the suffix that
comes before it.

(%) Find the length of the
longest common prefix of
those suffixes.

« Write that down in the H
array.

* Use the insight from the
previous slides to speed
up step ().

NG

wonNnN W W

N

N

NDANAS

NDANAS

Kasai’s Algorithm

 For each suffix of the
original string, except the
last:

 Find that suffix in the suffix
array.

* Look at the suffix that >
comes before it.

(%) Find the length of the
longest common prefix of
those suffixes.

 Write that down in the H
array. NANABANDANAS

« Use the insight from the NDANAS

previous slides to speed NDANAS
up step ().

AR

wonNnN W W

N

N

Kasai’s Algorithm

 For each suffix of the
original string, except the
last:

 Find that suffix in the suffix
array.

* Look at the suffix that >
comes before it.

(%) Find the length of the
longest common prefix of
those suffixes.

 Write that down in the H
array. NANABANDANAS

« Use the insight from the NDANAS

previous slides to speed NDANAS
up step ().

AR

wonNnN W W

N

N

Kasai’s Algorithm

 For each suffix of the
original string, except the
last:

 Find that suffix in the suffix
array.

* Look at the suffix that >
comes before it.

(%) Find the length of the
longest common prefix of
those suffixes.

 Write that down in the H

array. NANABANDANAS
« Use the insight from the NDANAS

previous slides to speed NDANAS
up step ().

AR

wonNnN W W

N

N

Kasai’s Algorithm

 For each suffix of the
original string, except the
last:

 Find that suffix in the suffix
array.

 Look at the suffix that
comes before it.

(%) Find the length of the
longest common prefix of
those suffixes.

 Write that down in the H

array. 1 | NANABANDANAS
« Use the insight from the NDANAS

previous slides to speed NDANAS
up step ().

AR

wonNnN W W

N

N

Kasai’s Algorithm

 For each suffix of the
original string, except the
last:

 Find that suffix in the suffix
array.

 Look at the suffix that
comes before it.

(%) Find the length of the
longest common prefix of
those suffixes.

« Write that down in the H
array.

* Use the insight from the

previous slides to speed NDANAS
up step ().

NG

wonNnN W W

N

N

Kasai’s Algorithm

» For each suffix of the
original string, except the
last:

 Find that suffix in the suffix
array.

 Look at the suffix that
comes before it.

(%) Find the length of the
longest common prefix of
those suffixes.

« Write that down in the H
array.

* Use the insight from the
previous slides to speed DANAS
up step ().

NG

wonNnN W W

N

N

Kasai’s Algorithm

 For each suffix of the
original string, except the
last:

 Find that suffix in the suffix
array.

 Look at the suffix that
comes before it.

(%) Find the length of the
longest common prefix of
those suffixes.

« Write that down in the H
array.

* Use the insight from the
previous slides to speed
up step ().

NG

wonNnN W W

DANAS

N

N

DANAS

Kasai’s Algorithm

 For each suffix of the
original string, except the
last:

 Find that suffix in the suffix
array.

 Look at the suffix that
comes before it.

(%) Find the length of the
longest common prefix of
those suffixes.

« Write that down in the H
array.

* Use the insight from the
previous slides to speed
up step ().

NG

wonNnN W W

BANDANAS

DANAS

N

N

DANAS

Kasai’s Algorithm

 For each suffix of the
original string, except the
last:

 Find that suffix in the suffix
array.

 Look at the suffix that
comes before it.

(%) Find the length of the
longest common prefix of
those suffixes.

« Write that down in the H
array.

* Use the insight from the
previous slides to speed
up step ().

NG

O wWwo N WW

BANDANAS

DANAS

N

N

DANAS

Kasai’s Algorithm

 For each suffix of the
original string, except the
last:

 Find that suffix in the suffix
array.

 Look at the suffix that
comes before it.

(%) Find the length of the
longest common prefix of
those suffixes.

« Write that down in the H
array.

* Use the insight from the
previous slides to speed
up step ().

NG

O wWwo N WW

BANDANAS

DANAS

N

N

DANAS

Kasai’s Algorithm

 For each suffix of the

original string, except the 1

last: 4

* Find that suffix in the suffix 3
array. 3

* Look at the suffix that 2
comes before it. 0

» (%) Find the length of the 3
longest common prefix of — .0
those suffixes.

 Write that down in the H 2
array. i

* Use the insight from the
previous slides to speed DANAS
up step ().

Kasai’s Algorithm

 For each suffix of the

original string, except the 1

last: 4

* Find that suffix in the suffix 3
array. 3

* Look at the suffix that 2
comes before it. 0

» (%) Find the length of the 3
longest common prefix of — .0
those suffixes.

 Write that down in the H 2
array. i

* Use the insight from the
previous slides to speed ANAS
up step ().

Kasai’s Algorithm

 For each suffix of the
original string, except the
last:

 Find that suffix in the suffix
array.

 Look at the suffix that
comes before it.

(%) Find the length of the
longest common prefix of
those suffixes.

« Write that down in the H
array.

* Use the insight from the
previous slides to speed
up step ().

NG

ANAS

O wWwo N WW

N

N

ANAS

Kasai’s Algorithm

 For each suffix of the
original string, except the
last:

 Find that suffix in the suffix
array.

 Look at the suffix that
comes before it.

(%) Find the length of the
longest common prefix of
those suffixes.

« Write that down in the H
array.

* Use the insight from the
previous slides to speed
up step ().

NG

ABANDANAS

ANAS

O wWwo N WW

N

N

ANAS

Kasai’s Algorithm

 For each suffix of the
original string, except the
last:

 Find that suffix in the suffix
array.

 Look at the suffix that
comes before it.

(%) Find the length of the
longest common prefix of
those suffixes.

« Write that down in the H
array.

* Use the insight from the
previous slides to speed
up step ().

NG

ABANDANAS

ANAS

O wWwo N WW

N

N

ANAS

Kasai’s Algorithm

 For each suffix of the
original string, except the
last:

 Find that suffix in the suffix
array.

 Look at the suffix that
comes before it.

(%) Find the length of the
longest common prefix of =)
those suffixes.

« Write that down in the H
array.

* Use the insight from the
previous slides to speed ANAS
up step ().

ABANDANAS
ANAS

O wWoOoNWWEPRA~E

N

N

=

Kasai’s Algorithm

 For each suffix of the
original string, except the
last:

 Find that suffix in the suffix
array.

 Look at the suffix that
comes before it.

(%) Find the length of the
longest common prefix of
those suffixes.

« Write that down in the H
array.

* Use the insight from the
previous slides to speed ANAS
up step ().

ABANDANAS
ANAS

O wWoOoNWWEPRA~E

N

N

=

Kasai’s Algorithm

» For each suffix of the
original string, except the
last:

 Find that suffix in the suffix
array.

 Look at the suffix that
comes before it.

(%) Find the length of the
longest common prefix of
those suffixes.

« Write that down in the H
array.

* Use the insight from the
previous slides to speed ANAS
up step ().

O wWoOoNWWEPRA~E

N

N

=

Kasai’s Algorithm

 For each suffix of the

original string, except the 1

last: 4

1

 Find that suffix in the suffix 3

array. 3

 Look at the suffix that 2

comes before it. 0

» (%) Find the length of the 3

longest common prefix of 0
those suffixes.

« Write that down in the H 2

array. i

* Use the insight from the
previous slides to speed
up step ().

NAS

Kasai’s Algorithm

» For each suffix of the
original string, except the
last:

 Find that suffix in the suffix
array.

 Look at the suffix that
comes before it.

(%) Find the length of the
longest common prefix of
those suffixes.

« Write that down in the H
array.

* Use the insight from the
previous slides to speed
up step ().

O wWoOoNWWEPRA~E

N

NAS

N

=

NAS

Kasai’s Algorithm

 For each suffix of the
original string, except the
last:

 Find that suffix in the suffix
array.

 Look at the suffix that
comes before it.

(%) Find the length of the
longest common prefix of
those suffixes.

« Write that down in the H
array.

* Use the insight from the
previous slides to speed
up step ().

O wWoOoNWWEPRA~E

DANAS

N

NAS

N

=

NAS

Kasai’s Algorithm

 For each suffix of the
original string, except the
last:

 Find that suffix in the suffix
array.

 Look at the suffix that
comes before it.

(%) Find the length of the
longest common prefix of
those suffixes.

« Write that down in the H
array.

* Use the insight from the
previous slides to speed
up step ().

DANAS

NAS

R NNOOWONWWEPRA~RE

NAS

Kasai’s Algorithm

 For each suffix of the
original string, except the
last:

 Find that suffix in the suffix
array.

 Look at the suffix that
comes before it.

(%) Find the length of the
longest common prefix of
those suffixes.

« Write that down in the H
array.

* Use the insight from the
previous slides to speed
up step ().

DANAS

NAS

R NNOOWONWWEPRA~RE

NAS

Kasai’s Algorithm

» For each suffix of the
original string, except the
last:

 Find that suffix in the suffix
array.

 Look at the suffix that
comes before it.

(%) Find the length of the
longest common prefix of
those suffixes. —

« Write that down in the H
array.

* Use the insight from the
previous slides to speed
up step ().

R NNOOWONWWEPRA~RE

NAS

Kasai’s Algorithm

» For each suffix of the
original string, except the
last:

 Find that suffix in the suffix
array.

 Look at the suffix that
comes before it.

(%) Find the length of the
longest common prefix of
those suffixes. —

« Write that down in the H
array.

* Use the insight from the
previous slides to speed
up step ().

R NNOOWONWWEPRA~RE

Kasai’s Algorithm

 For each suffix of the

AS

original string, except the
last:

 Find that suffix in the suffix
array.

 Look at the suffix that
comes before it.

(%) Find the length of the
longest common prefix of
those suffixes. —

« Write that down in the H
array.

* Use the insight from the
previous slides to speed
up step ().

R NNOOWONWWEPRA~RE

Kasai’s Algorithm

 For each suffix of the

original string, except the
last:

 Find that suffix in the suffix
array.

 Look at the suffix that
comes before it.

(%) Find the length of the
longest common prefix of
those suffixes. —

« Write that down in the H
array.

* Use the insight from the
previous slides to speed
up step ().

R NNOOWONWWEPRA~RE

Kasai’s Algorithm

 For each suffix of the

original string, except the
last:

 Find that suffix in the suffix
array.

 Look at the suffix that
comes before it.

(%) Find the length of the
longest common prefix of
those suffixes. —

« Write that down in the H
array.

* Use the insight from the
previous slides to speed
up step ().

R NNOOWONWWE PR~REFEO

Kasai’s Algorithm

 For each suffix of the —

original string, except the
last:

 Find that suffix in the suffix
array.

 Look at the suffix that
comes before it.

(%) Find the length of the
longest common prefix of
those suffixes.

« Write that down in the H
array.

* Use the insight from the
previous slides to speed
up step ().

R NNOOWONWWE PR~REFEO

Kasai’s Algorithm

» For each suffix of the —
original string, except the
last:

 Find that suffix in the suffix
array.

 Look at the suffix that
comes before it.

(%) Find the length of the
longest common prefix of
those suffixes.

« Write that down in the H
array.

* Use the insight from the
previous slides to speed
up step ().

R NNOOWONWWE PR~REFEO

Kasai’s Algorithm

» For each suffix of the —
original string, except the
last:

 Find that suffix in the suffix
array.

 Look at the suffix that
comes before it.

(%) Find the length of the
longest common prefix of
those suffixes.

« Write that down in the H
array.

* Use the insight from the
previous slides to speed
up step ().

R NNOOWONWWE PR~REFEO

Kasai’s Algorithm

 For each suffix of the 0] f\S
{)rlgmal string, except the Lll ABANANABANDANAS
ast: , | ABANDANAS
 Find that suffix in the suffix 3 ANAS
array. 3 ANABANDANAS
 Look at the suffix that 2 ANANABANDANAS
comes before it. 0 gxﬁﬁmﬁg ANDANAS
* (%) Find the length of the 3
BANDANAS
longest common prefix of O DAN AS
those suffixes. 0 NAS
 Write that down in the H g NABANDANAS
array. 1 NANABANDANAS
» Use the insight from the NDANAS

previous slides to speed ABANANABANDANAS
up step ().

Kasai’s Algorithm

 For each suffix of the
original string, except the
last:

 Find that suffix in the suffix
array.

 Look at the suffix that
comes before it.

(%) Find the length of the
longest common prefix of
those suffixes.

« Write that down in the H
array.

* Use the insight from the
previous slides to speed
up step ().

Kasai’s Algorithm

 For each suffix of the With O(m) preprocessing
original string, except the time, can gtilcgone in time

last:
 Find that suffix in the suffix
array.

 Look at the suffix that
comes before it.

« (%) Find the length of the
longest common prefix of
those suffixes.

« Write that down in the H
array.

* Use the insight from the
previous slides to speed
up step ().

Kasai’s Algorithm

 For each suffix of the With O(m) preprocessing
original string, except the time, can be done in time
last: OtL).
Question to Ponder:
« Find that suffix in the suffix}f How would you do this?
array.

 Look at the suffix that
comes before it.

« (%) Find the length of the
longest common prefix of
those suffixes.

« Write that down in the H
array.

* Use the insight from the
previous slides to speed
up step ().

Kasai’s Algorithm

 For each suffix of the With O(m) preprocessing
original string, except the time, can be done in time
last: Ob).
' Question to Ponder:
* Find that suffix in the suffix How would you do this?
array.
» Look ali)tl}e Suiflx that The runtime of this step is
comes belore it. : proportional to how much the LCP
(%) Find the length of the increases on that step.

longest common prefix of
those suffixes.

« Write that down in the H
array.

* Use the insight from the
previous slides to speed
up step ().

Kasai’s Algorithm

 For each suffix of the With O(m) preprocessing
original string, except the time, can be done in time
last: OtL).
Question to Ponder:
 Find that suffix in the suffix}f How would you do this?
array.

 Look at the suffix that

i The runtime of this step is
comes before it. UL ! Dl

proportional to how much the LCP

« (%) Find the length of the increases on that step.
longest common prefix of
those suffixes. x

 Write that down in the H ‘
array. ABANANABANDANAS

ABANDANAS

* Use the insight from the
previous slides to speed
up step ().

Kasai’s Algorithm

 For each suffix of the With O(m) preprocessing
original string, except the time, can be done in time
last: Ob).
' Question to Ponder:
* Find that suffix in the suffix How would you do this?
array.
» Look alijtl}e Su.i;flx that The runtime of this step is
comes belore it. : proportional to how much the LCP
(%) Find the length of the increases on that step.

those suffixes.

 Write that down in the H ‘
array. ABANANABANDANAS

ABANDANAS

longest common prefix of »I

* Use the insight from the

previous slides to speed L Already known
to match

up step ().

Kasai’s Algorithm

 For each suffix of the With O(m) preprocessing
original string, except the time, can be done in time
last: Ob).
' Question to Ponder:
* Find that suffix in the suffix How would you do this?
array.
» Look alijtl}e Suiflx that The runtime of this step is
comes belore it. : proportional to how much the LCP
(%) Find the length of the increases on that step.

those suffixes.

 Write that down in the H ‘
array. ABANANABANDANAS

ABANDANAS

longest common prefix of »I

* Use the insight from the

previous slides to speed L Already known
to match

up step ().

Kasai’s Algorithm

 For each suffix of the With O(m) preprocessing
original string, except the time, can be done in time
last: o).
' Question to Ponder:
* Find that suffix in the suffix How would you do this?
array.
* Look alijtl}e Suiflx that The runtime of this step is
comes belore it. : proportional to how much the LCP
(%) Find the length of the increases on that step.
longest common prefix of Had to scan
those suffixes. ‘ these characters
 Write that down in the H
array. ABANANABANDANAS
ABANDANAS

* Use the insight from the

previous slides to speed L Already known
to match

up step ().

Kasai’s Algorithm

 For each suffix of the With O(m) preprocessing
original string, except the time, can be done in time
last: Ob).
' Question to Ponder:
* Find that suffix in the suffix How would you do this?
array.
» Look ali)tl}e Suiflx that The runtime of this step is
comes belore it. : proportional to how much the LCP
(%) Find the length of the increases on that step.

one per suffix. (We saw this earlier.)

those suffixes.

« Write that down in the H
array.

* Use the insight from the
previous slides to speed
up step ().

longest common prefix of X The LCP value decreases by at most

Kasai’s Algorithm

 For each suffix of the With O(m) preprocessing
original string, except the time, can g‘?gone in time
last: '
Question to Ponder:
« Find that suffix in the suffix How would you do this?
array.

* Look at the suffix that The runtime of this step is

comes before it. : proportional to how much the LCP
(%) Find the length of the increases on that step.

longest common prefix of The LCP value decreases by at most
those suffixes. X one per suffix. (We saw this earlier.)

« Write that down in the H
array.

* Use the insight from the
previous slides to speed
up step ().

The LCP value maxes out at m. (Can’t
match more than all the characters.)

Kasai’s Algorithm

 For each suffix of the
original string, except the
last:

 Find that suffix in the suffix
array.

 Look at the suffix that
comes before it.

« (%) Find the length of the’

those suffixes.

« Write that down in the H
array.

* Use the insight from the
previous slides to speed
up step ().

longest common prefix of »I

With O(m) preprocessing
time, can be done in time
O(1).

Question to Ponder:
How would you do this?

The runtime of this step is
proportional to how much the LCP
increases on that step.

The LCP value decreases by at most
one per suffix. (We saw this earlier.)

The LCP value maxes out at m. (Can’t
match more than all the characters.)

Therefore, the LCP value can grow at
most 2m times. (Prove this!)

Kasai’s Algorithm

 For each suffix of the
original string, except the
last:

 Find that suffix in the suffix
array.

 Look at the suffix that
comes before it.

« (%) Find the length of the’

those suffixes.

« Write that down in the H
array.

* Use the insight from the
previous slides to speed
up step ().

longest common prefix of »I

With O(m) preprocessing
time, can be done in time
O(1).

Question to Ponder:
How would you do this?

The runtime of this step is
proportional to how much the LCP
increases on that step.

The LCP value decreases by at most
one per suffix. (We saw this earlier.)

The LCP value maxes out at m. (Can’t
match more than all the characters.)

Therefore, the LCP value can grow at
most 2m times. (Prove this!)

Claim: Across all iterations, this step
takes a total of O(m) time.

Kasai’s Algorithm

» For each suffix of the
original string, except the

last:

 Find that suffix in the suffix
array.

* Look at the suffix that Total
comes before it. runtime:

« (%) Find the length of the
longest common prefix of
those suffixes.

« Write that down in the H
array.

* Use the insight from the
previous slides to speed
up step ().

O(m).

More to Explore

* We could easily spend a whole quarter talking
about suffix arrays. Here’s what we didn’t cover:

 Bottom-up tree simulations: Using LCP arrays,
you can simulate any O(m)-time suffix tree algorithm
that works with a bottom-up DFS in time O(m).

» Faster substring searching: Using LCP arrays,

plus RMQ, you can improve the cost of a substring
search to O(n + z + log m).

 Burrows-Wheeler transforms: Suffix arrays, plus
LCP arrays, can be used to significantly improve the
performance of text compressors.

* Check these out - they’re super interesting!

Next Time

- Amortized Analysis
 Lying in a runtime analysis.
 The Potential Method

* Physics meets data structure design.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238

